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Abstract. We propose an improved model for the strain dependence of the
superconducting properties of Nb3Sn. The model is based on the three
dimensional strain tensor and derived in terms of the first, second and third
invariants, and improves an existing model that only includes the second invariant.
The axial form of the new model accurately accounts for the experimentally
observed dependence of the effective upper critical magnetic field (H∗

c2
) on axial

strain, i.e. a quasi-parabolic strain dependence, asymmetry, and an upturn at
large compressive axial strain. An accurate model that accounts for the three
dimensional nature of strain is important for scaling relations for the critical
current that are used to model magnet performance based on wire measurements.
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1. Introduction

The development of accurate scaling relations for the critical current density (Jc)
as a function of magnetic field (H), temperature (T ) and strain (ε) in Nb3Sn
wires is of key importance for the analysis of magnet performance based on wire
results, and for a minimization of the number of measurements that are required
to fully parameterize an unknown wire. A prime user of such scaling relations
is the International Thermonuclear Experimental Reactor (ITER) community, who
use scaling to analyze magnet performance and in developing and implementing the
acceptance tests of conductor batches from various manufactures.

The ITER community recently adopted a modern scaling relation that was derived
elsewhere for the description of axial strain experiments on Nb3Sn wires [1], to improve
on an earlier form [2] of such a relation [3]. It can be shown [4] that the relation
proposed in [1] can be written as:

Jc (H,T, ε) =
√

2Cµ0H
∗
c (t)hp−1 (1 − h)

q
(1)

with

H∗
c (t) ∼= H∗

c (0)
(

1 − t2
)

,

t ≡ T

T ∗
c (0, ε)

and h ≡ H

H∗
c2 (T, ε)

,

T ∗
c (0, ε) = T ∗

cm (0) s (ε)
1

3 ,

H∗
c2 (T, ε) = H∗

c2m (0)MDG (t) s (ε) ,

MDG (t) ≡ H∗
c2 (t)MDG

H∗
c2 (0)MDG

∼=
(

1 − t1.52
)

,

In which C, p, and q are constants, H∗
c is the effective thermodynamic critical magnetic

field, T ∗
c is the effective critical temperature, and T ∗

cm and H∗
c2m are maximum

occurring values. H∗
c2(t)MDG and H∗

c2(0)MDG are solutions to the Maki–De Gennes
relation:

ln (t) = ψ

(

1

2

)

− ψ

(

1

2
+

~D∗ (ε)µ0H
∗
c2 (T, ε)

2φ0kBT

)

, (2)

in which ψ represents the digamma function, and D∗ represents the effective diffusion
constant for the normal conducting electrons. D∗ is related to the slope of H∗

c2(T, ε)
at T ∗

c (0, ε) through [5]:
(

∂µ0H
∗
c2 (T, ε)

∂T

)

T=T∗

c
(0,ε)

= − 4φ0kB

π2~D∗ (ε)
, (3)

indicating that D∗ has to depend on strain to account for the experimentally
observable change in the slope at T ∗

c (0, ε), which originates from the stronger strain
dependence of H∗

c2(0, ε) compared to T ∗
c (0, ε).

MDG(t) can be approximated by
(

1 − t1.52
)

to arrive at an explicit relation, but
at the cost of errors in H∗

c2(T, ε) of up to 0.4 T. In [1] p = 0.5 and q = 2 to retain
generality, thereby limiting the validity range to below about 80% of H∗

c2(T, ε), above
which compositional distributions become important. In the ITER form [3], p and q
are allowed to vary at the cost of an increased number of fit parameters, to account for
variable grain sizes in wires that modify pinning behavior (through a variable p), and
to describe the property variation close toH∗

c2(T, ε) that originates from compositional
distributions in wires (through a variable q). All strain dependence in (1) is contained
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in the function s(ε), which is defined as the normalized strain dependence of H∗
c2, and

is the focus of this paper.

