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Abstract. Parameterization of turbulent fluxes under stably
stratified conditions has always been a challenge. Current
surface fluxes calculation schemes either need iterations or
suffer low accuracy. In this paper, a non-iterative scheme is
proposed to approach the classic iterative computation re-
sults using multiple regressions. It can be applied to the
full range of roughness status 10≤ z/z0 ≤ 105 and−0.5 ≤

log(z0/z0h)≤ 30 under stable conditions 0< RiB ≤ 2.5. The
maximum (average) relative errors for the turbulent transfer
coefficients for momentum and sensible heat are 12 % (1 %)
and 9 % (1 %), respectively.

1 Introduction

In weather or climate models, the earth’s surface is the
boundary that needs to be resolved physically (Chen and
Dudhia, 2001). The condition of atmosphere aloft (e.g., wind,
temperature and humidity) is highly dependent on the mo-
mentum, sensible heat and latent heat fluxes at surface. Cur-
rently, the exchanges of momentum and heat between the
earth’s surface and the atmosphere are usually calculated
with various schemes based on Monin–Obukhov similar-
ity theory (hereinafter MOST; Monin and Obukhov, 1954)
in models. These schemes (e.g., Paulson, 1970; Businger
et al., 1971; Dyer, 1974; Holtslag and De Bruin, 1988;
Beljaars and Holtslag, 1991; Janjić, 1994; Launiainen, 1995;

Högström, 1996) are similar to each other, but the differ-
ences among them exist due to different observational data
and/or mathematical solutions that were used in retrieving
the schemes. One commonly used scheme is Businger–Dyer
(BD) equation (Businger, 1966; Dyer, 1967). However, the
BD equation suppresses fluxes under stable conditions too
quickly and is not applicable when the Richardson num-
ber exceeds a critical value (Louis, 1979). Holtslag and De
Bruin (1988) and Beljaars and Holtslag (1991) proposed al-
ternative schemes that can be used under very stable con-
ditions. With data collected in the field program CASES-
99 (Cooperative Atmosphere-Surface Exchange Study-99)
(Poulos et al., 2002), Cheng and Brutsaert (2005, CB05
hereinafter) further provided a new scheme, and it is con-
firmed to perform better by later research (Guo and Zhang,
2007; Jiménez et al., 2012). Based on the measurements
made during experiment SHEBA in Arctic and Halley 2003
experiment in Antarctica, Grachev et al. (2007) and Sanz
Rodrigo and Anderson (2013) proposed different similar-
ity functions, respectively. Through systematic mathemati-
cal analysis, Sharan and Kumar (2011) proved that similarity
functions of CB05 and Grachev et al. (2007) were applicable
in the whole stable stratification region. However, all of these
studies are based on MOST, and application of MOST in very
stable conditions is in doubt since it assumes that turbulence
is continuous and stationary, while in very stable conditions
turbulence is weak, sporadic and patchy (Sharan and Kumar,
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Fig. 1. The relationship betweenRiB andζ from the precise results
of CB05.

Fig. 2. The relationship between log(z/z0) andζ from the precise
results of CB05. Black line indicates the cubic fit of curve kB−1

=

30 andRiB = 0.5 with least square method.

2011). Grachev et al. (2013) indicate that the applicability of
local MOST in stable conditions is limited by the inequali-
ties, when both gradient and flux Richardson numbers are be-
low their “critical values”, about 0.20–0.25. Further, MOST
predicts that mean gradients of turbulence become indepen-
dent ofz (height) in very stable conditions. Wyngaard and
Coté (1972) first referred to this limit as “z-less stratifica-
tion”. BD equations follow this prediction, but CB05 and
Grachev et al. (2007) do not. To avoid these holdbacks and
self-correlation of MOST, Sorbjan (2010) and Sorbjan and
Grachev (2010) discussed an alternative local scaling for the
stable boundary layer (referred to as gradient-based scaling)
when different universal functions were plotted versus the

Fig. 3.The relationship between log(z/z0h) (i.e., kB−1) andζ from
the precise results of CB05. Black line indicates the cubic fit of
curvez/z0 = 10 andRiB = 0.5 with least square method.

Fig. 4. Relative error after five steps of iteration with CB05 equa-
tions under certainz0 andz0h conditions.

gradient Richardson number instead of the Monin–Obukhov
stability parameter.

Another critical issue regarding the flux calculation with
MOST is the numerical iteration. Under unstable conditions,
the iteration normally converges within five steps (Fairall et
al., 1996). By taking advantage of a bulk Richardson num-
ber parameterization for an improved first guess (Grachev
and Fairall, 1997), the iteration can be reduced to three steps
(Fairall et al., 2003). In the Weather Research Forecasting
(WRF) model (Skamarock et al., 2008) MM5 similarity sur-
face module, the flux variables from the previous time step
are used to calculate the fluxes at current time step, and
such an approach can yield reasonable results (Jiménez et
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Fig. 5. Steps needed to converge into 5 % relative error with CB05
equations under certainz0 andz0h conditions.The inset shows the
whole perspective.
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Figure 6. Relative error with WRL12 equations. 2 
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Fig. 6.Relative error with WRL12 equations.

al., 2012). On the other hand, under stable conditions, the
flux calculation takes many more steps to converge and hence
is time-consuming. To avoid the iteration process, a series
of non-iterative schemes are proposed (e.g., Louis, 1979;
Garratt, 1992; Launiainen, 1995; Song, 1998; De Bruin et al.,
2000; Yang et al., 2001; Li et al., 2010), but they all fail to
cover the full range of−0.5 ≤ kB−1

≤ 30, 10≤ z/z0 ≤ 105

and−5.0 ≤ RiB ≤ 2.5, which is pointed out by Wouters et
al. (2012, WRL12 hereinafter). Here kB−1

= ln(z0/z0h). z
is the reference height; andz0 andz0h are the aerodynamic
and thermal roughness lengths, respectively.RiB is the bulk
Richardson number. Following WRL12, the condition that
RiB > 2.5 is not considered in this study, because it repre-
sents extremely stable stratification with very weak wind and
little flux exchange. To calculate fluxes under all conditions,
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Figure 7. Relative error with new equations. 2 
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Fig. 7.Relative error with new equations.
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 1 

