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An Improved Multivariate
Polynomial Factoring Algorithm

By Paul S. Wang*

Abstract.   A new algorithm for factoring multivariate polynomials over the integers

based on an algorithm by Wang and Rothschild is described.   The new algorithm
has improved strategies for dealing with the known problems of the original

algorithm, namely, the leading coefficient problem, the bad-zero problem and the

occurrence of extraneous factors.   It has an algorithm for correctly predetermining

leading coefficients of the factors.   A new and efficient p-adic algorithm named
EEZ is described.   Basically it is a linearly convergent variable-by-variable  parallel
construction.   The improved algorithm is generally faster and requires less store

then the original algorithm.   Machine examples with comparative timing are in-

cluded.

1.  Introduction.   A much improved algorithm for factoring multivariate poly-
nomials over the rational integers, Z, has been developed.  It is generally faster and
requires less storage than the original algorithm as described by Wang and Rothschild
[13].  The original algorithm has been implemented for the algebraic manipulation
systems MACSYMA [7] of MIT and SCRATCHPAD [4] of IBM.  It is believed to be
the only such algorithm fully implemented on computers.  The new algorithm is
significantly faster for larger multivariate polynomials.

The overall scheme of the improved algorithm is the same as before.  Namely,
the given polynomial is first reduced to a polynomial of only one variable by sub-
stituting properly selected integers for the other variables.  The resulting univariate
polynomial is factored over Z by an algorithm which uses Berlekamp's algorithm [2]
with a small prime.   The univariate factors over Z are then used to construct the
multivariate factors by a p-adic procedure based on Hensel's lemma. The old p-adic
procedure is sometimes referred to as the EZ algorithm.  There are several problems
with the original factoring algorithm [14].  Specific methods have been devised for
the new algorithm to deal with these problems.

The old algorithm gets terms as (x + afiy + bfiz + c)f from substitution and
expands all such terms in the p-adic construction phase.  This causes large intermediate
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1216 PAUL S. WANG

expression growth if the selected integers a, b and c are not zero.   The difficulty is
referred to as the bad-zero problem.   If the leading coefficient with respect to the
chosen main variable of the given polynomial is not an integer, then in the old
algorithm the factors during p-adic construction are only correct up to units in the
underlying ring of truncated p-adic multivariate polynomials.  This is known as the
leading coefficient problem.   Another problem is the occurrence of extraneous factors.
An extraneous factor is a factor that does not lead to a true factor after p-adic
construction.  The presence of such factors complicates the computation significantly.
(See [14] for details.)

Dealing with the leading coefficient problem for two factors in the context of
multivariate polynomial greatest common divisor computation, Yun [15] suggested
that the leading coefficient of the given polynomial or an easily computable divisor
of it be "imposed" on the univariate factors during p-adic construction. The improved
algorithm features an algorithm by which the correct leading coefficients of the fac-
tors can be predetermined.   Sometimes some or all other coefficients of some or all
factors can also be determined.  As a result, computation during p-adic construction
is greatly reduced.   A complete description together with an example is given in
Sections 3 and 4.

To avoid the bad-zero problem, a new p-adic algorithm is devised.  Essentially,
the new algorithm is a linearly convergent variable-by-variable parallel p-adic
construction.  It is a much improved algorithm over the EZ algorithm as described by
Wang and Rothschild [13].   Let us name the new p-adic procedure the EEZ (Enhanced
EZ) algorithm.  The EEZ algorithm lifts all factors at once.  A differentiation and
evaluation process eliminates the need for substitution and expansion.  The variable-
by-variable approach is used to reduce the number of differentiations which can be
very large if all variables are lifted simultaneously.   EEZ is described in Sections 5 and
6.  Yun described in detail in his thesis [15] a "semiparallel" Hensel construction for
multivariate factors.  Whereas EEZ adopts a completely parallel approach obtaining
corrections for all factors by constructing them simultaneously using another Hensel
type procedure described in Section 6.

Since there is no bad-zero problem in the new algorithm, using zeros as substitution
integers is no longer a restricting consideration.  Therefore, extraneous factors can be
largely avoided by using several different sets of integers for the univariate factorization
over Z.  If these sets are randomly generated, then the probability of getting any
extraneous factor is exceedingly small.

In Section 7, we discuss the importance of preserving sparseness in the manipula-
tion of multivariate polynomials and how this is carefully done in the improved
factoring algorithm.  A comparison with Musser's factoring algorithm [11] is presented.

Being interested in heuristic factoring programs, Claybrook [3] has given ten
polynomials, many causing both the leading coefficient problem and the bad-zero
problem, for symbolic manipulation systems to do.  The old factoring algorithm did
very poorly on these examples.  The new algorithm, which is implemented
on the MACSYMA system gives a much better performance.  A table of comparative
timing is included in the appendix.
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MULTIVARIATE POLYNOMIAL FACTORING ALGORITHM 1217

An algorithm for factoring multivariate polynomials over algebraic number fields
[12] has been developed based on the old algorithm.  It should be interesting to con-
sider making similar improvements there. Also of interest is to consider adopting
EEZ for the computation of multivariate gcd's [10].

