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In this paper we further improve the modified extended tanh-function method to obtain new exact
solutions for nonlinear partial differential equations. Numerical applications of the proposed method
are verified by solving the improved Boussinesq equation and the system of variant Boussinesq equa-
tions. The new exact solutions for these equations include Jacobi elliptic doubly periodic type, Weier-
strass elliptic doubly periodic type, triangular type and solitary wave solutions.

Key words: Nonlinear Evolution Equation; Modified Extended tanh-Function Method; Travelling
Wave.

1. Introduction

The rapid development of science and technology
and the need to simulate complex physical phenomena
demand an increasing need to solve quite a number
of complicated high-dimensional and nonlinear par-
tial differential equations (PDEs) with variable coef-
ficients. The use of the integrable system technique
to determine explicit exact solutions for these kinds
of equations has recently drawn the attention of many
scientists and engineers. The investigation of these ex-
plicit exact solutions, for instance soliton, periodic and
quasi-periodic solutions of soliton equations, plays an
important role in the study of nonlinear physical phe-
nomena. The wave phenomena observed in fluid dy-
namics, plasma, and elastic media are often modelled
by the bell-shaped sech soliton solutions and the kink-
shaped tanh soliton solutions. Exact solutions of these
kinds of nonlinear equations are crucial in the stabil-
ity analysis and efficiency comparison with available
numerical solvers of the problems.

During the last decades, effective methodologies
such as inverse scattering method [1 – 3], Darboux
transformation [4 – 8], Hirota bilinear method [9 - 11]
and tanh-function method [12 – 19] have been pro-
posed for the determination of solitons. Among these
proposed methods the tanh-function method provides
an effective and direct algebraic method for solving
nonlinear equations. Based on the localized nature of
soliton solutions, the tanh-function method overcomes
the complex integration process to obtain explicit so-
lutions to various types of nonlinear equations. Atten-
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tion has been concentrated on the various extensions
and applications of the tanh-function method. For in-
stance, Parkes and Duffy automated to some degree the
method by using Mathematica for the solitary wave
solutions to nonlinear evolution equations [15] and
Korteweg – de Vries (KdV) – Burgers equations [16],
respectively. The soliton solutions of these nonlin-
ear equations are usually expressed as polynomials of
tanh-functions. During the solution process, the origi-
nal equation will be transformed into a nonlinear sys-
tem of algebraic equations. Based on an extension of
the tanh-function method, Fan [17, 18] developed a
new algebraic method with symbolic computation for
obtaining a series of travelling wave solutions in a uni-
fied way.

Recently Elwakil et al. [19, 20] proposed a modi-
fied extended tanh-function method to obtain new ex-
act solutions for some nonlinear evolution equations.
Fan and Hon [21] proposed a generalized tanh method
to obtain more general explicit solutions to nonlinear
soliton equations. In this paper, we further improve the
modified extended tanh-function method and success-
fully obtain more new exact solutions for the nonlinear
improved Boussinesq equation and the system of vari-
ant Boussinesq equations.

The outline of the paper is as follows: The main
idea to improve the modified extended tanh-function
method will be given in Section 2. In Section 3,
we verify the numerical applications of the proposed
method by solving the improved Boussinesq equa-
tion and the system of variant Boussinesq equations.
Numerical results indicated that more new exact so-
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lutions can be obtained. A conclusion is given in
Section 4.

2. Improved Modified Extended tanh-Function
Method

For simplicity, we consider the following nonlinear
PDE with only two independent variables:

H(u,ut ,ux,uxx, · · · ) = 0. (1)

Using the wave transformation u(x,t) = u(ζ ), ζ =
x+ ct, we can reduce (1) to the following ordinary dif-
ferential equation (ODE):

H(u,u′,u′′, · · · ) = 0. (2)

The idea of the modified extended tanh-function
method [19] is to express the solution u for (1) in the
form of

u(ζ ) =
n

∑
i=0

aiω i +
n

∑
i=1

biω−i, (3)

where ω satisfies the well-known Riccati equation

ω ′ = b+ ω2, (4)

with ω = ω(ζ ), ω ′ = dω/dζ and ai, bi, b �= 0 and c �= 0
are parameters to be determined. The value of n can
be found by balancing the highest-order linear term
with the nonlinear terms of (2). Substituting (3) and (4)
into the ODE (2) and setting all the coefficients of ω i

to zero, a system of algebraic equations can be ob-
tained for determining the unknown parameters a i, bi,
b and c. It is well-known that the Riccati equation (4)
has the general solutions ω =−√−btanh(

√−bζ ) and
ω =−√−bcoth(

√−bζ ) for b < 0, ω =− 1
ζ for b = 0,

ω =
√

btan(
√

bζ ) and ω = −√
bcot(

√
bζ ) for b >

0. These solutions are called ‘fundamental solutions’
throughout this paper. From these fundamental solu-
tions w and the determined values of the parameters a i,
bi, b, and c, five kinds of travelling wave solutions
for (1) can be obtained [19].