Figure 8. Maximum (circles) and average (crosses) relative error of   for CB05 with 5 steps 2 

iteration (black lines), WRL12 (green lines) and the new scheme (red lines). Errors larger than 3 

50% are not shown. 4 
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Fig. 8. Maximum (circles) and average (crosses) relative error of
ζ for CB05 with five-step iteration (black lines), WRL12 (green
lines) and the new scheme (red lines). Errors larger than 50 % are
not shown.

and also to include the roughness sublayer effect, WRL12
proposed an updated scheme based on the iterated results
of CB05 under stable conditions. However, for a givenRiB,
WRL12 uses only one equation to cover the whole large
range ofz/z0 and kB−1, which results in biases at somez/z0
and kB−1 conditions. Therefore, to avoid the iteration pro-
cess and keep the accuracy at the same time, the objective
of this paper is to propose a group of equations that divide
the calculation into eight regions according toz0 andz0h val-
ues. To compare with WRL12, and with the fact that CB05
equations are currently widely accepted, the new equations
are also based on the iterated results of CB05 equations.
Section 2 describes the calculation results from CB05 and
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Figure 9.Similar toFigure 8 but for CM. 2 

 3 

4 

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50




C

M
 (

%
)

 

 

 

 

CB05-5steps

WRL12

NEW

Maximum error

Average error

Fig. 9.Similar to Fig. 8 but forCM .
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 1 

Figure 10.Similar toFigure 8 but for CH. 2 
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Fig. 10.Similar to Fig. 8 but forCH.

WRL12. Section 3 introduces the new equations, and Sect. 4
intercompares these schemes. Summary and conclusions are
presented in Sect. 5.

2 Revisiting CB05 and WRL12

The momentum fluxτ and sensible heat fluxH are defined
as

τ ≡ ρu2
∗, (1)

H ≡ −ρcpu∗θ∗. (2)

Hereu∗ is the friction velocity,θ∗ is the temperature scale,
ρ the air density, andcp the specific heat capacity at con-
stant pressure. Based on MOST, the friction velocityu∗ and

Table 1.The eight regions divided byz/z0 andz0/z0h values.

Region z/z0 z0/z0h

1 10∼ 160 0.607∼ 100
2 160∼ 105 0.607∼ 100
3 10∼ 80 100∼ 107

4 80∼ 105 100∼ 107

5 10∼ 40 107 ∼ 1011

6 40∼ 105 107
∼ 1011

7 10∼ 40 1011
∼ 1.07× 1013

8 40∼ 105 1011
∼ 1.07× 1013

temperature scaleθ∗ can be calculated by

u∗ = uk/

[
ln(

z

z0
)−ψm(

z

L
)+ψm(

z0

L
)+ψ∗

m(
z

L
,
z

z∗
)

]
, (3)

θ∗ =(θ − θ0)k/

[
ln(

z

z0h
)−ψh(

z

L
)+ψh(

z0h

L
)

+ψ∗

h (
z

L
,
z

z∗
)

]
. (4)

Hereu andθ are the wind speed and potential temperature at
the reference heightz. k is the von Kármán constant.z∗ is the
roughness sublayer height.θ0 is the potential temperature at
the height ofz0h.ψm andψh are the integrated stability func-
tions for momentum and heat, respectively.ψ∗

m andψ∗

h are
the correction functions accounting for roughness sublayer
effect.L is the Obukhov length defined as

L≡ u2
∗θ/(kgθ∗). (5)

ψ∗
m andψ∗

h are given by De Ridder (2010):

ψ∗

m,h(
z

L
,
z

z∗
)=

∞∫
z

φm,h(
z′

L
)

z′
e
−µm,h

z′

z∗ dz′. (6)

µm = 2.59,µh = 0.95, andφm,h are the stability functions
for momentum and heat. Following Sarkar and De Rid-
der (2010) and WRL12,z∗/z0 = 16.7 is adopted in this
study.

CB05 gives the form ofφm,h andψm,h:

φm = 1+ a
ζ + ζ b(1+ ζ b)

1−b
b

ζ + (1+ ζ b)
1
b

, (7)

φh = 1+ c
ζ + ζ d(1+ ζ d)

1−d
d

ζ + (1+ ζ d)
1
d

, (8)

ψm = −a ln(ζ + (1+ ζ b)
1
b ), (9)
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Table 2.The coefficients of Eq. (24).

Region C00 C10 C20 C01 C11 C21 C02 C12

1 RiBc1 0.3095 −0.2852 0.07955 0.03388 −0.01605 0 0 −1.079× 10−4

RiBc2 0.3219 −0.2613 0.06753 0.04838 −0.03101 0.003908 −0.00178 0.001165
RiBc3 0.3545 −0.2569 0.06609 0.05837 −0.03934 0.005643 −0.003381 0.002194
RiBc4 0.439 −0.3133 0.08619 0.0893 −0.07112 0.01403 −0.005965 0.003806
RiBc5 0.6887 −0.5375 0.1616 0.1754 −0.1564 0.03489 −0.01277 0.008101
RiBc6 1.706 −1.62 0.5231 0.5124 −0.5026 0.1239 −0.03577 0.02238

2 RiBc1 0 0.08606 −0.03048 0.09019 −0.07682 0.01693 0 0
RiBc2 0.2002 0 −0.01589 0 0.00367 0 0.005057 −0.002399
RiBc3 0.4499 0 −0.02397 0.0388 −0.01145 0 0 0

3 RiBc1 0.3063 −0.2849 0.07886 0.03104 −0.01423 −5.632× 10−4 3.684× 10−6
−2.926× 10−6

RiBc2 0.3555 −0.3002 0.07855 0.02617 −0.004769 −0.004012 −1.298× 10−5 9.907× 10−6

RiBc3 0.5064 −0.4282 0.1229 0.02138 0 −0.00441 0 0
RiBc4 1.638 −1.743 0.5813 0.04471 −0.01874 0 0 0

4 RiBc1 0.09742 0 −0.01096 0.04544 −0.03299 0.006383 0 0
RiBc2 0.1768 0 −0.01434 0.03558 −0.02059 0.003327 0 0
RiBc3 0.3636 0 −0.0224 0.04607 −0.02506 0.004152 0 0

