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Abstract—Indoor localization scheme using sensor
networks is expected to be applied in various fields, and the
localization scheme using time of arrival (TOA) is well-
known. However, the estimation accuracy of TOA
localization is severely deteriorated in non-line-of-sight
(NLOS) environments, and the NLOS mitigation scheme
such as iterative minimum residual (IMR) scheme is
required. The IMR scheme is often applied because of its
lower calculation complexity. However, when an increased
number of NLOS nodes exist, the NLOS detection errors
increase in the IMR scheme and the estimation accuracy
deteriorates. Therefore, in this paper, we propose a new
scheme exploiting rough NLOS detection based on
stochastic characteristics before the application of IMR
scheme to improve the localization accuracy. The improved
performance is shown by computer simulations.
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I. Introduction
  Indoor localization technique attracts much attention
because of its expectation to be applied in various fields. For
example, by obtaining the accurate position of products and
workers in factory, the work efficiency and the reliability can
be improved. Global positioning system (GPS) is the most
famous localization system in which a location of the terminal
can be detected by receiving the beacon from satellites. The
outdoor location can be detected with high accuracy by the GPS.
However, the GPS cannot be used indoors since the direct wave
from satellites is blocked. Thus, other technologies need to be
used for the indoor localization. The most popular one is that a
few sensor nodes whose location is known receive the beacon
from a target node whose location is unknown, and by more
than three distance or two angle information of them, the target
location is calculated by triangulation [1]. For the distance
measurement, several schemes such as time of arrival (TOA),
time difference of arrival (TDOA) or received signal strength
(RSS) are used. RSS-based localization is applicable to various
systems because of the simplicity for measurement and is used
in many systems [2]. However, RSS-based localization is
difficult to maintain high estimation accuracy because the

performances deteriorates severely in noisy environments. In
contrast, TOA-based localization is robust for the
environmental noise, and the estimation accuracy is higher than
that of RSS-based scheme [3]. For TOA-based localization,
ultra wide band (UWB) signals whose time resolution is high
are used and the higher estimation accuracy is achieved [3,4].
When the direct beacon between the target and the reference
nodes is blocked by obstacles, which is called the non-line-of-
sight (NLOS) environment, the estimation accuracy is largely
deteriorated compared with line-of-sight (LOS) environments
since the error of distance measurements becomes large by
detecting only the reflected or diffracted signals. Specifically,
the measured value under NLOS environments has large bias
by wave detouring. Thus, the error mitigating schemes in
NLOS environments are indispensable and several schemes are
proposed.  For  example,  one  of  the  schemes  applied  to  TOA-
based localization is Rwgh (Residual weighting) [6]. In Rwgh
scheme, the estimation is conducted using all sensor nodes
including NLOS nodes, and the weight for each measured value
is adaptively changed according to its reliability. The
advantage of this algorithm is that the estimation is always
available even if all nodes are in NLOS environments.
However, the NLOS error cannot be perfectly removed and the
estimation accuracy is degraded in general. For the
performance improvement of those NLOS including schemes,
NLOS identification schemes using the stochastic
characteristics of measured data have been proposed [7,8].
However, the identification performance depends on the
accordance of the error model and actual environment, and the
effect is limited. On the other hand, an NLOS elimination
scheme, in which the NLOS nodes are detected and the
estimation is conducted only with LOS nodes, has been
proposed. In this scheme the performance is not degraded by
NLOS environments whenever NLOS nodes are correctly
detected, and the better estimation performance is obtained. As
one of the effective NLOS detection and elimination schemes,
an iterative minimum residual (IMR) scheme has been
proposed in [9]. In IMR scheme the node having inaccurate
measurement distance is iteratively eliminated one-by-one, and
thus, the IMR scheme does not require high calculation
complexity and is suitable for systems having low calculation
ability. Usually, TOA or RSS-based distance is used for IMR
scheme but other measurements can also be used. However,



when there are a lot of NLOS nodes, the NLOS detection error
increases and the estimation accuracy deteriorates in the IMR
scheme.
  Therefore, in this paper, we exploit the NLOS detection
scheme utilizing stochastic characteristics of measurement
error, and propose a modified IMR scheme jointly using the
stochastic characteristics to improve the estimation accuracy.
  In the following, the TOA localization is described in
Section II, and the IMR scheme is reviewed in Section III. In
Section IV, the proposed scheme is introduced, and numeral
results are shown in Section V. Finally, the conclusions are
drawn in Section VI.