Based on the idea of Fan and Hon [21], we further
improve the method by extending the Riccati equa-
tion (4) to the following general ODE:

ω ′ = ε
√

r

∑
j=0

c jω j, (5)

where ε =±1. Balancing the highest-order linear term
with the nonlinear terms in (2), we obtain a relationship
between the positive integers r and n. In fact, if r = 4,
c1 = c3 = 0, c0 = b2, c2 = 2b, c4 = 1, the ODE (5) de-
generates to the Riccati equation (4), and in this case
the proposed method is the modified extended tanh-
function method. In the following we show that the
general ODE (5) gives various kinds of fundamental
solutions which include the known fundamental solu-
tions for (4). From these new fundamental solutions,
more new exact solutions for (1) can be obtained. We
remark here that the solutions for (1) depend on the ex-
act solvability of (5) which will become more difficult
if the value of r is too large. In this paper we consider
the case r = 4 in (5) so that (5) can be reduced to

ω ′ = ε
√

c0 + c1ω + c2ω2 + c3ω3 + c4ω4. (6)

From the different possible values of c0,c1,c2,c3
and c4, we obtain from (6) the various kinds of fun-
damental solutions as follows:

Case 1. c0 = c1 = c3 = 0.

A bell-shaped solitary wave solution, a triangular
type solution and a rational solution are obtained:

ω =
√
−c2

c4
sech(

√
c2ζ ), c2 > 0,c4 < 0, (7)

ω =
√
−c2

c4
sec(

√−c2ζ ), c2 < 0,c4 > 0, (8)

ω = − ε√
c4ζ

, c2 = 0,c4 > 0. (9)

Case 2. c1 = c3 = 0.

A kink-shaped solitary wave solution, a triangular
type solution and three Jacobi elliptic doubly periodic-
type solutions are obtained:

ω = ε
√
− c2

2c4
tanh(

√
−c2

2
ζ ),

c2 < 0, c4 > 0, c0 =
c2

2

4c4
,

(10)

ω = ε
√

c2

2c4
tan(

√
c2

2
ζ ),

c2 > 0, c4 > 0, c0 =
c2

2

4c4
,

(11)
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ω =

√
−c2m2

c4(2m2 −1)
cn(

√
c2

2m2 −1
ζ ),

c2 > 0, c4 < 0, c0 =
c2

2m2(1−m2)
c4(2m2 −1)2 ,

(12)

ω =

√
−m2

c4(2−m2)
dn(

√
c2

2−m2 ζ ),

c2 > 0, c4 < 0, c0 =
c2

2(1−m2)
c4(2−m2)2 ,

(13)

ω = ε

√
−c2m2

c4(m2 + 1)
sn(

√
− c2

m2 + 1
ζ ),

c2 < 0, c4 > 0, c0 =
c2

2m2

c4(m2 + 1)2 ,

(14)

where m denotes a modulus.

Case 3. c0 = c1 = c4 = 0.

A bell-shaped solitary wave solution, a triangular
type solution and a rational type solution are obtained:

ω = −c2

c3
sech2(

√
c2

2
ζ ), c2 > 0, (15)

ω = −c2

c3
sec2(

√−c2

2
ζ ), c2 < 0, (16)

ω =
4

c3ζ 2 , c2 = 0. (17)

Case 4. c2 = c4 = 0, c0 �= 0, c1 �= 0,c3 > 0.

A Weierstrass elliptic doubly periodic type solution
is obtained:

ω =℘(
√

c3

2
ζ ,g2,g3), (18)

where g2 = −4c1/c3 and g3 = −4c0/c3 are called in-
variants of the Weierstrass elliptic function.

Case 5. c0 = c1 = c2 = 0.

A rational type solution and an exponential type so-
lution are obtained:

ω =
4c3

c2
3ζ 2 −4c4

, c4 �= 0, (19)

ω =
c3

2c4
exp(

εc3

2
√−c4

ζ ), c4 < 0. (20)

Case 6. c3 = c4 = 0.

An exponential type solution, two triangular type
solutions and two hyperbolic type solutions are ob-
tained:

ω =− c1

2c2
+exp(ε

√
c2ζ ), c2 > 0, c0 =

c2
1

4c2
, (21)

ω =− c1

2c2
+

εc1

2c2
sin(

√−c2ζ ), c0 = 0, c2 < 0, (22)

ω =− c1

2c2
+

εc1

2c2
sinh(2

√
c2ζ ), c0 = 0, c2 > 0 (23)

ω = ε
√
−c0

c2
sin(

√−c2ζ ), c1 = 0, c0 > 0, c2 < 0, (24)

ω = ε
√

c0

c2
sinh(

√−c2ζ ), c1 = 0, c0 > 0, c2 > 0. (25)

Case 7. c0 = c1 = 0,c4 > 0.