5 RiBc1 0 0 0 0.04825 −0.01677 −0.004762 −5.212× 10−4 2.768× 10−4

RiBc2 0 0 0.08807 0.05219 −0.01822 −0.01245 −8.5× 10−4 7.516× 10−4

RiBc3 0 0 0.1219 0.0583 −0.02373 −0.01224 −0.001081 9.539× 10−4

RiBc4 0 0 0.1609 0.07789 −0.04617 −0.00736 −0.001399 0.001238
RiBc5 0.4437 0 0 0.1349 −0.1388 0.03347 −0.00119 0.001095

6 RiBc1 0 0 0 0.05594 −0.03245 0.005037 −3.654× 10−4 1.135× 10−4

RiBc2 0.1945 0 0 0.03347 −0.02116 0.002301 0 8.92× 10−5

RiBc3 0.4288 −0.1436 0.01635 0.03207 −0.01382 0.001571 1.326× 10−5
−6.424× 10−6

7 RiBc1 0 0 0 0.03681 −0.007664 −0.005619 −1.211× 10−4 0
RiBc2 0 0 0 0.03655 0 −0.009977 −2.691× 10−4 1.057× 10−4

RiBc3 0 0 0 0.03822 0 −0.01036 −3.658× 10−4 1.769× 10−4

RiBc4 0 0 0 0.0384 0 −0.009243 −3.629× 10−4 1.471× 10−4

RiBc5 0 0 0 0.05616 −0.02275 0 −5.172× 10−4 2.261× 10−4

RiBc6 0 0 0 0.1472 −0.1144 0.02796 −0.001218 5.835× 10−4

8 RiBc1 0 0 0 0.05139 −0.02991 0.004664 −2.135× 10−4 6.535× 10−5

RiBc2 0 0 0 0.04919 −0.0197 0.002011 −3.325× 10−4 7.974× 10−5

RiBc3 0.5775 −0.2236 0.03477 0.03805 −0.01617 0.00177 −2.191× 10−5 1.067× 10−5

ψh = −c ln(ζ + (1+ ζ d)
1
d ). (10)

Herea = 6.1, b = 2.5, c = 5.3, andd = 1.1. ζ ≡ z/L is the
stability parameter.

With Eqs. (3), (4), (5), and (6),φm,h andψm,h of CB05,
fluxes can be calculated through iterations: with a first guess
of ζ , u∗ and θ∗ can be calculated from Eqs. (3) and (4);
then ζ again can be derived from Eq. (5). This procedure
iterates until the results converge. The relationships ofζ ∼

RiB, ζ ∼ ln(z/z0), andζ ∼ ln(z0/z0h) from CB05 are shown
in Figs. 1, 2 and 3, respectively. Conditions withRiB =

0.05,0.2,0.5,z/z0 = 10,1000,105 and kB−1
= −0.5,15,30

are plotted. However, due to the limitation of computa-
tional time in numerical weather and climate models, the

calculation results after five steps are always taken to approx-
imate the fluxes (e.g., MYJ and MYNN surface module in
WRF model; Janjíc, 1996; Nakanishi and Niino, 2006). It is

found that with the first guess ofζ0 = RiB
[ln(z/z0)]2

ln(z/z0h)
and five

steps of iteration, the results are still far away from the pre-
cise value. Figure 4 presents the relative error1ζ for various
RiB with z/z0 = 10,1000,105 and kB−1

= −0.5,15,30. The
relative error1ζ that is calculated by Eq. (11) can exceed
70 % under certain conditions.

1ζ = (11){
|ζ(cal)−ζ(precise)|

ζ(precise)
× 100 %, for

∣∣ζ(cal)− ζ(precise)
∣∣ ≥ 0.01

0, for
∣∣ζ(cal)− ζ(precise)

∣∣< 0.01
,

www.geosci-model-dev.net/7/515/2014/ Geosci. Model Dev., 7, 515–529, 2014
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Table 3.The coefficients of Eq. (23) for region 1.

Region 1

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7

C000 −1.134 0 0 0 0 0 0
C100 31.1 86.35 −280.4 0 0 −17.32 −6.343
C200 −71.16 0 3235 0 0 8.773 7.66
C300 227.4 0 −6165 0 0 0 −0.7661
C001 −0.2094 −11.53 −10.64 0 0 0 0.0125
C101 3.293 194.9 193.8 0 1.113 0 −2.203
C201 −20.11 −975.4 −1194 −12.37 −97.56 0 0.8896
C301 14.42 1472 2161 0 159.4 0 −0.1273
C002 0.1476 −2.535 −4.603 0 0 1.919 −0.00827
C102 −0.07325 28.24 52.02 11.99 16.33 0 0.3327
C202 0.5627 −61.13 −110.7 −15.63 −25.67 0.2679 −0.04613
C003 −0.01178 −0.2378 −0.5367 −0.3157 −0.6447 −0.2892 0
C103 0.0218 0.7405 1.503 0.2948 0.9718 0−0.04968
C010 1.405 13.6 30.26 0 6.821 10.27 7.513
C110 −32.47 −316.2 −314.9 0 −57.13 0 0
C210 46.59 1067 186 −108.1 227.3 0 −4.799
C310 −38.25 −1494 0 317.8 −244 0 0.5598
C011 −0.2286 8.023 9.038 0 0.9287 −3.457 −1.612
C111 −1.097 −91.31 −87.06 −12.52 −17.88 −1.617 0
C211 −0.3394 213.7 198.6 0 34.41 0 0
C012 0 1.035 1.529 0 0.319 −0.07536 0.4666
C112 0 −5.072 −7.439 −1.025 −2.452 0 0.0605
C013 0 0.03622 0.07369 0.04669 0.08583 0.05146−0.01808
C020 0 −4.699 −10.71 −1.896 −2.195 −3.108 0
C120 10.71 97.46 122.1 28.39 22.21 7.948 2.442
C220 0 −152.4 −76.91 −14.19 −31.44 −2.985 0.1584
C021 0 −1.704 −2.035 0 −0.1355 0.8751 0
C121 0 9.069 8.248 2.214 1.976 0.3139−0.04377
C022 0 −0.09576 −0.1263 −0.01472 −0.04636 −0.05131 −0.0694
C030 −0.007485 0.4446 1.015 0.3069 0.1708 0.2598−0.1675
C130 −0.9671 −7.991 −10.96 −3.635 −1.623 −0.8513 −0.2181
C031 0.003402 0.1138 0.1426 −0.008769 0 −0.05427 0.05052

where ζ(cal) is the calculation result, andζ(precise) is the
precise result from the ultimate iteration of CB05 (when
|ζ(n+1)− ζ(n)|< 0.1 %ζ(n), ζ(n) is adopted asζ(precise), and
heren indicates the iteration step). Figure 5 shows the steps
needed to converge into 5 % relative error with CB05 equa-
tions for variousRiB with z/z0 = 10,1000,105 and kB−1