2. History of strain models

Various forms for s(ε) exist in the literature. One dimensional, axial models for
s(ε) are Ekin’s original power-law model [6], the extended power-law model [7], and
a polynomial form proposed by the Durham University group [8]. Early work by
Testardi [9] and Welch [10], in combination with experiments on quasi-two dimensional
Nb3Sn tape conductors, led to the proposal of the original deviatoric strain model by
Ten Haken in 1994 [11], and its introduction in an s(ε) form for scaling relations in
1999 [12, 13]. Although the original deviatoric strain model accounts for the three
dimensional nature of strain and improves the accuracy with respect to the original
power-law model in the high compressive axial strain region, its derivation is still
largely empirical and it uses only the second strain invariant.

Significant progress was made in the three dimensional descriptions of the strain
dependence by Markiewicz in 2004, who calculated the change in the phonon spectrum
as a function of strain and coupled that through the Eliashberg relations to a change
in Tc [14, 15]. Markiewicz was able to show that in axial strain experiments the first
invariant provides an initial, almost constant, reduction of Tc, the second invariant
provides the main parabolic-like dependence, and the third invariant introduces
asymmetry and an upturn for large compressive strain [16]. The calculations involved
were, unfortunately, too extensive to be appropriate for scaling relations. This led in
2006 to a proposed simplification in the form of a polynomial fit [17] that is very similar
to the Durham University polynomial model. Based on the important conclusions from
Markiewicz his work, the original deviatoric strain model was modified in a somewhat
artificial way by introducing asymmetry through a rotation of Ten Haken’s original
deviatoric strain model. This led to the modified deviatoric strain model as proposed
in [1], which accounts for the parabolic-like strain dependence including asymmetry,
but does not account for the upturn at large compressive axial strains.

The first scaling attempts performed for ITER [3] using the relations in [1] with
variable p and q and the rotational modified deviatoric strain model on 20 data sets
highlighted three important conclusions with respect to the strain descriptions: 1) As
to be expected the polynomial forms provide the highest accuracy within the bounds
of the fit; 2) polynomial models have coefficients whose values depend on the fit range
and are not suitable for extrapolation outside of the measured data range; 3) the
largest deviations in the present scaling relation occur at the large axial compressive
strains since the rotational modified deviatoric strain model does not account for the
observable upturn at these strain values. In addition to this it can be noted that three
dimensional models are highly relevant for the extensive finite element modeling that
is presently being performed on Nb3Sn wires, cables and magnets. Based on these
conclusions it is desirable to derive a three dimensional form for s(ε) which in axial
form accounts for the quasi-parabolic dependence, the change in curvature (upturn)
at large compressive axial strains, and asymmetry. The model has to account for
the underlying physics, but be simple enough to be applicable in scaling relations for
Jc(H,T, ε). The derivation and test of such a model is the purpose of this article.
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3. Modified strain model

3.1. Invariants of the strain tensor

The strain tensor, ε, which has components εij , can be uniquely decomposed into a
spherical part and traceless deviatoric part as ε = (εhyd/3)I + εdev, where εdev is the
deviatoric part of the strain, I is the second order identity tensor, and εhyd is the
spherical part of the strain which coincides with the hydrostatic strain. In component
form, this is given by εij = (εhyd/3)δij +χij , where δij is the Kronecker delta and χij

are the components of the deviatoric strain tensor. In the remainder of this article the
symbol ε will be used to represent tensorial strain quantities, while the symbol ε will
be used for scalar valued strain quantities. Since the deviatoric strain is traceless, the
spherical strain must be given by

εhyd = ε11 + ε22 + ε33; (4)

therefore, the components of the deviatoric strain tensor are

χij = εij −
1

3
(ε11 + ε22 + ε33)δij . (5)

For an isotropic elastic material, the strain energy density function may be expressed
in terms of the invariants of the strain tensor. Under the full rotation group, the strain
tensor has three independent invariants. These may be chosen as the first invariant
of the strain tensor, I1 and the second and third invariants of the deviatoric strain
tensor, J2 and J3. For this choice, the invariants are given by