A triangular type solution and two solitary wave so-
lutions are obtained:

ω = −
c2sec2(

1
2

√−c2ζ )

2ε
√−c2c4tan(

1
2

√−c2ζ )+ c3

,

c2 < 0,

(26)

ω =
c2sech2(

1
2
√

c2ζ )

2ε√c2c4tanh(
1
2
√

c2ζ )− c3

,

c2 > 0, c3 �= 2ε
√

c2c4,

(27)

ω =
1
2

ε
√

c2

c4
(1+ tanh(

1
2
√

c2ζ )),

c2 > 0, c3 = 2ε
√

c2c4.

(28)

Remark. The Jacobi elliptic functions are doubly
periodical and possess properties of triangular func-
tions as:

sn2ζ + cn2ζ = 1, dn2ζ = 1−m2sn2ζ ,

(snζ )′ = cnζdnζ , (cnζ )′ = −snζdnζ ,

(dnζ )′ = −m2snζcnζ .

When m → 1, the Jacobi functions degenerate to the
hyperbolic functions, i. e.,

snζ → tanhζ , cnζ → sechζ , dnζ → sechζ .
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When m → 0, the Jacobi functions degenerate to the
triangular functions, i. e.

snζ → sinζ , cnζ → cosζ , dnζ → 1.

A more detailed notation for the Weierstrass and Jacobi
elliptic functions can be found in [22, 23]. When m →
1, the Jacobi doubly periodic solutions (12) and (13)
degenerate to the solitary wave solutions (7), and the
solution (14) degenerates to the solitary wave solu-
tions (10).

3. Numerical Verifications

Example 1. Consider the improved Boussinesq
equation [24]

utt −uxx −uuxx − (ux)2 −uxxtt = 0. (29)

Using the wave transformations u = u(ζ ), ζ = x + ct,
we can reduce (29) to the following ODE:

c2u′′ −u′′ −uu′′ − (u′)2 − c2u(4) = 0. (30)

Using the method proposed in the last section, we ex-
pand the solution of (29) as (3), where ω satisfies (5).
By balancing the highest-order linear term with the
nonlinear terms in (30) we obtain

2n−2+ 2× r
2

= n−4+ 4× r
2
, (31)

which gives the relation n = r − 2. Since r = 4, we
have n = 2. Substituting n = 2 into (3) we then have

u = a0 + a1ω + a2ω2 + b1ω−1 + b2ω−2, (32)

where ω satisfies (6). Substituting (32) and (6) into
(30) and setting the coefficients of all powers like ω i

and ω i
√

∑4
j=0 c jω j to zero yields a system of algebraic

equations for the unknown parameters ai (i = 0,1,2),
bi (i = 1,2), ci (i = 0, · · · ,4), and c. With the aid of
Mathematica, we can classify the solutions of the sys-
tem according to the solutions for (29) as follows:

Case 1. c0 = c1 = c3 = 0. We have

a1 = b1 = b2 = 0, a0 = c2 −1−4c2c2,

a2 = −12c2c4.

From equations (7) – (9) and (32) we obtain a bell-
shaped solitary wave solution, a triangular type solu-
tion and a rational type solution:

u11 = c2 −1−4c2c2 + 12c2c2sech2(
√

c2(x+ ct)),
c2 > 0,c4 < 0,

u12 = c2 −1−4c2c2 + 12c2c2sec2(
√−c2(x+ ct)),

c2 < 0, c4 > 0,

u13 = c2 −1− 12c2

(x+ ct)2 , c2 = 0,c4 > 0.

Case 2. c1 = c3 = 0. We have

(i) a1 = b1 = b2 = 0, a0 = c2 −1−4c2c2,

a2 = −12c2c4;

(ii) a1 = a2 = b1 = 0, a0 = c2 −1−4c2c2,

b2 = −12c2c0;

(iii) a1 = b1 = 0, a0 = c2 −1−4c2c2,

a2 = −12c2c4, b2 = −12c2c0.