=

−0.5,15,30. It shows that whenRiB = 0.74, z/z0 = 10 and
kB−1

= 30, more than 80 steps of iteration are needed to
reduce the calculation error within 5 %. The iteration takes
more steps to converge when there is a larger aerodynamic
roughness lengthz0 and a smaller thermal roughness length
z0h, which is common over an urban surface (Sugawara and
Narita, 2009). Whenz/z0 = 10 and kB−1

= 30, the largest
error can reach 75 % after five-step iteration (Fig. 4) and 82
steps are needed for the results to converge (Fig. 5). How-
ever, whenz/z0 becomes large, for examplez/z0 = 105 (i.e.,
a representative value for a smooth sea surface), five steps are

enough for the results to be within 5 % error under all kB−1

andRiB conditions (Fig. 5).
To avoid the iteration, and based on CB05’s iteration re-

sults, WRL12 proposed the following set of equations:

ζt = − 0.316− 0.515e−L0H + 25.8e−2L0H + 4.36L−1
0H (12)

− 6.39L−2
0H + 0.834log(L0M)− 0.0267log2(L0M),

RiB,t = ζt
L∗

0H + S∗

0HβHζt

(L∗

0M + S∗

0MβMζt )2
, (13)

ζ =
−L∗

0M

S∗

0MβM
−

BC

4(S∗

0MβM)3(B2 + |Cr|)

+

B −
√
B2 + Cr+ BCr

2(B2+|Cr|)

2(S∗

0MβM)3r
, (for RiB ≤ RiB,t ), (14)
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Table 4.Similar to Table 3, but for region 2.

Region 2

Section 1 Section 2 Section 3 Section 4

C000 0 0 0 0
C100 0 0 41.53 0
C200 0 0 0 0
C300 0 0 0 0
C001 0 0 −1.616 −2.57
C101 0 −12.35 0 −2.91
C201 0 0 0 0
C301 0 0 0 0
C002 0 0 0 0.874
C102 0 0.5183 0 0.3377
C202 0 0 0 0
C003 0 0 0 −0.002092
C103 0 0 0 −0.01343
C010 0.9996 0.8247 0 7.453
C110 0 0 15.82 5.4
C210 56.57 112.5 −27.37 −1.623
C310 0 0 0 0.1999
C011 −0.1456 −0.09054 0 0
C111 0 0 0 0.4753
C211 −12.1 −2.249 0 0
C012 0 0.01653 0 −0.2047
C112 0.1303 0 0.02288 −0.02581
C013 0 0 0 0
C020 0 0 0.1062 −0.9043
C120 0.295 0.8326 −0.9992 −0.3386
C220 0 −9.554 1.56 0.04556
C021 0.005508 0 0 0.04682
C121 −0.0359 0.07022 0 −0.01924
C022 4.067× 10−4

× 10−4
−0.001333 0 0.01217

C030 0 0 0 0.03944
C130 0 0 0 0.006516
C031 0 0 0 −0.003571

ζ = ζt +D(ζt )(RiB − RiB,t ), (for RiB > RiB,t ), (15)

D(ζt )=
(L∗

0M + S∗

0MβMζt )
3

L∗

0ML
∗

0H + ζt (2S∗

0HβHL
∗

0M − S∗

0MβML0H∗)

, (16)

where

L0i = log(z/z0i), (i stands for M or H), (17)

L∗

0i = L0i +
1

λ
log(1+

λ

µi
z
z∗

)e
−µi

z
z∗ ,

(i stands for M or H), (18)

r = RiB − S∗

0HβH/(S
∗

0MβM)
2, (19)

B = S∗

0MβML
∗

0H − 2S∗

0HβHL
∗

0M, (20)

C = 4(S∗

0MβM)
2L∗

0M(S
∗

0HβHL
∗

0M − S∗

0MβML
∗

0H), (21)

S∗

0i = 1− z0i/z+ (1+
ν

µi
z
z∗

)
1

λ
log(1+

λ

µi
z
z∗

)e
−µi

z
z∗ , (22)

whereλ= 1.5, ν = 0.5,βM = 4.76+7.03z0/z+0.24z0h/z0
and βH = 5. First, RiB,t is calculated from Eqs. (12) and
(13), and thenζ can be derived from Eqs. (14) or (15). Fig-
ure 6 presents the relative error ofζ with WRL12 equations
compared with iterated results of CB05 for variousRiB with
z/z0 = 10,1000,105 and kB−1

= −0.5,15,30. It shows that
the relative error of WRL12 exceeds 20 % whenRiB is small,
and exceeds 50 % whenRiB becomes large.
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Table 5.Similar to Table 3, but for region 3.

Region 3

Section 1 Section 2 Section 3 Section 4 Section 5

C000 2.001 0 −68.85 −1.514 0
C100 −0.7876 0 756.9 0 0
C200 0 0 −1100 0 0
C300 60.42 368.9 0 19.63 0
C001 −0.1401 3.514 0 0.559 0
C101 −0.1085 −8.524 −30.13 0 0
C201 −2.065 −18.05 86.99 0 0
C301 −2.98 −4.852 5.71 −2.424 0
C002 0.01334 0.08174 0.7274 −0.002248 0
C102 0.0213 0.5791 −2.554 0 0
C202 0.1963 0.1207 −0.2169 0.1259 0
C003 −3.704× 10−4