2. Preliminaries and Notation. Let the given multivariate polynomial be
U(x, x2,... ,xf)£Z[x, x2, . . . ,xt] whose irreducible factors over Z are to be
obtained.  By choosing a main variable, say x, one can write U in the form

Uix, ...,xt)=Vnx" + --- + Vxx + V0

with V¡ E Z[x2, . . . , x:f] for / = 0, . . . , n.   Vn =£ 0 is the leading coefficient of U,
denoted as lc(U).  The degree of U, deg(U), with respect to the main variable x, is n.
The content of U with respect to x, CONT(¿7), is GCD(K0, . . . , Vn) where GCD
stands for the common divisor of greatest degree; and the principal part of U, pp(U),
is (7/C0NT(i/).   U is primitive if CONT(t/) = 1, and U is squarefree if U has no
repeated factors.  Any content of U, or repeated factors of U can be removed by
relatively simple GCD computations (see [5]).  Thus U will be assumed primitive
and squarefree.

For any set F = {fx, f2,. . . ,fr) C Z[x2,x3, . . . , xf], the ideal generated by
F, denoted as (fx, f2, . . . , fr), is defined as the set

tei/i +i2f2 + ---+ s/r ■ Si e z[x2,..., xt] Vi}.
The set F need not be finite.  For any integer k > 0 and any ideal 8, $>k denotes the
ideal generated by all products of the form hxh2 • • • hk, Af ES,, i = 1, 2, . . . , k.

If A and B are polynomials and 8 is an ideal in Z[x, x2, . . . , xt], we define
A = B mod 3 if A - B E&.  For example, if g= (x2 — a2, x3 - a3, . . . , jc - a 7),
ai E Z, then A(x, x%, . . . , xt) =A(x, a2,... ,at) mod € for ,4(x, a2, . . . ,at) is the
remainder of dividing A by each x¡- a., i = 2, . . . , t, successively.

Let us denote by <e2, e3, . . . , eh the ideal ((x2 - a2) 2, (x3 - a3) 3, ■ ■ ■ »
(x- -a,) i). We define that A = B mod fe2, . . . , e) if A = B mod <e2, . . . , ej)
and deg(A) in x¡ < e¡ for all /' = 2, . . . ,/.  We denote the ideal (x2 -a2, . . . ,x.- -
a) by &..  Thus S,1- is the ideal generated by all polynomials of the form

H (xt - «/'    with ¿ e,. = k, et > 0.
1 = 2 1=2

For the ideal 8. we define, for any positive integer k, A = B mod 8* if A = B
mod 8* and the total degree of A in x2, . . . , x • is less than k.

For any given U a coefficient bound, B, can be computed [8] such that for any
integer coefficient c of any divisor of U, B > 2 \c\.  The number B is used later in the
algorithm.

3. Determining the Leading Coefficients.   The leading coefficient of U, Vn, is
factored over Z,

e,    e-, „StV   = OF  lF 2 • • ■ F  k
vn       iirl   r2 rk   »
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1218 PAUL S. WANG

where F, are distinct irreducible polynomials of positive degree in Z[x2, . . ., xt] and
£2 is an integer.   Let us assume that Vn is not an integer, for if it is the case is
trivial.  A set of integers {a,, . . . , a } will be found satisfying the following three
conditions: (1) Vn = Vn(a2, . . . ,at) i=Q, (2) for each F{, Ff = Ff(a2, . . . ,at) has
at least one prime divisor p¡ which does not divide any F -, j < i, il, or the content of
U0(x) = U(x, a2, . . . , at), and (3) U0(x) is squarefree.   Let S = CONT(Í/0) and

«(*) = PPÍ^o)-
It is obvious that infinite sets of integers exist satisfying the conditions (1) and

(3).  In fact, any set of integers a¡ that is not a solution of Vnix2, . . . ,xf) = 0
or the resultant (with respect to x) of U and bU/bx satisfies (1) and (3).  Among

these eligible sets, an infinity also satisfy condition (2).  The proof is based on the
facts: (i) if fix) and gix) are relatively prime, then there are polynomials a(x) and
j3(x) such that a/ + ßg is a fixed integer;  (ii) for any fix), if deg(/) > 0, then f(x)
has an infinity of different prime divisors as x varies through integer values.

In the computer program the a¡ are generated randomly modulo an integer.
This integer modulus is 3 to begin with and is increased slightly every time a few sets
have been generated.  The set of integers thus created is then tested for suitability.  It
is important to avoid prime factorization in checking condition (2) because factoring
large integers is not easy [5].  An algorithm which uses integer gcd computations for
condition (2) is given here.

ALGORITHM N (Nondivisors):   £l,Fx,...,Fk,8. This algorithm takes Í2, F¡,
I — 1,2,... ,k, and 5 as input.    It determines whether condition (2) is met.
Integers d¡, i = 1, . . . , k, will be output if the condition is satisfied.  Any prime
divisor of d¡ may serve as p¡.  Therefore, d¡ may be used in place of p¡.

d0 •«— 8 • n.
For i — 1,2, ... ,k do [steps Al, A2, A3].

Al:    q4-\FA.
A2:    For/ = I - 1, i - 2.0 do [steps Bl, B2, B3, B4].