If c0, c2, c4 satisfy c0 = c2
2/4c4, from (10), (11) and (32), we have three solitary wave solutions and three

triangular type solutions:

u21 = c2 −1−4c2c2 + 6c2c2 tanh2(
√
−c2

2
(x+ ct)), c2 < 0, c4 > 0,

u22 = c2 −1−4c2c2 + 6c2c2 coth2(
√
−c2

2
(x+ ct)), c2 < 0, c4 > 0,

u23 = c2 −1−4c2c2 + 6c2c2 tanh2(
√
−c2

2
(x+ ct))+ 6c2c2 coth2(

√
−c2

2
(x+ ct)), c2 < 0,c4 > 0,

u24 = c2 −1−4c2c2 −6c2c2 tan2(
√

c2

2
(x+ ct)), c2 > 0, c4 < 0,

u25 = c2 −1−4c2c2 −6c2c2 cot2(
√

c2

2
(x+ ct)), c2 > 0, c4 < 0,
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u26 = c2 −1−4c2c2 −6c2c2 tan2(
√

c2

2
(x+ ct))−6c2c2 cot2(

√
c2

2
(x+ ct)), c2 < 0, c4 > 0.

If c0, c2, c4 satisfy c2 > 0, c4 < 0, c0 = c2
2m2(1−m2)

c4(2m2−1)2 , from (12) and (32) we have three Jacobi elliptic doubly
periodic type solutions:

u27 = c2 −1−4c2c2 +
12c2c2m2

2m2 −1
cn2(

√
c2

2m2 −1
(x+ ct)),

u28 = c2 −1−4c2c2 +
12c2c2(1−m2)

2m2 −1
nc2(

√
c2

2m2 −1
(x+ ct)),

u29 = c2 −1−4c2c2 +
12c2c2m2

2m2 −1
cn2(

√
c2

2m2 −1
(x+ ct))+

12c2c2(1−m2)
2m2 −1

nc2(
√

c2

2m2 −1
(x+ ct)).

If c0, c2, c4 satisfy c2 > 0, c4 < 0, c0 = c2
2(1−m2)

c4(2−m2)2 , from (13) and (32) we obtain three Jacobi elliptic doubly

periodic type solutions:

u210 = c2 −1−4c2c2 +
12c2m2

2−m2 dn2(
√

c2

2−m2 (x+ ct)),

u211 = c2 −1−4c2c2 +
12c2c2

2(1−m2)
(2−m2)m2 nd2(

√
c2

2−m2 (x+ ct)),

u212 = c2 −1−4c2c2 +
12c2m2

2−m2 dn2(
√

c2

2−m2 (x+ ct))+
12c2c2

2(1−m2)
(2−m2)m2 nd2(

√
c2

2−m2 (x+ ct)).

If c0, c2, c4 satisfy c2 < 0, c4 > 0, c0 =
c2

2m2

c4(m2 + 1)2 , from (14) and (32) we obtain three Jacobi elliptic doubly

periodic type solutions:

u213 = c2 −1−4c2c2 +
12c2c2m2

m2 + 1
sn2(

√
− c2

m2 + 1
(x+ ct)),

u214 = c2 −1−4c2c2 +
12c2c2

m2 + 1
ns2(

√
− c2

m2 + 1
(x+ ct)),

u215 = c2 −1−4c2c2 +
12c2c2m2

m2 + 1
sn2(

√
− c2

m2 + 1
(x+ ct))+

12c2c2

m2 + 1
ns2(

√
− c2

m2 + 1
(x+ ct)).

Case 3. c0 = c1 = c4 = 0. We have

a2 = b1 = b2 = 0, a0 = c2−1−c2c2, a1 =−3c2c3.

From (15) – (17) and (32), we obtain a bell-shaped soli-
tary wave solution, a triangular type solution and a ra-
tional type solution:

u31 = c2−1−c2c2 +3c2c2sech2(
√

c2

2
(x+ct)), c2 > 0,

u32 = c2−1−c2c2 +3c2c2sec2(
√

c2

2
(x+ct)), c2 < 0,

u33 = c2 −1− 12c2

(x+ ct)2 , c2 = 0.

Case 4. c2 = c4 = 0. We have

(i) a2 = b1 = b2 = 0, a0 = c2 −1, a1 = −3c2c3;

(ii) a1 = a2 = 0, a0 = c2 −1+
c3

2c1
,

b1 = −6c2c1, b2 = −12c2c0, 8c2
0c3 + c3

1 = 0.

From (18) and (32) we have two Weierstrass elliptic
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doubly periodic type solutions:

u41 = c2 −1−3c2c3℘(
√

c3

2
,g2,g3),

u42 = c2 −1+
c3

2c1
−6c2c1(℘(

√
c3

2
,g2,g3))−1

−12c2c0(℘(
√

c3

2
,g2,g3))−2,

where g2 = −4c1/c3 and g3 = −4c0/c3 are called in-
variants of the Weierstrass elliptic function.