−0.007021 0.01587 8.267× 10−4 2.413× 10−4

C103 −0.002957 0 0.003912 −0.004141 7.107× 10−5

C010 −1.442 1.207 76.25 −8.751 0
C110 1.047 −31.68 −874.1 51.96 1.905
C210 0 32.78 1636 −76.51 −1.761
C310 0 −25.65 −1040 27.69 0.3658
C011 0 −2.096 4.942 −1.349 −0.05227
C111 0 2.222 −17.32 1.297 0
C211 −1.121 0.3871 14.97 −0.09621 0
C012 0 −0.004486 −0.09096 0 0
C112 0.0273 −0.06669 0.2281 0 0
C013 0 0.001086 −0.002971 2.192× 10−4 0
C020 0.6868 −0.07632 −21.66 3.734 2.165
C120 0 14.32 232.4 −6.438 0.6139
C220 3.82 2.353 −224.1 6.284 −0.1166
C021 −0.01898 0.3396 −1.724 0.2422 −0.07307
C121 −0.1228 −0.3281 3.144 −0.2272 0.005656
C022 2.845× 10−4

−3.6× 10−4
−4.477× 10−4 0 0

C030 −0.06543 0 1.875 −0.4111 −0.3134
C130 0.1469 −1.505 −18.02 0.2556 0
C031 0.00179 −0.01529 0.1523 −0.009961 0.008105

3 Derivation of the new scheme

It can be seen from Figs. 1, 2 and 3 thatζ varies withRiB,
log(z/z0) and kB−1 with remarkable nonlinearity. Specially,
when kB−1 is large,ζ ∼ z0 relationship can hardly be ap-
proximated by a cubic equation at someRiB values (Fig. 2).
Correspondingly, whenz0 is large, ζ ∼ z0h also needs a
high power series equation to approximate (at least cubic
fit is not enough, Fig. 3). In order to reduce the complexity,
weakly and strongly stable conditions were treated separately
in previous studies (e.g., Launiainen, 1995; Li et al., 2010;
WRL12). Analogously, multiple regions are considered for
z0 and z0h for the regression ofζ = f

(
RiB,L0M,kB−1)

in this paper. In this way, the complexity of the equations
can be reduced and at the same time their accuracy can
be maintained. Although the total number of equations is
increased due to the division ofz0 and z0h, the calcula-
tion efficiency is still enhanced since the logical judgment
of the region according toz0 and z0h values in program

codes takes much less time than iterations. The critical is-
sue here is how to divide thez0 and z0h regions in a rea-
sonable way to obtain the smallest number of regions but
the highest accuracy. For this purpose, thez0 and z0h are
first divided into 13 and 14 sections according to the val-
ues of z/z0 and z0/z0h, respectively. Forz/z0, the sec-
tions are 10∼ 20, 20∼ 40, 40∼ 80, . . . , 10 240∼ 20 480,
20 480∼ 40 960 and 40 960∼ 105; for z0/z0h, the sec-
tions are 0.607∼ 1, 1∼ 10, 10∼ 100, 100∼ 103, 103

∼ 104,
. . . , 1011

∼ 1012 and 1012
∼ 1.07× 1013. z/z0 ∈ 10∼ 20 and

z0/z0h ∈ 1012
∼ 1.07×1013 is the region that needs the high-

est power series equation to approximate. This region is
firstly chosen to find a maximum critical value ofζc1 that
can make the regression

ζ = f
(
RiB,L0M,kB−1

)
= RiB

∑
CijkRiiBL

j

0M(L0H −L0M)
k (23)
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Table 6.Similar to Table 3, but for region 4.

Region 4

Section 1 Section 2 Section 3 Section 4

C000 0 −3.528 0 0
C100 0 0 0 0
C200 0 0 0 −8.306
C300 0 0 0 1.212
C001 0 −0.2511 −1.018 0
C101 0 0 0 0
C201 −6.267 −10.06 0 0
C301 0 0 0 0
C002 0 0 0 0
C102 0.09808 0.1809 0 0.0279
C202 0 0 0 0
C003 0 0 6.74× 10−5 6.853× 10−4

C103 0 0 0.001341 −9.314× 10−4

C010 0.5961 1.375 −2.404 5.253
C110 0 2.951 41.12 7.626
C210 18.49 68.09 −48.05 −0.2889
C310 34.53 0 24.94 0.06073
C011 −0.0845 0 −0.06671 −0.3959
C111 −0.5106 −1.361 0 −0.07098
C211 −0.3543 0 −0.1319 0.003821
C012 0.004555 0.003711 0.006818 0
C112 0 0 0 0
C013 −9.402× 10−5 0 −1.788× 10−4 0
C020 0.05628 −0.02359 0.5172 −0.5006
C120 0.8075 0.305 −4.023 −0.7376
C220 0 −3.765 2.074 0
C021 0 −0.001535 0 0.04853
C121 0.01631 0.07098 0 0.002956
C022 −3.8× 10−5

−2.577× 10−4 0 0
C030 −0.00189 0 −0.0192 0.01968
C130 −0.03755 0 0.125 0.025
C031 5.177× 10−5 0 0 −0.001897

be within 5 % error whenζ ∈ 0∼ ζc1. Herei, j , andk = 0, 1,
2, and 3, andi+j+k ≤ 4.Cijk denotes the coefficients from
regression. It is found thatζc1 = 0.33 meets this criterion.
Then some of thez0 and z0h regions can be merged with
each other for the sectionζ ∈ 0∼ 0.33 and a total of 8z0 −

z0h regions are left in thez0 − z0h plane. In other words, the
regression error of Eq. (23) can be kept within 5 % in any of
the eight regions whenζ ∈ 0∼ 0.33 (Table 1). Thus, for these
eight regions, it can be found that with the sections divided
by the specified critical valuesζcp (wherep is 1, 2, 3, . . . ,
it indicates the section and its maximum value depends on
thez0−z0h region), the regression error with Eq. (23) can be
kept within 5 % forζ ≤ 0.5 and 10 % orζ > 0.5. For a given
pair of z0 andz0h, the division byζcp can be transformed to
RiBcp:

RiBcp =

∑
Cmn logm(L0M)(L0H −L0M)

n. (24)

Herem, n= 0, 1, 2, andm+ n≤ 3; p is 1, 2, 3, . . . , which
indicates the section and its maximum value depends on the
z0 − z0h region. For region 1 and 7, the maximump is 6,
while for other regions it varies between 3 and 5. The coeffi-
cients for Eq. (24) are shown in Table 2. TheRiBcp then cuts
the 0–2.5RiB range into several sections: Sect. 1 is from 0
to RiBc1, Sect. 2 fromRiBc1 to RiBc2, and so on. The coeffi-
cients for Eq. (23) in each section are given in Tables 3–10.
The procedure to obtain these coefficients is summarized be-
low:

1. Divide z/z0 into 13 sections: 10∼ 20, 20∼ 40,
40∼ 80, . . . , 10 240∼ 20 480, 20 480∼ 40 960
and 40 960∼ 105; divide z0/z0h into 14 sections:
0.607∼ 1, 1∼ 10, 10∼ 100, 100∼ 103, 103

∼ 104,
. . . , 1011

∼ 1012 and 1012
∼ 1.07× 1013.