Bl:    r<— df.
B2:    r <— gcd(r, q), q *— q/r.
B3:    If r ¥= 1 go to step B2.
B4:    If q = 1, exit (condition (2) not met).

A3:    d¡+-q.
Return the answers dx, . . . ,dk.

If condition (2) is satisfied, the dx, . . . , dk will be used later.  If it is not satisfied,
a new set of integers a¡ is generated.

The polynomial u(x) = pp(<70) is now factored over the integers (see [13] for
details), into distinct irreducible factors, u(x) = ux(x) ■ • • t/r(x).  To minimize r, the
univariate factorization over Z is carried out for a number of sets {a¡} until several
different sets give the same low r value.   It follows from Hubert's irreducibility
theorem [6, p. 14] that for any irreducible polynomial U(x, . . . , xt) over Z the
subset {(a2, . . . , at)} C Zi_1 of points such that U(x, a2, . . . ,at) remains

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MULTIVARIATE POLYNOMIAL FACTORING ALGORITHM 1219

irreducible over Z is dense.   Experiments with the program indicate that this process
virtually ehrninates the possibility of extraneous factors.  Thus, in almost all cases,
there will be no expression growth caused by extraneous factors later in the factoring
process.

If none of ux, . . . , ur is extraneous, then U factors into r distinct irreducible
polynomials, U = Hr¡=xG¡ix, . . . , xt).  Let C(-(x2, . . . , xf) = lc(Gf), C¡ =
C¡(a2, . . . ,at) and G¡(x, a2, . . . ,at) = àfU^x) where §,- is some divisor of S.

Lemma   // there are no extraneous factors, then, for all i and m, F™ divides
C¡ if and only if F™ divides lc(u¿)5.

Proof. If F™ | q then F™ divides C, = lciui)ôi. On the other hand, if F™ does
not divide C¡, then Ct = f\1 • • • Fskku> where u> | £2 s¡ > 0 and sk < m. Thus,p™ does
not divide C¡, which implies that F™ does not divide lciu{)8. D

This lemma enables one to distribute all Fk first, then all Fk_x, etc.  Thus, all
D¡(x2.xt) = pp(Cf) can be determined as products of powers of F¡. Now let
D¡ = D¡ia2, . . . , at).  If 6 = 1, then C,. = QcfaJ/DJDj.  Otherwise, if S ̂  1, the
following steps are carried out for all / = 1, . . . , r to correctly distribute the factors
of 5.

(1) Let d = GCLXIcím,.), D¡) and C¡ = (Icíh,.)^)/),.,
(2) Let u¡ = iD¿dyut,
(3) Let 5 = oKDi/d).

Now if 5 = 1 the process ends. Otherwise, let u¡ = bu¡, C¡ = 5C;. and U=5r~1U. In this
case, when the true factors over Z of U are found they may have integer contents
which should be removed.

In the above process, if any factor of Vn is not distributed, then there are
extraneous factors and the program goes back for different substitutions that lower
r.

For example, consider factoring the polynomial

U(x, y, z) = (4z2y4 + 4z3y3 -4z4y2 ~4z5y)x6

+ iz3y4 + 12z3 + (-z5 + 12z2)y2 - 12z3y - 12z4)x5

+ (8y4 + (6z2 + 8z)y3 + (-4z4 + 4z3 - 8z2)y2

+ (-4z5 - 2z4 - 8z3)y)x4

4- (2zy4 + z3y3 + (-z5 - 2z3 + 9z)y2

+ (-12z3 + 12z2)y - 12z4 + 3z3)x3

+( 6y3 + (-6z2 + 8z)y2 + (-2z4 - 8z3 + 2z2)y)x2

+ (2zy3 - 2z3y2 - 3zy + 3z3)x - 2y2 + 2z2y.
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1220 PAUL S. WANG

Factoring lc(U) over Z gives

i/6 =4yz2(y +z)20-z).

Therefore, we have, say, £2 = 4, Fx =y,F2=z,F3=y+z and F4 = y - z.  The
sets of integers {-14, 3}, {5, -12} and {-23, 3} satisfy the three conditions and all
give r = 3.   Let us use y = - 14 and z = 3.  Thus,

Fx=-14,   F2=3,   £,=-11,    F4=-17
and

U0(x) = U(x,-14, 3) = 1036728x6 + 915552*5 + 55748x4

+ 105621x:3 - 17304x2 - 26841x - 644.

Since U0(x) is primitive, w(x) = t/0(x) and 6 = 1.   Upon factorization over Z one
obtains u(x) = uxu2u3 where

(1)       U!=187x2-23,    u2 =44x2 +42x + 1,   u3 = 126x2 - 9x + 28.

Now 187 = F3F4 gives C, = F3F4 = (y2 - z2).  Likewise C2 = - 4(y + z) and
C3 = -yz2.  These are the correct leading coefficients of the irreducible factors of
U(x, y, z).

The algorithm can obviously be applied to determine trailing coefficients as
well. To do this a fourth condition similar to (2) is required. It complicates the
choice of {a¡} and is not currently implemented.