Case 5. c3 = c4 = 0. We have

(i) a1 = a2 = 0, a0 = c2 −1− c2c2,

b1 = −6c2c1, b2 = −12c2c0, c0 =
c2

1

4c2
;

(ii) a1 = a2 = b2 = 0, a0 = c2 −1− c2c2,

b1 = −3c2c1, c0 = 0;

(iii) a1 = a2 = b1 = 0, a0 = c2 −1−4c2c2,

b2 = −12c2c0, c1 = 0.

From (21) – (25) and (32) we have an exponential type solution, two solitary wave solutions and two triangular
type solutions:

u51 = c2−1−c2c2−6c2c1(− c1

2c2
+exp(ε

√
c2(x+ct)))−1−12c2c0(− c1

2c2
+exp(ε

√
c2(x+ct)))−2, c2 > 0,

u52 = c2 −1− c2c2 + 6c2c2(1− εsinh(2
√

c2(x+ ct)))−1, c2 > 0,

u53 = c2 −1−4c2c2 −12c2c2csch2(
√

c2(x+ ct)), c0 > 0, c2 > 0,

u54 = c2 −1− c2c2 + 6c2c2(1− εsin(
√−c2(x+ ct)))−1, c2 < 0,

u55 = c2 −1−4c2c2 + 12c2c2csc2(
√−c2(x+ ct)), c0 > 0,c2 < 0.

Case 6. c0 = c1 = 0. We have

b1 = b2 = 0, a0 = c2 −1− c2c2, a1 = −6c2c3,

a2 = −12c2c4, c3 = 2ε
√

c2c4.

From (28) and (32) we have a kink-shaped solitary
wave solution:

u61 = c2 −1+ 2c2c2

−3c2c2(2+ tanh(
1
2

√
c2(x+ ct)))2,

c2 > 0, c4 > 0.

Remark. From the transformation c2 → −c2/2,
u11, u53, u12, and u55 can be transformed to u21, u22,
u24, and u25, respectively. From the transformation
c2 → −2c2, u31, and u32 can be transformed to u21
and u24, respectively. It can be seen that u13 and u33
are actually the same solution. As m → 1, the Jacobi
elliptic doubly periodic type solutions u27 - u215 can be
reduced to u21 - u23 through proper transformation. The
solutions u21 - u26 and u13 have been found by Elwakil
et al. [20]. Theoretically, the solutions u11 - u13, u21,
u22, u24, u25, u27, u210, u213, u31 - u33, u41, and u61 can

also be deduced from Fan and Hon [21]. To the knowl-
edge of the authors, the solutions u28, u29, u211, u212,
u214, u215, u42, u51, u52 and u54 are new exact solutions
for the improved Boussinesq equation (29).

The plots of some of the solutions are given in
Figs. 1 – 5 to illustrate their properties.

Example 2. Consider the system

ut + vx + uux + puxxt = 0,

vt +(uv)x + quxxx = 0,
(33)

which is called the system of variant Boussinesq equa-
tions [25]. Using the wave transformations u = u(ζ ),
ζ = x+ ct, we can reduce (33) to the following system
of ODEs:

cu′ + v′+ uu′+ cpu′′′ = 0,

cv′ +(uv)′+ qu′′′ = 0.
(34)

By expanding the solutions of (33), u and v are given
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Fig. 1. u13 with c = 1 and u24 with c = 1, c2 = 1.
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Fig. 2. u21 and u22 with c = 1, c2 = −1.
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Fig. 3. u28 and u210 with c = 1, c2 = 1/9, m = 0.8.
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Fig. 4. u42 with c = 0.5, c0 = 0.1, c1 = −0.2, c3 = 0.1 and u51 with c = 1, c0 = 2, c1 = 1, c2 = 1, ε = 1.
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Fig. 5. u52 with c = 1, c2 = 1, ε = 1 and u61 with c = 1, c2 = 1.

as

u =
n

∑
i=0

a1iω i +
n

∑
i=1

b1iω−i,

v =
m

∑
i=0

a2iω i +
m

∑
i=1

b2iω−i,

(35)

where ω satisfies (5). Balancing the highest-order lin-
ear term with the nonlinear terms in (34) gives

2n−1+
r
2

= n−3+ 3× r
2
,

m+ n−1+
r
2

= n+ 3× r
2
.