I1 = Tr(ε) = εhyd

J2 = 1
2εdev : εdev

J3 = det(εdev)
. (6)

In terms of the principal strains, (ε1, ε2, ε3), the invariants are given by

I1 = ε1 + ε2 + ε3
J2 = 1

6

(

(ε1 − ε2)
2 + (ε2 − ε3)

2 + (ε3 − ε1)
2
)

J3 = (ε1 − 1
3I1)(ε2 − 1

3I1)(ε3 − 1
3I1)

. (7)

3.2. Three dimensional strain model

The goal of this work is to develop a three dimensional strain model that is physically
based, allows extrapolation, and is simple enough to be applied in scaling relations.
The original Ten Haken deviatoric strain model [11] meets the above criteria, however,
it does not capture the observed deviation from linearity at large compressive strains.
Markiewicz [16] linked this asymmetry and upturn at large compressive strains to
the third invariant of the deviatoric strain tensor which is neglected in the previous
deviatoric strain models. H∗

c2 as a function of strain is here assumed to take the
following form,

H∗
c2(ε)

H∗
c2(ε = 0)

= (1 − ChI1)
(

1 − Cd,1

√

J2 − Cd,2J3

)

, (8)

where Ch, Cd,1, and Cd,2 are constants which must be determined experimentally. This
model is partly based on the original deviatoric strain model in that it predicts a linear
dependence on

√
J2, but it also includes the dependence on I1 and J3. Similarities can

also be drawn with the model proposed by Markiewicz [17], which includes all three
invariants. In Markiewicz’s model, the strain function is taken to be the product of
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a function of I1 and a separate function of J2 and J3, since in the detailed invariant
analysis [16] it was observed that the hydrostatic part enters the strain function
largely separately from the deviatoric parts of the strain. We have chosen to take
the same approach in our strain model, and in fact the form proposed in equation 8
is very similar to the reciprocal of the form proposed by Markiewicz in [17] with the
exception that we introduce the functional dependence on J2 as

√
J2 while he uses a

second order polynomial (note that this is consistent with a series expansion). This is
motivated by the experimental validation of the Ten Haken deviatoric strain model for
a limited strain range. It is important to note that the model described in equation
8 is not rigorously derived, however, it is based on several important analytical and
experimental observations and it meets the requirements that were outlined at the
beginning of this section.

3.3. Uniaxial strain model

Since many of the studies on strain dependence are based on uniaxial strain
experiments on multifilamentary wire conductors, in this section we derive a uniaxial
version of the strain model given in equation 8. For uniaxial tests on wire conductors,
an idealization of the strain state in the Nb3Sn filaments, under the assumption of
transverse isotropy and linear elasticity, can be expressed as

ε1 = εa + ε1,0

ε2 = −νεa + ε2,0

ε3 = −νεa + ε3,0

, (9)

where εa is the applied uniaxial strain in the 1-direction, ν is the effective Poisson
ratio of the conductor, and ε1,0, ε2,0, and ε3,0 are the residual strains due to thermal
mismatch in the 1, 2, and 3 directions respectively. Here it is assumed that the
direction of applied strain coincides with the principal 1-direction, consistent with a
long cylinder assumption for wire geometries. The residual strain values will clearly
vary as a function of position inside of the conductor, however, here we consider
average effective values. Also, note that ν is an effective parameter that depends on
the properties and the layout of all of the materials inside the wire. In general ν may
vary as a function of applied strain due to effects such as plasticity. In this case ν is
assumed to be constant, consistent with a full plasticity analysis in which the strain
state of Nb3Sn remains approximately linear with a relatively constant Poisson ratio
as reported by Markiewicz [17].