4.  Determining Other Coefficients.   Sometimes it is possible to correctly
determine certain other coefficients in the factors once their leading (trailing) coef-
ficients are known.  Using the same notation, let U0(x) = uxu2 where either or both

of ux and u2 are sparse.   Let \x and v2 be the exponent vectors,dl andc?2 the degrees
and Cx and C2 the predicted leading coefficients of ux(x) and «2(x), respectively.
Consider a term V¡x' of U(x, . . . , xf).  If the set (/ - Vj) n v2 has one and only one
element, then V¡ may lead to the determination of a coefficient in ux or u2 provided
that either    (/ - dx)Ev2 or (/' - d2) 6v,.   Let us assume the former is the case.
Then if Cx divides V¡, the coefficient for x      l in u2 is predicted as V¡/Cx.  However,
there is a slight chance that Vi/Cx is only congruent to the true coefficient of the term
modulo gf.  If Cx does not divide V¡, then no coefficient prediction is made for the
term x      l.  The other case is obviously similar.  This process is carried out for all i
such that i — dx > 0 or / - d2 > 0.  At the end of this straightforward procedure some
coefficients may or may not be determined.  If there are new coefficients determined,
the same process is applied again, using these newly found terms instead of the leading
terms, in an attempt to determine still more coefficients.

The scheme is best illustrated by an example.  Consider factoring the polynomial
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MULTIVARIATE POLYNOMIAL FACTORING ALGORITHM 1221

U(x, y) = (24y3 + 48y2)x8 + (24ys - 72y2)x7

+ (25y4 + 2y3 + 4y + 8)x6 + (y6 + y3 - 12)xs

+ (yS -/ - 2y3 + 292y2)x4 + (-y6 + 3y3)x3

+ (-ys + 12y3 + 48)x2 - 12y3.

By the method described in Section 3, it is found that

ux = 5x4 + 24x3 + 9x2 + 12,

u2 =216x4 +31x2 -27,

U0(x) = U(x, 3) = uxu2
and

Cx =y + 2,      C2 =24y2.

The exponent vectors are Vj =(4320) and v2 = (4 2 0).   Since (7 - v2) D Vj =
(3), the correct coefficient for the cubic term in ux is, therefore, given by V1/(24y2) =
y3 - 3.  The determination of this cubic term leads, by V5 and V3, to the determina-
tion of the quadratic and the constant terms of u2 giving a factor

24y2x4 +(y3 + 4)x2 - y3.

Consequently, the other factor is also completely determined by trial division.
In describing the procedure, two factors are used.   But it should be pointed out

that it can be applied recursively if there are more than two factors.   One way of
splitting the factors into two groups may lead to more determined coefficients than
another.  Since we are only interested in obtaining as many coefficients as can be
conveniently determined, a fixed splitting pattern is employed. It also seems possible
to generalize the process for two factors to one for any number of factors.  The pre-
determined coefficients are used later in the p-adic procedure cutting down, sometimes
considerably, the amount of work needed there.  If some of the additional coefficients
predicted are not exactly correct but are only congruent to the actual coefficients
mod &t, then they will get corrected in the p-adic construction procedure.  A predicted
coefficient will be discarded as soon as it changes during p-adic construction.

The EEZ algorithm produces true factors of U(x, x2, a3, . . . , at),
U(x, x2, x3, aA, . . . , at), etc.  These multivariate true factors can be used to pre-
determine coefficients in the same manner as factors of U0(x).  For instance, from
the factors of U(x, x2, a3, . . . ,at) coefficients as polynomials in x       . . , v  for
terms of various powers in x: and x2 can be determined.  This procedure can be very
important in practical computations because as the number of variables increases in
the true factors the probability of the correct determination of coefficients increases
significantly if U(x, x2, . . . ,x7) is sparse.
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1222 PAUL S. WANG

5.  The EEZ Algorithm.   In this section the EEZ algorithm is presented in detail.
Essentially it is a linearly convergent variable-by-variable parallel p-adic construction
algorithm.  It is parallel because all the factors are lifted at once as opposed to
building only two factors at a time.   Although the EEZ is a multivariate algorithm,
the parallel feature should be very useful for univariate p-adic procedures such as the
Hensel algorithm and the Zassenhaus algorithm [16].

Let ux(x), u2(x), . . . , ur(x) be the distinct irreducible factors computed by
the method given in Section 3 such that

U(x, . . . , xt) = ux ■ • ■ ur   mod áí,   over Z.

Recall that & = (x2 -a2, . . . , x¡ - a}) for 2 < / < t.   Let

U2 = <7(x, x2,a3, . . . , at),    U3 = t/(x, x2, x3, a4.at),

etc.  Thus, Ut = U.  An algorithm is given here which constructs from u¡ a series of
polynomials PtAx, x2, . . . , x), for j = 1, . . . , t and / from 1 to a value less than or
equal to r, such that

(2) Pi.i =",     and    Uj = UP,ti
i

over Z.  The polynomials P¡ 2 are constructed from u¡, P¡ 3 from P¡ 2 and so forth.
Thus, the factors are constructed variable-by-variable.

Let b be a large prime or a suitable prime power which is greater than the
coefficient bound B.   The number b is used as a modulus for all computations
described in this and the next section in order to avoid arithmetic with rational
numbers.