2. Use the region z/z0 ∈ 10∼ 20 and z0/z0h ∈

1012
∼ 1.07× 1013 to find ζc1.
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Table 7.Similar to Table 3, but for region 5.

Region 5

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6

C000 0 0 −207.7 −587.1 0 0
C100 0 77.11 880 2726 7.886 0
C200 −2.541 −201.2 −1550 −3759 −0.5889 0
C300 25.22 386.1 2201 1605 0 0
C001 −0.03201 −0.6831 0 −9.376 −0.4057 0
C101 0.1159 0 11.61 −4.513 0 0
C201 −0.5745 −7.571 −96.51 70.55 −0.5218 0
C301 −0.8502 −8.978 0 −58.16 0 0
C002 0.00208 0.07136 0.5093 0.1711 0.01745 0
C102 −0.001668 0 0.8873 −0.9373 −0.01349 0
C202 0.03737 0.3442 0.2868 1.132 0.01468 0
C003 −1.828× 10−5 0 −0.001909 −0.006865 0 0
C103 −3.967× 10−4

−0.003421 −0.004313 −0.001126 0 0
C010 0.4298 0 189.4 286.9 0 0
C110 −0.03339 −31.72 −543.8 −903.7 0 0
C210 0.05692 2.558 324 407.6 0 0
C310 0 0 −80.25 260.2 0 0.08919
C011 −0.0233 0 −5.403 0 0 0
C111 0 2.695 14.95 14.82 0.2908 0
C211 −0.3158 −2.449 −1.706 −26.07 0.1992 0
C012 0 −0.05044 −0.4221 0.01062 −0.003177 0
C112 0.007595 0.05465 0.164 0.2099 −0.00933 0
C013 0 −6.869× 10−5

−0.00111 9.863× 10−4 0 0
C020 0 0.3612 −53.83 −44.24 0.7321 2.053
C120 0 0 89.42 98.98 2.304 0.2534
C220 1.793 18.63 34.6 22.67 −2.456 −0.2585
C021 0.00249 0.1236 2.704 −0.01096 −0.09448 −0.0338
C121 −0.05666 −0.837 −4.573 −1.67 0.007636 0.004269
C022 0 0.008316 0.0718 −0.01056 0.002124 0
C030 0 −0.06987 4.95 2.138 0 −0.3116
C130 0.129 0.8756 −3.112 −4.604 0 0.1241
C031 0 −0.01959 −0.3287 0.054 0 0

Method: whenζ ∈ 0 ∼ ζc1, regression with Eq. (23) is
kept within 5 % error.

Result:ζc1 = 0.33 found.

3. Useζc1 = 0.33 to recombinez/z0 andz0/z0h sections
defined in step 1.

Method: variations of combinations of the 13 sections
of z/z0 and 14 sections ofz0/z0h are tested to min-
imize the numbers of regions, and regression with
Eq. (23) andζ ∈ 0 ∼ 0.33 is kept within 5 % error.

Result: eight regions found (Table 1).

4. For each of the eight regions, findζc1, ζc2, . . . ,ζcp, . . .

Method: when ζ ∈ 0∼ ζc1, or ζc1 ∼ ζc2, . . . , or
ζc(p−1)∼ ζcp, . . . , regression with Eq. (23) is kept
within 5 % error forζ ≤ 0.5 and 10 % error forζ >
0.5.

Result:ζc1, ζc2, . . . ,ζcp, . . . , for each region found.

5. Transferζc1, ζc2, . . . , ζcp, . . . , to RiBc1, RiBc2, . . . ,
RiBcp, . . . , with Eq. (24)

Method: for each region, whenRiB ∈ 0∼ RiBc1, or
RiBc1 ∼ RiBc2, . . . , or RiBc(p−1)∼ RiBcp, . . . , regres-
sion with Eq. (23) is kept within 5 % error forζ ≤ 0.5
and 10 % error forζ > 0.5.

Result: coefficients of Eqs. (23) and (24) are derived.

The calculation procedure for a given group ofz0, z0h and
RiB is the following: (1) find the region according toz0 and
z0h with Table 1; (2) find the section according to the region
andRiB with Eq. (24) and coefficients in Table 2; and (3) in
Tables 3–10 find the coefficients for the particular region and
section and use Eq. (23) to calculateζ . Figure 7 presents the
relative error ofζ with new equations compared with iterated
results of CB05 for variousRiB with z/z0 = 10,1000,105

and kB−1
= −0.5,15,30. With the new equations, the rela-

tive error is controlled to be within 10 % for the whole range.
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Table 8.Similar to Table 3, but for region 6.