It is useful to define the following quantities

ε̄ = 1
2 (ε2,0 + ε3,0)

∆ε = 1
2 (ε2,0 − ε3,0)

; (10)

these are the average of the transverse residual strain components and the difference
in the transverse residual strain components, respectively. Substituting equations 9
and 10 into equation 7, the second invariant of the deviatoric strain is given by

J2 =
1

3
(1 + ν)2

(

(εa − δ)2 + (ε0,a)
2
)

, (11)

where

δ = 1
1+ν

(ε̄− ε1,0)

ε0,a =
√

3
1+ν

|∆ε| . (12)



An improved model for the strain dependence of Nb3Sn 6

Applied Strain

S
tr

ai
n

(%
)

-1.5 -1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

(%)

3

ε
ε

J

ε
(J )

a

1

1/2
3

22

2

ε

δ

Figure 1. The Strain components (ε1, ε2, and ε3) and the invariants of the
deviatoric strain (

√
J2 and J3) as a function of applied strain for the linear elastic

transversely isotropic model.

The quantity δ represents the value of the applied strain at the point of minimum

J2, while ε0,a =
√

3
1+ν

√

J2,min is proportional to the minimum value of
√
J2 (see figure

1). It is interesting to note that, for this simplified model, δ is dependent on the
difference between the average of the transverse residual strain components and the
longitudinal strain, while the minimum of

√
J2 only depends on the difference in the

transverse residual strain components. Turning our attention to the third invariant of
the deviatoric strain, J3 can be expressed in terms of the principal strain components
by substituting equations 9 and 10 into equation 7, giving

J3 =
2

27
(1 + ν)3

(

(εa − δ)3 − 3(ε0,a)
2(εa − δ)

)

. (13)

Note that when ε0,a is small (< 0.3%), the cubic term dominates and J3 ≈ 2
27 (1 +

ν)3(εa−δ)3. It is interesting to note that the roots of J3 occur at εa = δ− 3∆ε
1+ν

, εa = δ,

and εa = δ + 3∆ε
1+ν

. Therefore, J3 is centered around εa = δ and also vanishes at that
value of applied strain, which is the same value at which J2 is a minimum. Figure 1
shows the strain components along with

√
J2 and J3 as a function of the applied strain

εa for reasonable values of ε1,0, ε2,0, and ε3,0, which are chosen simply to represent how√
J2 and J3 vary as a function of applied strain, but are not rigorously determined.

In our proposed model, the dependence on the first invariant is described by the
term 1 − ChI1. Markiewicz shows in [16] that the effect of I1 on s (ε) is to produce
a relatively substantial offset from the maximum value and a relatively weak linear
variation as a function of applied strain. Therefore, as a first approximation, the
dependence of s (ε) on I1 can be replaced by a constant term 1 − ChI1|εa=εm

, where
εm is the thermal pre-strain in the conductor. This term includes the hydrostatic strain
reduction of H∗

c2 due to I1 but does not include the (weakly) linear strain dependence.
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This assumption allows us to eliminate one free parameter at the cost of a slight loss
in accuracy, which can be estimated to be approximately 1% for a range of intrinsic
axial strain varying from -1.5% to 0.5% [16].

Using this assumption, the maximum ofH∗
c2 occurs very close to εa = δ; therefore,

it can be considered that εm ≈ δ. For typical model fit parameters (see equation
15 and table 2), εm is found to deviate from δ by less than 0.02% strain. Using
equations 8, 11, and 13 along with an approximation to the intrinsic axial strain as
εI = εa − δ ≈ εa − εm, and the assumption that the hydrostatic strain dependence is
approximately constant, the maximum of H∗

c2 can be approximated as

H∗
c2(εI = 0) = (H∗

c2(ε = 0)) (1 − ChI1|εI=0) (1 − Ca,1ε0,a) , (14)

where Ca,1 = 1+ν√
3
Cd,1. With the results from equations 11 and 13, the model can

now be written in terms of an applied axial strain for uniaxial experiments. Using the
assumption that the hydrostatic strain dependence can approximately be regarded as
constant, substituting equations 11 and 13 into equation 8, and normalizing by the
maximum H∗

c2, the uniaxial applied strain model is given by

s(εI) =
H∗

c2(εI)

H∗
c2(εI = 0)

(15)

=
1 − Ca,1

√

(εI)2 + (ε0,a)2 − Ca,2

(

(εI)
3 − 3(ε0,a)

2εI
)

1 − Ca,1ε0,a
,

where Ca,2 = 2
27 (1 + ν)3Cd,2. Note that the parameters Ca,1 and Ca,2 (equation

15) are related to the parameters Cd,1 and Cd,2 (equation 8) through the effective
Poisson ratio, while δ and ε0,a depend on the initial strain state (residual strains) in
the conductor. If the effect of the third invariant is neglected (Ca,2 = 0), the axial
strain model reduces to Ten Haken’s uniaxial strain model.