(36)

Setting r = 4, we get n = 2 and m = 2 from (36). Sub-

stituting n = 2 and m = 2 into (35), we have

u = a10 + a11ω + a12ω2 + b11ω−1 + b12ω−2,

v = a20 + a21ω + a22ω2 + b21ω−1 + b22ω−2.
(37)

Substituting (37) and (6) into (34) and setting the co-

efficients of all powers like ω i and ω i
√

∑4
j=0 c jω j

to zero yields a system of algebraic equations for
the determination of the unknown parameters a i j (i =
0,1,2; j = 1,2), bi j (i, j = 1,2), ci (i = 0, · · · ,4), and c,
respectively. Again with the aid of Mathematica,
the following solutions of the system for (33) are
obtained:

Case 1. c0 = c1 = c3 = 0. We have

a11 = a21 = b11 = b12 = b21 = b22 = 0,
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a12 = −12cpc4, a22 = −6qc4, a10 =
−2c2 p−q−8c2p2c2

2cp
, b20 =

q2 −8c2p2qc2

4c2 p2 .

From (7), (8), (9), and (37), we obtain a bell-shaped solitary wave solution, a triangular type solution and a
rational type solution:

u11 =
−2c2p−q−8c2p2c2

2cp
+ 12cpc2sech2(

√
c2(x+ ct)),

v11 =
q2 −8c2p2qc2

4c2 p2 + 6qc2sech2(
√

c2(x+ ct)), c2 > 0, c4 < 0,

u12 =
−2c2p−q−8c2p2c2

2cp
+ 12cpc2sec2(

√−c2(x+ ct)),

v12 =
q2 −8c2p2qc2

4c2 p2 + 6qc2sec2(
√−c2(x+ ct)), c2 < 0, c4 > 0,

u13 =
−2c2p−q

2cp
− 12cp

(x+ ct)2 , v13 =
q2

4c2 p2 − 6q
(x+ ct)2 , c2 = 0, c4 > 0.

Case 2. c1 = c3 = 0. We have

(i) a11 = a21 = b11 = b12 = b21 = b22 = 0, a12 = −12cpc4, a22 = −6qc4,

a10 =
−2c2 p−q−8c2p2c2

2cp
, b20 =

q2 −8c2p2qc2

4c2 p2 ;

(ii) a11 = a12 = a21 = a22 = b11 = b21 = 0, b12 = −12cpc0, b22 = −6qc0,

a10 =
−2c2 p−q−8c2p2c2

2cp
, b20 =

q2 −8c2p2qc2

4c2 p2 ;

(iii) a11 = a21 = b11 = b21 = 0, a12 = −12cpc4, a22 = −6qc4, b12 = −12cpc0,

b22 = −6qc0, a10 =
−2c2 p−q−8c2p2c2

2cp
, b20 =

q2 −8c2p2qc2

4c2 p2 .

If c0, c2, c4 satisfy c0 = c2
2/4c4, from (10), (11), and (37) we obtain three solitary wave solutions and three

triangular type solutions:

u21 =
−2c2p−q−8c2p2c2

2cp
+ 6cpc2tanh2(

√
−c2

2
(x+ ct)),

v21 =
q2 −8c2p2qc2

4c2 p2 + 3qc2tanh2(
√
−c2

2
(x+ ct)), c2 < 0, c4 > 0,

u22 =
−2c2p−q−8c2p2c2

2cp
+ 6cpc2coth2(

√
−c2

2
(x+ ct)),

v22 =
q2 −8c2p2qc2

4c2 p2 + 3qc2coth2(
√
−c2

2
(x+ ct)), c2 < 0, c4 > 0,

u23 =
−2c2p−q−8c2p2c2

2cp
+ 6cpc2tanh2(

√
−c2

2
(x+ ct))+ 6cpc2coth2(

√
−c2

2
(x+ ct)),
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v23 =
q2 −8c2p2qc2

4c2 p2 + 3qc2tanh2(
√
−c2

2
(x+ ct))+ 3qc2coth2(

√
−c2

2
(x+ ct)), c2 < 0,c4 > 0,

u24 =
−2c2p−q−8c2p2c2

2cp
−6cpc2tan2(

√
c2

2
(x+ ct)),

v24 =
q2 −8c2p2qc2

4c2 p2 −3qc2tan2(
√

c2

2
(x+ ct)), c2 > 0, c4 < 0,

u25 =
−2c2p−q−8c2p2c2

2cp
−6cpc2cot2(

√
c2

2
(x+ ct)),

v25 =
q2 −8c2p2qc2

4c2 p2 −3qc2cot2(
√

c2

2
(x+ ct)), c2 > 0, c4 < 0,

u26 =
−2c2p−q−8c2p2c2

2cp
−6cpc2tan2(

√
c2

2
(x+ ct))−6cpc2cot2(

√
c2

2
(x+ ct)),

v26 =
q2 −8c2p2qc2

4c2 p2 −3qc2(tan2(
√

c2

2
(x+ ct))−3qc2cot2(

√
c2

2
(x+ ct))), c2 > 0, c4 < 0.