By induction, suppose P¡ k_x, i = 1, . . . , r , r < r, satisfy Eq. (2) for
some k > 2.  The process for constructing polynomials P¡ k from Pik_x will be
described.   Let Sf. , (x, . . . , xk) be P¡ k_ x with possibly some of its coefficients
replaced by predetermined coefficients.   Of course, these predetermined coefficients,
which in general involve all the variables x2, . . . , xt, first have to be reduced
mod ixk+ j - ak+ x, . . . , xf - at).  Let n¡ be the degree of Uk in x¡, i = 2, . . . , k.
A sequence of polynomials $,- -(x, . . . , xk), j = 1, . . . , nk + 1, will be constructed
such that ^. . = K,- /+, mod (xfc - ak)' and

r'

Uk = U  ®i,j    mod ((xk - ak)'> Afc).      0 < / < nk + 1,
j=i

where Ak is the ideal (n2 + 1, «3 + 1.nk-i + ^-  Thus» /is increased by
one each time to a maximum nk + 1.  Often many or all of ®f • will stop changing
once / is greater than nk/r ', the average degree of xk in the r factors.  When / >
nk/r , a checking procedure which uses division is activated so that factors no longer
changing can be removed.  This means that one will have a reduced Uk and fewer
factors to work with.  The savings in computation can be significant if the factors are
quite different in size and complexity.

If every S/n  +1 divides Uk over Z, then we have P¡ k = ff,-     +, for all /'.  If
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there are extraneous factors, which seldom happen in this new algorithm, a true factor
of Uk may be the product, modulo Afc+ a, of two or more $,-„.+1 •  A combinatorial
search [13] is then performed to obtain P¡ k.  In this case, the subscript / has a
smaller range for P¡ k than for P¡ k_l .* This is the reason why r is used as the number
of factors instead of r.  If there are no extraneous factors, r' = r.

Note that combining extraneous factors is the only place in the entire p-adic
construction described in this and the next section where explicit modulo operation
by a polynomial, namely division by a polynomial and taking the remainder, is used.

Now let us consider the construction of the ®f ■.  Again suppose, by induction,
ft/ m(x> • • ■ • xk)> ' = 1, ••■,'■', are obtained for some 1 < m < nk such that

tf*=nft/.m    mod iixk-akr,\)
i=i

mod^-^r-1,

and

®i,m-l=®i,m     "'"" V*fc     »k>

Now ft,- m +1 will be constructed from $,. m.  One first computes the difference
f

Rm = ft A/,« - Uk    mod Afc,
/=i

which is zero mod (xk - ak)m.  If Rm = 0 mod (xfc - ak)m +1, then $, m +, =
ft/,m •   If Rm $ ° mod (xk - aJ" + 1 ' there exist C ^ ° mod (xk - ak) and D - °
mod (xfc - ûfc)m + ' such that

(3) Äm = C(x.xk_x)ixk -ak)m +Dix, . . . ,xk).

The degree of Rm in x is less than n, the degree of U in x, due to the correct distribu-
tion of the leading coefficients.  The polynomial C is computed by the formula

Cix,. .. ,xk_x) = —. (-¥Lr\
"   X       ml\ bxm    m

It involves one differentiation and one evaluation. The polynomial C is smaller than
Rm because it is lower in degree and has one less variable. In particular, deg(C) < n.
Note that no expansion of any sort is used.

Now r' unique polynomials axix, . . . , xk_x), . . . , ar>(x, . . . , xk_j),
called correction coefficients, will be computed such that

al^>2,fc-1^3,k-l '    ' Pr',k-l + a2^1,k-l^>3,k-l       ' ^r'.k-l

(4) + ■ ■ ■ + aiPx,k_x •••P,_1>fc_1¿,l+i,fc-i    'Pr',k-i +■•■

+ ar'Pl,k-l  ■ ■ ■ Pr'-I,k-l - C    mod Afc

and

deg(ai) < dcg(ft/fm) = degiPik_x).
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These correction coefficients are obtained by a p-adic procedure which will be
explained in the next section.  Now one sets

(5) ft/.m +1 = ft/,« - aÁxk - ak)m.      » = 1, • • • > r.

Thus, S,- m - ft/ m +1 mod (xfc - ak)m for all /' and it can be deduced from (3), (4)
and (5) that

r*
tf* = IIft/,« + i    mod((xfc-afcr + 1,Afc).

/=i

Given that the leading coefficients are correctly distributed, then all a¡ exist in
Z[xx, . . . , xfc_j] provided that there are no extraneous factors.  This means that,
under these conditions, Eq. (4) can be satisfied over Z without modulus.    This
situation is very desirable because considerable expression growth results from introduc-
ing inverses of polynomials modulo Ak.  In fact, this growth problem may be enough
to warrant a procedure for early detection of extraneous factors.  One such procedure
is to do the construction from one variable to two variables several times using a
different second variable each time.  If extra factors are found for a certain second
variable, then these factors are combined by the true factors procedure mentioned
before.  Otherwise, all the t - 1 alternatives shall be exhausted.  In either case, the
possibility of extraneous factors showing up later in the p-adic construction is largely
eliminated.