Region 6

Section 1 Section 2 Section 3 Section 4

C000 0 0.4383 0 −6.744
C100 −7.864 0 −41.74 8.8
C200 0 0 177 −13.03
C300 0 0 −118.2 2.203
C001 −0.02699 0 0 −0.1139
C101 0.7414 −4.81 −4.006 −0.06103
C201 −1.114 5.094 −0.5102 0.2406
C301 0 −1.159 0 −0.04635
C002 0 0.04547 0 0.01341
C102 0 0 0.0567 −0.002749
C202 0 −0.1233 0.1868 5.316× 10−6

C003 0 −5.595× 10−4 0.002457 −1.434× 10−4

C103 1.281× 10−4 0.002459 −0.006455 0
C010 0.244 0 0 6.511
C110 1.743 0 27.45 6.369
C210 4.749 44.44 −17.37 −0.175
C310 11.28 0 −7.74 0.03419
C011 0 0 0 −0.3147
C111 −0.3093 0 0 −0.06781
C211 −0.2208 −0.6068 0.0117 −2.026× 10−4

C012 0 −0.005459 −0.01576 0.002444
C112 0.003674 0 0.02102 2.616× 10−4

C013 0 0 −1.975× 10−5
−5.149× 10−6

C020 0.04168 0 −0.1563 −0.6219
C120 0.4341 0.9983 −2.085 −0.598
C220 0.6518 −2.874 0.3443 0.002868
C021 −0.00208 −0.00152 0.03278 0.03359
C121 0 0.01501 −0.0325 0.003178
C022 2.895× 10−5 3.541× 10−4 5.167× 10−4

−1.423× 10−4

C030 0 0.006587 0.008163 0.02407
C130 −0.01307 −0.04253 0.0854 0.0188
C031 1.425× 10−5

−3.659× 10−4
−0.001602 −0.001167

Especially, whenζ ≤ 0.5, the relative error is within 5 %
since it happens more often in the real conditions (Fig. 8).

4 Comparison of the results from CB05 with five-step
iteration, WRL12 and the new scheme

The maximum and average relative error ofζ , CM andCH
calculated from CB05 with five-step iteration, WRL12 and
the new scheme are shown in Figs. 8, 9 and 10 for variousζ

with z/z0 = 10,1000,105 and kB−1
= −0.5,15,30.CM and

CH are the transfer coefficients for momentum and sensible
heat respectively, and

CM =
k2

[ln( z
z0
)−ψm(ζ )+ψm(

z0
z
ζ )+ψ∗

m(ζ,
z
z∗
)]2
, (25)

CH = (26)
k2

[ln( z
z0
)−ψm(ζ )+ψm(

z0
z
ζ )+ψ∗

m(ζ,
z
z∗
)][ln( z

z0h
)−ψh(ζ )+ψh(

z0
z
ζ )+ψ∗

h (ζ,
z
z∗
)]
.

To speed up the calculation,ψ∗

m,h(ζ,
z
z∗
) is not calculated

from Eq. (6) but rather from the non-integral equation pro-
posed by De Ridder (2010):

ψ∗

m,h(ζ,
z

z∗
)=

φm,h[(1+
ν

µz/z∗
)ζ ]

1

λ
ln(1+

λ

µz/z∗
)exp(−µz/z∗), (27)

whereλ= 1.5,µ= µm = 2.59,µ= µh = 0.95 andν = 0.5.
The relative error forCM andCH is calculated from

1CM,H =

∣∣CM,H(cal)−CM,H(precise)
∣∣

CM,H(precise)
× 100 %, (28)
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Table 9.Similar to Table 3, but for region 7.

Region 7

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7

C000 −1.412 −4.502 −104.2 542.4 178.4 0 0
C100 6.658 40.44 136.3 −1845 158.8 0 0
C200 −5.68 37.42 233.3 2157 −480.9 0 0
C300 11.9 0 0 0 0 0 0
C001 0.1285 0.3067 13.8 −3.691 −31.49 0 0
C101 −0.111 −5.444 −37.21 3.33 47.56 0 0
C201 −0.2095 2.053 10.33 −45.62 −4.153 0 0
C301 −0.3181 0 0 0 0 0 0
C002 −0.004693 0.05302 −0.1157 0.1434 0.3998 0 0
C102 0.004467 0 0.5542 0.4557 −0.8692 0 0
C202 0.01324 −0.01586 −0.2568 0.08936 0.2504 0 0
C003 6.64× 10−5 0 0 0 0 0 0
C103 −2.023× 10−4 0 0 0 0 0 0
C010 0.7122 1.663 16.56 −263.7 −37.94 0 0
C110 −4.599 −28.1 0 677.7 −147.8 20.56 0
C210 2.705 −11.02 −114.4 −644.2 144.7 −13.42 0
C310 0 0 0 0 0 3.002 0
C011 −0.04962 0.1172 −3.238 4.44 9.904 −0.5254 0.06758
C111 0.01147 1.979 7.578 −3.037 −7.914 0 0
C211 −0.1621 −0.7285 0 10.93 −2.224 0 0.003671
C012 0.001459 −0.0293 0 −0.08875 −0.1235 0 0
C112 0.003514 0.01334 −0.06568 −0.1436 0.1631 0 −6.967× 10−4

C013 −2.01× 10−5 0 0 0 0 2.282× 10−4 0
C020 0.003692 −0.4475 0 32.93 0 0 0
C120 1.299 5.193 −0.1495 −56.58 23.51 −2.349 0.6983
C220 0.6516 5.593 18.12 53.14 −2.645 0.628 −0.1455
C021 0 −0.009728 0.167 −0.951 −0.7278 0.2176 0
C121 −0.03414 −0.3375 −0.6387 0 −0.1801 0.02067 0
C022 2.84× 10−5 0.00347 0.00428 0.02119 0.008599 −0.005396 −4.282× 10−4

C030 6.293× 10−4 0 0 0 0 −0.4148 0
C130 −0.02559 0 0 0 0 0.02245 0
C031 0 0 0 0 0 0.01163 0

whereCM,H(cal) is calculated withζ(cal) from the three dif-
ferent methods, andCM,H(precise) is calculated withζ(precise)
from the ultimate iteration of CB05.

Maximum error indicates the maximum error for a particu-
lar ζ under variousz0 andz0h conditions, while average error
is calculated from

Average Error(ζ )=

30∫
−0.5

log(105)∫
log(10)

Error(ζ )dlog( z
z0
)dlog( z0

z0h
)

30∫
−0.5

log(105)∫
log(10)

dlog( z
z0
)dlog( z0

z0h
)

. (29)

Here “Error (ζ )” indicates1ζ or 1CM,H at a particularζ ,
z0 andz0h. Although Eq. (29) presents the form of continu-
ous integral, it is actually calculated discretely with interval
0.035 for log( z

z0
) and 0.1 for log( z0

z0h
).