If c0, c2, c4 satisfy c2 < 0, c4 > 0, c0 = c2
2m2

c4(m2+1)2 , from (14) and (37) we obtain three Jacobi elliptic doubly

periodic type solutions:

u27 =
−2c2p−q−8c2p2c2

2cp
+

12cpc2m2

m2 + 1
sn2(

√
− c2

m2 + 1
(x+ ct)),

v27 =
q2 −8c2p2qc2

4c2 p2 +
6qc2m2

m2 + 1
sn2(

√
− c2

m2 + 1
(x+ ct)),

u28 =
−2c2p−q−8c2p2c2

2cp
+

12cpc2

m2 + 1
ns2(

√
− c2

m2 + 1
(x+ ct)),

v28 =
q2 −8c2p2qc2

4c2 p2 +
6qc2

m2 + 1
ns2(

√
− c2

m2 + 1
(x+ ct)),

u29 =
−2c2p−q−8c2p2c2

2cp
+

12cpc2m2

m2 + 1
sn2(

√
− c2

m2 + 1
(x+ ct))+

12cpc2m2

m2 + 1
ns2(

√
− c2

m2 + 1
(x+ ct)),

v29 =
q2 −8c2p2qc2

4c2 p2 +
6qc2m2

m2 + 1
sn2(

√
− c2

m2 + 1
(x+ ct))+

6qc2m2

m2 + 1
ns2(

√
− c2

m2 + 1
(x+ ct)).

Case 3. c0 = c1 = c4 = 0. We have

a12 = a22 = b11 = b12 = b21 = b22 = 0, a11 = −3cpc3, a22 = −3
2

qc3,

a10 =
−2c2p−q−2c2p2c2

2cp
, b20 =

q2 −2c2p2qc2

4c2 p2 .

From (15) – (17) and (37) we obtain a bell-shaped solitary wave solution, a triangular type solution and a rational
type solution:

u31 =
−2c2p−q−2c2p2c2

2cp
+ 3cpc2sech2(

√
c2

2
(x+ ct)),



Z. Yang and B. Y. C. Hon · An Improved Modified Extended tanh-Function Method 113

v31 =
q2 −2c2p2qc2

4c2 p2 +
3
2

qc2sech2(
√

c2

2
(x+ ct)), c2 > 0,

u32 =
−2c2p−q−2c2p2c2

2cp
+ 3cpc2sec2(

√
c2

2
(x+ ct)),

v32 =
q2 −2c2p2qc2

4c2 p2 +
3
2

qc2sec2(
√

c2

2
(x+ ct)), c2 < 0,

u33 =
−2c2p−q

2cp
− 12cp

(x+ ct)2 , v33 =
q2

4c2 p2 − 6q
(x+ ct)2 , c2 = 0.

Case 4. c2 = c4 = 0. We have

(i) a12 = a22 = b11 = b12 = b21 = b22 = 0, a11 = −3cpc3, a22 = −3
2

qc3,

a10 =
−2c2 p−q

2cp
, b20 =

q2

4c2 p2 ;

(ii) a12 = a12 = a21 = a22, b11 = −6cpc1, b12 = −12cpc0, b21 = −3qc1, b22 = −6qc0,

a10 =
−4c2 pc0 −2qc0−3c2 p2c2

1

4cpc0
, b20 =

2q2c0 + 3c2p2qc2
1

8c2 p2c0
, 8c2

0c3 + c3
1 = 0.

From (18) and (37) we obtain two Weierstrass elliptic doubly periodic type solutions:

u41 =
−2c2p−q

2cp
−3cpc3℘(

√
c3

2
,g2,g3), v41 =

q2

4c2 p2 − 3
2

qc3℘(
√

c3

2
,g2,g3),

u42 =
−4c2pc0 −2qc0 −3c2p2c2

1

4cpc0
−6cpc1(℘(

√
c3

2
,g2,g3))−1 −12cpc0(℘(

√
c3

2
,g2,g3))−2,

v42 =
2q2c0 + 3c2 p2qc2

1

8c2 p2c0
−3qc1(℘(

√
c3

2
,g2,g3))−1 −6qc0(℘(

√
c3

2
,g2,g3))−2,

where g2 = −4c1/c3 and g3 = −4c0/c3 are called invariants of the Weierstrass elliptic function.