II. Time of arrival (TOA)-based localization
In TOA-based localization, the position of the target node is

estimated by triangulation with more than three TOA
measurement distances between the target node whose position
is unknown and the sensor nodes whose position are known.
Let ( ),x y  as the true position of target node, ( ),i ix y  as i-th
sensor node position, id  as the true distance between the
target node and i-th sensor node. Then, the measured distance

îd  is given by [10]

( ) ( )2 2ˆ
i i i i i id d x x y ye e= + = - + - + (1)

where ie  is the noise component of i-th sensor node
measurement, and is given by

, ,i i LOS i i NLOSe e z e= + (2)
Here, ,i LOSe  is the noise component in LOS environments,

,i N L O Se  is that in NLOS environments, and ix  is the
switching parameter of 0 as LOS and 1 as NLOS. For ,i LOSe ,
the main reason of TOA measurement error in LOS
environments is the multipath reception of UWB pulses. It is
reported in [11] that the small positive bias is added to the true
distance when the narrow band UWB (such as 500 MHz) is
used and the distance between the target and sensor nodes is
relatively long (such as 10 m), because the multipath reception
shifts the peak power in detection. Thus, TOA error in LOS
environment ,i LOSe  is modeled as a positive-mean Gaussian
noise whose mean ,i LOSm  and variance 2

,i LOSs  are given by
( ), log 1i LOS LOS im m d= + (3)

( ) 22 2
, log 1i LOS LOS ids s é ù= +ë û (4)

where LOSm  and 2
LOSs  are the parameters dependent on the

signal bandwidth.

Fig. 1. Single scatter model in NLOS environment.

Fig. 2. Gaussian scatter density model in NLOS environment.

For the modeling of the error in NLOS environments, a
single scatter model [12] is recognized as practical and well-
known. In this study this model is used to calculate the NLOS
noises. The single scatter model is a model in which the radio
wave from the target node is reflected once by a scatter and is
received by the sensor node. It is assumed that the multiple
reflected wave is attenuated and can be ignored. Fig. 1 shows
the single scatter model where the distance between the target
and sensor nodes is id , the positions of the sensor and target
nodes are ( )0 , 0  and ( ), 0id , respectively, and the
position of the scatter is ( ),i ip q . Then, the distance between
the target node and the scatter ,s ir  and the distance between
the sensor node and the scatter ,b ir  are, respectively, given by

( )2 2
,s i i i ir d p q= - + (5)

2 2
,b i i ir p q= + (6)

From (5) and (6), the error ,i NLO Se  in NLOS environments is
given by

, , ,i NLO S b i s i ir r de = + - (7)
To obtain the averaged characterisitcs of NLOS error, the
distribution of the scatter position ( ),i ip q  is needed. As the
scatter distribution, circular scattering model (CSM) for
outdoor environments, elliptical scattering model (ESM) for
indoor environments, and Gaussian scatter density model
(GSDM) for both indoor and outdoor environments [13] have
been proposed. GSDM is a model of two-dimensional Gaussian
distribution centered at the target node position ( ), 0id
illustrated in Fig. 2. The joint probability density function

( ),i iP p q  of scatter position ( ),i ip q  is given by
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where the standard deviation ss  is given by

s
s

d
D
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and sD  is the constant parameter determined from
propagation environments. In this study GSDM is adopted to
derive the NLOS errors.
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III. Iterative minimum residual (IMR) scheme
IMR scheme is an iterative NLOS elimination scheme in

which the target location is iteratively estimated using some
combinations of measured data and the inaccurate node is
detected by comparing the residual estimation error [9]. By
iterating this operation, the nodes having inaccurate data are
eliminated as NLOS node one-by-one. The IMR algorithm is
conducted by the following steps:

(i) Initialization:
Let dN  as the number of sensor nodes used for estimation
and set

{ }ˆ, ,1d iN N d i Nr= = £ £ (14)

where r  is the observed distance set. Define the threshold d
as a small positive number.
(ii) Least square-based estimation:
Find the least squares (LS) estimated location ( )ˆ ˆ,x y  using
the observation data r  and calculate the normalized residual
error ( )ˆ ˆ,x ye . They are given by

( ) ( ) ( ){ }2
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Set ( )ˆ ˆ,
dN x ye e= .

(iii) Iteration:
Find the LS estimation ( )( )ˆ ˆ, kx y  and the normalized residual
error ( )( )ˆ ˆ, kx ye , 1 dk N£ £ , for dN  combinations of dN
distances in r  taking 1dN -  at a time. Denote the position
with the minimum normalized residual error as ( )ˆ ˆ,m mx y ,

( )m ˆ ˆ,m mx ye e=  and mr  as the set of distances used in
( )ˆ ˆ,m mx y .
If mdNe e d- > , then ( ) ( )ˆ ˆ ˆ ˆ, ,m mx y x y= ; else return
( )ˆ ˆ,x y .
If 3dN > , then 1d dN N= - , mr r= , mdNe e= ,
repeat (iii); else return ( )ˆ ˆ,x y .

In IMR scheme the estimation accuracy of location is
degraded when NLOS detection is failed. In particular, when
there are a lot of NLOS nodes, the residual error becomes
fluctuant and the NLOS detection error tend to happen.