The results indicate that the maximum1ζ exceeds 50 %
when using CB05 with five-step iteration or WRL12, while

the averaged1ζ for the two methods both exceeds 15 %. On
the contrary, the maximum1ζ of the new scheme is always
smaller than 5 % (whenζ ≤ 0.5) and 10 % (whenζ > 0.5),
and the average1ζ is always smaller than 2 % in the whole
range. The maximum1CM from CB05 with five-step itera-
tion (WRL12) exceeds 50 % (40 %), and average1CM ex-
ceeds 30 % (8 %). The maximum1CH from CB05 with five-
step iteration (WRL12) exceeds 50 % (24 %), and average
1CH exceeds 18 % (6 %). Comparatively, the new scheme
controls the maximum1CM(1CH) to be within 12 % (9 %)
and the average1CM(1CH)within 1 % (1 %). Table 11 sum-
marizes the characteristics of the four methods.

5 Summary and conclusions

Although CB05 provides a way to calculate surface fluxes
under stable conditions, its practical usage is confined due
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Table 10.Similar to Table 3, but for region 8.

Region 8

Section 1 Section 2 Section 3 Section 4

C000 −3.13 −49.55 0 0
C100 5.26 97.14 0 0
C200 −29.85 352.5 10.72 0
C300 57.04 −573.4 0 0
C001 0.2176 2.052 0 0
C101 −0.00898 −21.41 0 0
C201 −1.756 13.12 0 0
C301 −1.663 20.82 −1.354 0
C002 −0.007271 0.1357 −0.06227 0
C102 0.0304 0.238 0 −0.01477
C202 0.05349 −0.7316 0.08799 −0.001292
C003 8.978× 10−5

−0.003367 0.002359 0
C103 −6.252× 10−4 0.006023 −0.002387 3.921× 10−4

C010 0.9846 14.57 −0.2492 0
C110 −1.011 0 19.79 0
C210 14.45 0 −18.86 −0.8522
C310 4.433 −54.39 9.463 0.1065
C011 −0.05083 −0.8911 0 0
C111 −0.2604 1.478 0 0.374
C211 −0.2977 2.13 −0.3291 0.004036
C012 0.001361 −9.36× 10−4 0 0.002528
C112 0.00375 −0.04272 0.01369 −0.006853
C013 −1.464× 10−5 1.939× 10−4

−2.41× 10−4
−8.747× 10−5

C020 −0.004659 −1.165 0 0
C120 0.6393 0 −1.689 −0.4307
C220 0 −3.616 1.036 0.01469
C021 0 0.06747 0.00194 0.001642
C121 0 0.01581 −0.02897 0
C022 0 −3.126× 10−4 8.316× 10−4 0
C030 8.014× 10−4 0.03485 0.01694 0
C130 −0.01934 0 0.06734 0.01348
C031 0 −0.001713 −0.001447 0

to the involved iteration process. It has been shown that it-
eration with five steps will result in large calculation errors,
especially whenz/z0 is small and kB−1 is large, which is
common over an urban surface. WRL12 proposed a way
to avoid the iteration, but it introduces large error in the
calculation procedure so that its calculation accuracy needs
to be improved. Through dividing thez0 − z0h plane into
eight regions, the new scheme develops a group of equa-
tions with higher accuracy. The calculation error ofζ =

f
(
RiB,L0M,kB−1) is always controlled to be within 5 %

(when ζ ≤ 0.5) and 10 % (whenζ > 0.5). The calculation
procedure is also simple; for a smallRiB (i.e.,RiB < RiBc1),
only one time computation of Eqs. (23) and (24) will suf-
fice. The maximum computation step is six times for Eq. (24)
and one time for Eq. (23) when it is in region 1 or 7 and at
the same timeRiB is large (i.e.,RiB > RiBc6). Note that the
Eq. (24) has only a maximum of eight elements and a min-
imum of four elements, so the calculation is still efficient.

The new equations involve a large number of parameters,
which increase the complexity of coding. However, the ef-
fort of coding the new scheme is minimal as compared to
its potential gain, which includes the accuracy of the new
scheme and the avoidance of iterations. Besides, a compro-
mise can be made between accuracy and complexity. For
models that are not interested in high kB−1 values, region
1 and 2 (i.e., 10≤ z/z0 ≤ 105 and−0.607≤ z0/z0h ≤ 100)
have provided reasonable coverage (see Garratt, 1992; Lau-
niainen, 1995), and the other six regions can be ignored.
For example, in WRF model MM5 surface module,z0h =

z0 is assumed during the calculation of frictional velocity
(Jiménez et al., 2012). While for models that include ur-
ban surface effects, it is better to keep all the regions. Fur-
ther, CB05 probably is not the final solution for the surface
flux calculation under stable stratification. The method used
to derive non-iterative equations presented here can be used
in future studies to transfer the new iterative algorithm to
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Table 11.Summarization of the characteristics of the four methods. Calculation time is the time each method needs for computingζ from
RiB, z0 and z0h in the range 0< RiB ≤ 2.5, 10≤ z/z0 ≤ 105 and−0.5 ≤ log(z0/z0h)≤ 30 with the interval of 0.01 forRiB, 0.035 for
log(z/z0) and 0.1 for log(z0/z0h). The calculation is performed on a desktop computer with an Intel Core i5 processor, and note that the
calculation time can vary with different computer.

Calculation Maximum Average
Method time 1ζ 1ζ Characteristics and suggestion

CB05 with 6260 s N/A N/A Current optimal method, but with high
ultimate computational cost. Use this method when
iteration computing power is not an issue.

CB05 with 3960 s exceeds 50% exceeds 15% Lower computational cost, but adds more
five-step uncertainty in the calculation procedure
iteration of CB05.

WRL12 261 s exceeds 50% exceeds 15% Much lower computational cost, but adds
more uncertainty in the calculation procedure
of CB05.

New equations 549 s smaller than smaller Low computational cost, error in the
5% (when than 2% calculation procedure of CB05 is
ζ ≤ 0.5) and controlled within 10%. Use this method to
10% (when have an optimal compromise between
ζ > 0.5) accuracy and computational cost.

non-iterative equations. Overall, the new equations cover the
full range of−0.5 ≤ kB−1

≤ 30, 10≤ z/z0 ≤ 105 and stable
conditions (i.e., 0< RiB ≤ 2.5), and maintain high accuracy
and efficiency. It is expected that its usage in climate and
weather forecasting models can lead to better performance
in surface flux calculation under stable conditions, especially
over urban surfaces.
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