As an example, let us carry out the p-adic construction for the polynomial
U(x, y, z) given in Section 3.  To begin with, one has

with

and

U(x, y, z) = Pulix)P2>xix)P3xix)   mod iy + 14, z - 3)

Px x = 187x2 - 23,   P2X = 44x2 + 42x + 1

P3X = 126x2 -9x + 28.

The leading coefficients are Cx = y2 - z2, C2 = - 4(y + z) and C3 = - yz2.  Let
the modulus be ll8 = 214358881.  The immediate goal is to construct P¡ 2, i =
1, 2, 3.  Using Cx, C2 and C3, one sets

fti.i = iy2 -9)*2 " 23> fta.i = ~A{y + 3)*2 + 42x + l

and

•S3il =-9yx2 -9x +28.

The difference Rx is then computed as

Ri = fti,ift2,ift3,i -U(x,y,3),

which is congruent to zero modulo (y + 14).  The polynomial C(x) which is the
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coefficient of y + 14 in Rx is calculated by

C(x) = (d/dyRx)y=_x4

= 70686x5 + 5863x4 + 17826x3 - 2009x2 - 503lx - 74.

The correction coefficients are found to be ax = - 1, a2 = 3x and a3 = 2.  Thus,

fti,2 = «1,1 +0 + 14) = 02 -9)x2 +y-9,

S22 = !rt2)1 - 3x0 + 14) = - 4(y + 3)x2 - 3xy + 1

and

fts,2 = «3,1 - 2(y + 14) = - 9yx2 - 9x - 2y.

It turns out that Pi2 = $,. 2 for /' = 1, 2, 3 and t/(x, y, 3) = Px 2P2 2P3 2 over Z.
Now, P¡ 3 are to be computed.  One resets

fti.i =iy2 ~z2)x2 +y~9,    Ä2)1 =~4iy +z)x2 -3xy + 1

and

ñ3tX =-yz2x2 -9x-2y.

And one resets Rx = &x xñ2 ,Ä3 , - U(x, y, z) which is congruent to zero modulo
(z - 3).  The polynomial C(x, y) is again computed as

C(x, y) = (b/dzRx)z=3 = (-9y4 - 12y3 + 45y2 + 108y + 324)x5

+ (-18y3 +216y2 + 810y)x4
(6)

+ (-2y4 - 9y3 + 252y2 + 288y + 945)x3

+ (30y2 + 414y)x2 + (-2y3 + 54y2 + 3y - 81)x - 12y.

The correction coefficients are then found to be a   = 6, a2 = xy and a3 = 3x: (see
Section 6 for details). Therefore,

ft, >2 = (y2 - z2)x2 + y - 6z + 9,

ft2)2 = - 4(y + z)x2 - xyz + 1

and

S3)2 =-yz2x2 -3zx-2y.

For this example, one more step of correction yields the actual factors over Z,

Uix, y, z) = (O2 - z2)x2 + y - z2)(4(y + z)x2 + xyz - 1)

■ (yz2x2 + 3xz + 2y).

6.  Computing the Correction Coefficients.   In this section a p-adic procedure
for parallelly constructing the correction coefficients which satisfy Eq. (4) will be
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presented.   If one writes P¡ for P¡ k_x(x.xk_x) and Q¿ for the product P¡+ x ■ • ■
Pri then the left-hand side of Eq. (4) becomes

f(ax, ..., a,.) = axQx + a2PxQ2 + a3PxP2Q3 +■■■+ ar>Px •• • Pr._v

The objective is to find a,(x, . . . , xk_x) for given Pa[x, . . . , xfc_j), ô,(x, . . . ,xk_x),
CXx, ■ ■ ■ , xk    ) and Afc such that deg(a,) < degij0,.) in x and

f(ax, . . . , ari) = C   mod Ak.

Note that deg(C) < I,deg(P¡) in x.  The p-adic construction process computes for all
/ a sequence of unique polynomials A¡,, i = 1, . . . , f, such that At, = A(j+X
mod %'kJx and

f(AXJ, . .., Ar.j) = C   mod 4+_\,      / = 0, 1, . . . , A,

where A is the degree of Uk in x2, . . . , xk_ x.  The process begins by computing
A¡ 0 for all i then builds these A¡ 0 up to form A¡ x, then A¡ 2, etc.  The process
ends whenever f(At ,,..., Ar> •) = C over Z or when / reaches A.  The last set of
A¡, will be the desired a¡.  As indicated before, if there are no extraneous factors and
if the leading coefficients are correctly determined, then equality over Z will always
take place and it happens well before / reaches h.

Let Pioix) = P¡ mod %k_x and ßl0(x) = Q¡ modgfc_j.  Unique polynomials

o-x (x), . . . , ar'(x) can be found such that deg(af) < deg(?/0 ) for all i and

f0iax,. . . ,ar')= 1    mod (Z>),

where b is the coefficient bound modulus mentioned earlier and f0=f mod &k_x.
To compute the ^.(x), one computes b/.(x)/'/0(x) + aI.(jc)ßj0(x) = b^jfx), where
b0(x) = 1 and hr'_iix) = ar<(x) by the Euclidean algorithm.  The af are stored for
further reference until no longer needed.