Case 5. c3 = c4 = 0. We have

(i) a12 = a12 = a21 = a22 = 0, b11 = −6cpc1, b12 = −12cpc0, b21 = −3qc1, b22 = −6qc0,

a10 =
−2c2 p−q−2c2p2c2

2cp
, b20 =

q2 −2c2p2qc2

4c2 p2 , c0 =
c2

1

4c2
;

(ii) a12 = a12 = a21 = a22 = b12 = b22 = 0, b11 = −3cpc1, b21 = −3
2

qc1,

a10 =
−2c2 p−q−2c2p2c2

2cp
, b20 =

q2 −2c2p2qc2

4c2 p2 , c0 = 0;

(iii) a12 = a12 = a21 = a22 = b11 = b21 = 0, b12 = −12cpc0, b22 = −6qc0,

a10 =
−2c2 p−q−8c2p2c2

2cp
, b20 =

q2 −8c2p2qc2

4c2 p2 , c1 = 0.

From (21) – (25) and (37) we obtain an exponential type solution, two solitary wave solutions and two triangular
type solutions:

u51 =
−2c2 p−q−2c2p2c2

2cp
−6cpc1(− c1

2c2
+exp(ε

√
c2(x+ct)))−1−12cpc0(− c1

2c2
+exp(ε

√
c2(x+ct)))−2,
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v51 =
q2 −2c2p2qc2

4c2 p2 −3qc1(− c1

2c2
+ exp(ε

√
c2(x+ ct)))−1 −6qc0(− c1

2c2
+ exp(ε

√
c2(x+ ct)))−2,c2 > 0,

u52 =
−2c2p−q−2c2p2c2

2cp
+

6cpc2

1− εsinh(2
√

c2(x+ ct))
,

v52 =
q2 −2c2p2qc2

4c2 p2 +
3qc2

1− εsinh(2
√

c2(x+ ct))
, c2 > 0,

u53 =
−2c2p−q−8c2p2c2

2cp
−12cpc2csch2(

√
c2(x+ ct)),

v53 =
q2 −8c2p2qc2

4c2 p2 −6qc2csch2(
√

c2(x+ ct)), c0 > 0, c2 > 0,

u54 =
−2c2p−q−2c2p2c2

2cp
+

6cpc2

1− εsin(
√−c2(x+ ct))

,

v54 =
q2 −2c2p2qc2

4c2 p2 +
3qc2

1− εsin(
√−c2(x+ ct))

, c2 < 0,

u55 =
−2c2p−q−8c2p2c2

2cp
+ 12cpc2csc2(

√−c2(x+ ct)),

v55 =
q2 −8c2p2qc2

4c2 p2 + 6qc2csc2(
√−c2(x+ ct)), c0 > 0, c2 < 0.

Case 6. c0 = c1 = 0. We have

b12 = b12 = b21 = b22 = 0, a11 = −6cpc3, a12 = −12cpc4, a21 = −3qc3,

b22 = −6qc4, a10 =
−2c2p−q−2c2p2c2

2cp
, b20 =

q2 −2c2p2qc2

4c2 p2 , c3 = 2ε
√

c2c4.

From (28) and (37) we obtain a kink-shaped solitary wave solution:

u61 =
−2c2p−q+ 4c2p2c2

2cp
−3cpc2(2+ tanh(

1
2
√

c2(x+ ct)))2,

v61 =
q2 + 4c2p2qc2

4c2 p2 − 3
2

qc2(2+ tanh(
1
2

√
c2(x+ ct)))2, c2 > 0.

Remark. From the transformation c2 → −c2/2,
(u11,v11), (u53,v53), (u12,v12) and (u55,v55) can be
transformed to (u21,v21), (u22,v22), (u24,v24) and
(u25,v25), respectively. From the transformation c2 →
−2c2, (u31,v31) and (u32,v32) can be transformed to
(u21,v21) and (u24,v24), respectively. It can be seen
that the solutions (u13,v13) and (u33,v33) are the same
rational type solutions. Since the Jacobi elliptic doubly
periodic type solutions obtained from (12) and (13) are
similar to the solutions obtained from (14), we omit
these solutions in the above example. As m→ 1, the Ja-

cobi elliptic doubly periodic type solutions (u27,v27) -
(u29,v29) can be reduced to (u21,v21) - (u23,v23). The
solutions (u21,v21) - (u26,v26) and (u13,v13) have been
found by Elwakil et al. [19]. To the knowledge of the
authors, the solutions (u27,v27) - (u29,v29), (u41,v41),
(u42,v42), (u51,v51), (u52,v52), (u54,v54) and (u61,v61)
are new exact solutions for (33). Because the types of
solutions obtained for (33) are similar to the types of
solutions for (29), the properties of these solutions are
similar as well. Thus, we do not give the plots of these
solutions for (33).
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4. Conclusion

In this paper we further improved the applicability
of the modified extended tanh-function method. The
validity of our method was verified by solving the im-
proved Boussinesq equation and the system of variant
Boussinesq equations. Numerical results indicated that
more new exact solutions can be found. The proposed

method can also be applied to solve many nonlinear
partial differential equations which will be investigated
in our future work.
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