4. Parameters of the strain function

4.1. Fitting procedures

It was previously suggested by Ten Haken [13] that a similar parameter to Cd,1 in his
model may be an intrinsic property of Nb3Sn. This was surmised since the value of Ca

in his axial strain model, which corresponds to Ca,1 in equation 15 with Ca,2 = 0, had
little variation for different sample wires. It is of interest to determine if we also see
this same behaviour for Ca,1 and Ca,2 in our model. For this purpose the axial strain
model (equation 15) is used to fit experimental data from seven different wires (taken
from the excellent data at the Durham University superconductivity group website [18]
as summarized in [8]), and three different fitting procedures are performed in which
the number of free parameters is varied. If Cd,1 and Cd,2 are indeed intrinsic material
parameters, then Ca,1 and Ca,2 should show some correlation across the different wire
layouts except for variations associated with ν. Note that the parameters δ and ε0,a

are closely related to the initial strain state in the material, which depends on the
substrate material used for a specific experiment. For the first fitting procedure, all
four parameters Ca,1, Ca,2, δ, and ε0,a are treated independently. This should produce
the best fit for each individual sample since it has the most free parameters. However,
if Cd,1 and Cd,2 are indeed related or constant, the functional form (15) should be in
accordance with all of the data sets for related or constant values of Ca,1 and Ca,2.
Perhaps, the simplest relation between Ca,1 and Ca,2 is a constant ratio Ca,2 = RCa,1,
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where R is a universal constant. This is similar to the suggestion made in [3] that
the parameters in the rotationally modified deviatoric strain model [1] are related by
a linear equation. For the second fitting procedure, the error over all of the data sets
is minimized by varying Ca,1, δ, and ε0,a in each individual data set and by varying
the global constant R. Once the optimal value of R is determined, a second step is
performed where the error is minimized in each individual data set by varying Ca,1, δ,
and ε0,a. For the final fitting procedure, the global error is minimized by varying two
global constants, Ca,1 and Ca,2, and two local constants in each data set, δ, and ε0,a.
Once the optimal values of Ca,1 and Ca,2 are determined, a second step is performed
where the error is minimized in each individual data set by varying δ and ε0,a.

Jewell [19] showed that in several sample conductors cracks form in the Nb3Sn
for applied strains in the filaments slightly above 0.3% at room temperature. More
generally, the onset of irreversibility in axial strain experiments occurs at εI =
0.1 to 0.6%, depending on the sample and experiment, but is mostly located around
εI = 0.4 to 0.5%. The model described in this article is only valid for elastic
behaviour, and strongly deviating data can reasonably be expected to be caused by
plasticity and/or crack formation. Of these, plasticity is not necessarily detectable
by irreversibility in an experiment where an elastic substrate determines the strain
state of the sample, as evident from the reversibility at large compressive strain. For
all three of the fitting procedures, only data points with an intrinsic strain satisfying
εI < 0.3% are used, since for larger εI deviations from the model are observed in four
of the data sets. The error in each individual data set, ei, is defined as

ei =





1

N i
d

Ni

d
∑

j=1

(s(εI,j) − sj)
2





1

2

, (16)

where the normalization value N i
d is the number of data points in set i, and εI,j is

the value of the intrinsic strain at point j, which has a corresponding strain function
value sj . The total error over all data sets is defined as

etot =





1

Ns

Ns
∑

j=1

(ei)
2





1

2

, (17)

where in this case Ns = 7 since the fits were performed for seven different wires.