IV. Proposed NLOS detection scheme
  For the TOA measurements, the target node sends beacon M
times and the averaged measurement data are used for
estimation, which is given by

,
1

1ˆ ˆ
M

i i m
m

d d
M =

= å (17)

where ,
ˆ

i md  is m-th measured distance of i-th sensor node and
M is the number of measurements before estimation. By this
operation, the Gaussian noise in the measurements is mitigated.
Furthermore, using this M-time measurement, the error

variance can be calculated. The estimated variance of
measurement in i-th sensor node is given by
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2
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Here, if the true variance of LOS measurement of (3) is known
in advance, the environment of i-th sensor node can be
estimated by comparing (19) with (3). The estimated distance

iD  between the target node and i-th sensor node derived by
the error variance is given by
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(19) is derived by the assumption that ,i ests  ideally coincides
,i LOSs  and  by  (3).  Thus,  on  every M measurements, the

averaged measurement distance ˆ
id  and the estimated distance

iD  derived by the estimated variance are obtained. The NLOS
bias is added to ˆ

id  in the NLOS environments, while iD  is
not affected by the NLOS environments. Utilizing this property
NLOS environments can be detected by comparing ˆ

id  with
iD  such as

ˆ
i i id D a- > (20)

where ia  is a threshold. When (20) is satisfied, i-th sensor
node is detected as NLOS environment, and eliminated for
position estimation in IMR scheme. Different from the original
IMR scheme, in which the NLOS detection in conducted by a
combination search, (20) can be conducted for each i alone.
However, when M is small, iD  becomes noisy and the NLOS
detection accuracy using (20) is decreased. Hence, we propose
the combination of this stochastic scheme and IMR scheme to
improve the NLOS detection performance as follows.
  The proposed algorithm of IMR scheme with the stochastic
NLOS detection is shown in Fig. 3. First, ˆ

id of (17) and iD
of (19) are calculated using M time measurements for all N
sensor nodes. Next, the NLOS detection is conducted by (20)
and the detected NLOS nodes are eliminated for position

Fig. 3. Algorithm of the proposed scheme.

M measurement data from each sensor node

Calculation the averaged
measurements

Estimation the error variances

NLOS elimination by comparing the averaged measurements
and estimated distances

IMR-based NLOS elimination

,î md
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ˆ
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Localization using residual measurements

Calculation the estimated distances
,i ests



estimation. Here, because the accuracy of (20) is relatively low,
the threshold ia  is configured as a large number not to
eliminate LOS nodes. Then, some NLOS nodes may not be
detected and remain. These residual NLOS nodes are then
eliminated by IMR scheme conducted after the stochastic
scheme. The IMR scheme has less detection performance when
the number of NLOS nodes is large. However, this
performance disadvantage will be solved by the proposed
scheme because the nodes having large error is already
eliminated.

V. Numerical results
  The position estimation performance of the proposed scheme
in NLOS environments is evaluated through computer
simulations. The root mean square error (RMSE) is calculated
and compared with the original IMR scheme. In the simulation,
the target node is located at all area of the sensor field in Fig. 4
on every 0.1m grid in x and y directions, and at each target
location the proposed scheme for NLOS detection and RMSE
calculation are conducted. Here, the threshold for the proposed
NLOS detection scheme ia  is configured by heuristic search
as

( ) ( )2 2
0 0ˆ ˆ0.7i i ix x y ya = - + - (21)

where ( )0 0ˆ ˆ,x y  is estimated position calculated with all N
sensor nodes, the number of sensor nodes N is 9, the number of
NLOS nodes is 4, the number of measurements M is 30, and
the number of trials for RMSE calculation is 1000. The signal
bandwidth is assumed as 500MHz and the channel parameters
of (3) and (4) are set as 0.21LOSm =  and 0.269LOSs =  [10].
For the NLOS channel model, Gaussian scatter density model
(GSDM) [13] is used and its variance parameter is set as 3sD = .
  Fig. 5 shows the RMSE performance of the proposed scheme
and conventional  IMR scheme.  In  Fig.  5,  the  RMSE value  is
shown as a color bar between red (1m, highest) and blue (0m,
lowest). In Fig. 5(a), there are some red region that means the
lower estimation accuracy, while in Fig. 5(b), the performance
is overall improved because of the improvement of the NLOS
detection. The average RMSE in the whole sensor field of Fig.
5(a) and (b) is 0.569 [m] and 0.494 [m], respectively. This
RMSE improvement of the proposed scheme is obtained by the
accurate NLOS detection and elimination.

VI. Conclusions
  In this paper, we proposed a new NLOS detection scheme by
comparing the estimated variances of measurements and
proposed a modified IMR scheme with joint NLOS detection.
The RMSE performance of the proposed scheme was evaluated
by computer simulations and it was confirmed that the RMSE
was decreased compared to the conventional IMR scheme.
  In future studies, the performance improvement by
increasing the accuracy of stochastic detection scheme will be
considered.

Fig. 4. Sensor field.

(a)

(b)

Fig. 5. RMSE performances;
(a) conventional IMR scheme, (b) proposed scheme.
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