For any polynomial gix) with deg(g) < 2 deg(P¡0) it can be shown that

/<,(£>, (x), . . . , br,(x)) = g(x)   mod (b)

if i¡(x) = a.(x)g(x) mod PiQ(x).  Thus, if C0(x) = C(x, . . . , xk_x) mod 8k_x and
At 0(x) = aA[x)C0ix) mod Pioix), then f(Aija, . . . , Ari0) = C mod gfc_x.  By
induction, suppose A¡ m are already obtained for some m > 0 such that Dm =
fiAXm, . . . , Ari m) -C = 0 mod S™^,1.  Considering W = Dm mod &k+2, one sees
that W can be written in such a form that it consists only of terms of degree m + 1
in (x2 - a2) , . . . , (xfc_, - ak_x) with coefficients polynomials in x.  A typical term
of W looks like

(?) gix)ix2-a2)e2---ixk_x-ak_x)e^\

with e2 + • • • + ek_x = m + 1 and degig) < XdegiP¡0).  To obtain gix), the
following differentiation formula is used

(s,      ^Tr^-y(é-)"-(ié-T-\e2\ ■■•ek_x\ \bx2 \bxk_
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By using this formula one avoids the costly change of variable (y. + a¡) for x¡ which
is used in [13] to obtain gix).  For each gix) we compute a set of a^x) such that
/0(ai.ar') — gix) mod (¿?).  Now, each A(     is modified by subtracting the
product a;(x)(x2 - a2/2 ■ ' ' (*fc_, ~ ak_x)e,l~1 from it, i = 1, . . . , r .  If this
correction process is done for all possible exponents ev satisfying ev < nv and
e2 + ■ • ■ + ekX = m + I, then A¡ m are transformed into A¡ m + x which satisfy

f(Ai,m+1,--,Ar.>m+1) = C   mod«^2-

For example, if Px = (y2 - 9)x2 + y - 9, P2 = - 4(y + 3)x2 - 3xy + 1,
P3 = - 9yx2 - 9x - 2y and C(x, y) is given by (6), then P¡0 = u¡ as given by (1).
It is found that Ax 0 = 6, A2 0 = - 14x and A3 0 = 3x.  One more step in the
p-adic procedure yields Ax x =6,A      = xy and A3 x = 3x which turn out to be the
desired correction coefficients, i.e., ax = 6, a2 = xy and a3 = 3x.

The number of possible terms in the form (7) can be large.   In the worst case,
the polynomial C may have t - 1 variables.  It means k = t and there are t - 2
variables in (7).  If d is the total degree of C in x2,. . . , xt_ x, then the number of
such terms with e2 + • • • + et_x = d is given by the binomial coefficient (f^l33)
which is of order Oid{~3) if d is much larger than t.  This is the worst number of
possible differentiations and evaluations as given by formula (8).   Some of these
calculations may produce gix) = 0 because those terms are missing.  Normally the
actual number of applications of (8) is much less than the bound due to the absence
of extraneous factors and the correct determination of coefficients.

To lessen this potential exponential behavior, one may consider a variable-by-
variable approach to the p-adic construction of the multivariate correction coefficients
a¡.  Such an approach seems to be quite promising though it is highly recursive.

The algorithm described in this section can be applied to multivariate partial
fraction expansion. It can also be generalized to solve any equation axfx + ■ • • +
a„fn = h if /j. and A are multivariate and gcd(fx ,...,/)= 1.

7.  Discussion.  It can be said in summary that the factoring algorithm is much
improved because the leading coefficient problem is eliminated by predetermining
correct leading coefficients for the factors; the bad-zero problem is significantly reduced
in EEZ and extraneous factors are largely avoided.  These three problems have one
thing in common.  That is, they all cause the intermediate polynomials to degrade into
much denser polynomials than necessary.   For any multivariate polynomial algorithm,
it is important to preserve sparseness if the input polynomials are sparse. Two different
algorithms may be equally efficient (inefficient) asymptotically for completely dense
multivariate polynomials while one is much better than the other in practical (average)
use because it preserves sparseness.

The new factoring algorithm also takes advantage of sparseness by trying to
determine many or all other coefficients of the factors.   A few more determined
coefficients may simplify the subsequent p-adic construction considerably.  Sometimes
factorization may even be completed without any p-adic construction.

Musser [11] reported a factoring algorithm which is more efficient for
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univariate polynomials than for multivariate polynomials.  There are several very
serious problems with this algorithm.   Firstly, it recursively applies a quadratic p-adic
construction for two factors.  This means that the construction is carried out as many
times as the number of factors being hfted.  Hence, it is about that many times as
expensive as a parallel construction.   Secondly, the variables are Hfted modulo a
certain prime which is Hfted last.   Hence, there is no control over the frequent occur-
rence of extraneous factors.  The presence of extra factors complicates significantly
each p-adic construction and increases the number of such constructions at the same
time.  We use a clearly better approach of obtaining true univariate factors over Z
before multivariate p-adic construction.  True factors are also obtained at each stage
of the variable-by-variable construction as explained in Section 5.  Thirdly, Musser's
algorithm frequently divides multivariate polynomials over a ring of such polynomials
which means, among other things, multiplying by multivariate inverses in the ring.
Neither our old algorithm nor the improved algorithm uses any such division.   Fourthly,
Musser's algorithm does not address the leading coefficient problem at all.  The
polynomial Uix, a2, . . . ,at) may have large coefficients if most a¡ ¥= 0 or ± 1.  Large
coefficients cause univariate factoring over Z to be more time consuming.  This
problem is common to the old and the new algorithm.  Although the univariate
factoring time is a minor part of the total multivariate factoring time, it is desirable
to improve the univariate procedure for increased efficiency when coefficients are
large.  A recent paper by R. Moenck [9] proposes to do this by factoring modulo
large primes of the form M.  2m + 1 where M =• m.   Another possible approach is
to speed up the one-variable Hensel or Zassenhaus lifting scheme.