4.2. Results

Using the fitting procedures described above, a value of R = 1.034 × 103 is obtained
from the second fitting procedure, and values of Ca,1 = 40.8 and Ca,2 = 3.25×104 are
obtained from the third fitting procedure. Table 1 shows both the total fitting error
and the fitting error for each of the data sets in terms of the number of free fitting
parameters. As is expected, the error increases as the number of free parameters
decreases. However, the increase in the error is relatively small when four free
parameters are reduced to three for all of the sample wires. When compared with
the error for three free parameters, the increase in error with two free parameters
is also relatively small for all except the RRP strand. Figure 2 shows the data
fits that are obtained with a constant ratio between Ca,1 and Ca,2. This second
fitting procedure is chosen to represent the data fits since it provides a good balance
between fitting accuracy and the number of free parameters that are needed. Table
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Figure 2. Experimental data [8, 18] for seven different strands along with the
uniaxial strain model fits for three free parameters with Ca,2 = (1.034×103)Ca,1.
Each individual data set is offset by a value of 0.1 along the vertical axis for
clarity.

Table 1. Total and individual data set fitting error as a function of the
number of free parameters for the intrinsic strain range εI < 0.3. For three free
parameters, Ca,2 = (1.034 × 103)Ca,1, and for two free parameters, Ca,1 = 40.8
and Ca,2 = 3.25 × 104. Details on the different strands can be found in [8].

Np OCSI RRP OKSC OST EM-LMI VAC FUR etot

4 1.6E-03 7.1E-04 1.9E-03 7.2E-04 1.5E-03 5.2E-04 7.8E-04 1.2E-03
3 1.7E-03 1.4E-03 2.2E-03 9.1E-04 3.7E-03 8.6E-04 8.5E-04 1.9E-03
2 2.3E-03 9.2E-03 3.2E-03 3.2E-03 5.3E-03 6.0E-04 2.6E-03 4.6E-03

Table 2. Computed parameters and the error for the fitting procedure with three
free parameters (Ca,2 = (1.034 × 103)Ca,1).

OCSI RRP OKSC OST EM-LMI VAC FUR

δ (%) 0.046 0.055 0.085 0.111 0.260 0.306 0.276
ε0,a (%) 0.254 0.294 0.200 0.360 0.289 0.416 0.451
Ca,1 41.6 35.7 43.6 43.7 43.6 41.9 42.6
Ca,2 × 10−4 4.30 3.69 4.50 4.52 4.51 4.33 4.41

2 shows the parameters that are obtained when only three free parameters are used
and Ca,2 = (1.034 × 103)Ca,1. Note that the values of Ca,1 and Ca,2 have only small
variations for all except the RRP strand.
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5. Summary

(1) In this work a three dimensional strain model that is physically based, allows
extrapolation, and is simple enough to be applied in scaling relations is developed.
The model is based on the first invariant of the strain tensor and the second
and third invariants of the deviatoric strain tensor. A one dimensional strain
model is derived from the general three dimensional form and verified with data
from uniaxial strain experiments. Specifically, this model reproduces the observed
upturn in the strain function at large compressive strains.

(2) The model is used to fit the experimental data with varying numbers of free
parameters. As is expected, the fitting error decreases with increasing number
of fit parameters. However, as is evident from figure 2 the model produces an
exceptional fit for 3 free parameters with a constant ratio between Ca,2 and Ca,1.

(3) When a constant ratio between Ca,2 and Ca,1 is used, the values of Ca,1 and Ca,2

have only small variations for all except the RRP strand.

(4) The performance of this model is assessed by determining how well the model fits
data from uniaxial strain experiments. However, it remains to be seen how well
the model performs with the direct use of the three dimensional form (equation
8) in a detailed mechanical analysis.

(5) The model is found to be applicable for −1.5% < εI < 0.3% for the data used
in this study. Fits to experimental data should generally be restricted to the
reversible region. The behaviour at large tensile axial strains may be attributed
to inelastic behaviours such as cracking, which are not taken into account in the
elastic model.
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