Acknowledgement.   The author wishes to thank Joel Moses, D. Spear and B. Träger
for helpful discussions and the referee for comments.

Appendix

Contained here are fifteen factoring examples done by MACSYMA using the
original algorithm (A) and the improved algorithm (B).  To conserve space these
polynomials are given in factored form below. Polynomials #6 through #15 correspond
to the ten polynomials proposed by Claybrook [3].  The timing was done on a
DEC KL-10.  Times listed in Table 1 are in milliseconds.  A *  indicates running out
of storage.

Table 1

Polynomial Factoring Time Factoring Time Ratio

A B A/B
1 1950 1210 1.61
2 2564 597 4.29
3 11579 760 15.24
4 48057 4770 10.07
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Table 1 icontinued)

Polynomial Factoring Time Factoring Time Ratio

5 55594 5840 9.52
6 * 3303
7 956 954 1.00
8 * 7830

9 * 5121
10 * 9069
11 * 5921
12 274 277 1.00
13 3388 583 5.81
14 10518 2822 3.73
15 79676 582 136.90

The fifteen polynomials

(1) iZ + XY + 10) iXZ + Y + 30)iYZ + X + 20),

(2) (X3(Z + Y) + Z - 11)(A-2(Z2 + Y2) + Y + 90),

(3) iYZ3 + XYZ +Y2+ X3)iX(Z* + 1) + Z + X3Y2),

(4) (Z2 -X3Y + 3)(Z2 + XY3)iZ2 + X3Y4)(Y4Z2 + X2Z + 5),

(5)(Z2 + X3Y4 + U2)HY2 + Z)Z2 + 3U2X3Y4Z + 19F2)(i/2r4Z2 + ^T2Z + 5),

(W^Z3 -XY2Z2 - W4X5Y6 - W2X3Y)i-X5Z3 + YZ + X2Y3)
(6)

• (IV4Z6 + Y2Z3 - IV2Jf2 F2Z2 + XsZ - X4 Y2 - W3X3 Y),

(7) (Z + Y + X- 3)3(Z + Y + X-2)2,

(-15F2Z16 +29W4X12r12Z3 +21X3 Z2 + 3W15r20)

(8)
(-Z31 -W12Z20 + Y18-Y14 +X2Y2 +X21 + IV2),
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(74ArZ2(6H/2y3Z2 + 1SU2W3XZ2 + 15UZ2 + 1QU2WXY3)

(9) • (-44UWXY4Z4 - 25U2W3YZ4 + 8UWX3Z4 - 32t/2W4r4Z3

+ 4SU2X2Y3Z3 - 12Y3Z2 +2U2WX2Y2 - 11UW2X3 Y - 4W2X),

(31 U2 XZ + 35W2Y2 + 6XY + 40WX2)(U2 W2XY2Z2 + 24t/2Iv'AT2Z2

+ 12U2XY2Z2 + 24U2X2YZ2 + 43WXYZ2 + 31W2YZ2 + 8t/2If2Z2

(io) + 44uw2z2 + 37fi2r2z + 4ir2z + i2WJT2yz + 2ic/2iv^yz + 23jsrrz

+ 47U2W2Z + 13UW2X2Y2 + 22XY2 + 42<72If2r2 + 29 If2 F2 +276W2Ar2r

+ 37W2J!fZ + 39Í/IWZ + 43UX2Y + 24.*T + 9<y2IvX2 + 22(72H'2)

XY(-13U3W2XYZ3 + IV3Z3 + 4UXY2 + 47*10

• (43UX3Y3Z3 + 36t/2IV3;iTZ3 + 14IV3X3r3Z2 - 29IV3AT3Z2

(n)   -20u2w2x2y2z2 + 36<y2wjifr3z-48t/iv;if3r2z + 5uwx2y3

+ 36UW2Y3 - 9UWY3 - 23UWX3Y2 + 46UX3Y2 + SXY2 + 31U2W3Y2

- 9£/2r2 + 45X3 - 46U2WX),

(12) (z + r + ^r-3)3,

(13) (3Z3 + 2FVZ - 9Y3 - Y2 + 45X3)(IV2Z3 + 47*7 - IV2),

(-18*4r5 + 22FS -26Z3r4 -38X2Y4 +29X2Y3 -41X4Y2 + 37X4)
(14)

• (33X5Y6 + 11 Y2 + 35* 3 Y - 22*4),

*6F3Z2(3Z3 + 2IVZ-8ZF2 + 14IV2F2 - Y2 + 18*3n
(15)

• i-nw2xYZ3 + w2z3 + 3*r2 + 29*- if2).
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