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Multiobjective weapon-target assignment is a type of NP-complete problem, and the reasonable assignment of weapons is beneficial
to attack and defense. In order to simulate a real battlefield environment, we introduce a new objective—the value of fighter combat
on the basis of the original two-objective model. The new three-objective model includes maximizing the expected damage of the
enemy, minimizing the cost of missiles, and maximizing the value of fighter combat. To solve the problem with complex
constraints, an improved nondominated sorting algorithm III is proposed in this paper. In the proposed algorithm, a series of
reference points with good performances in convergence and distribution are continuously generated according to the current
population to guide the evolution; otherwise, useless reference points are eliminated. Moreover, an online operator selection
mechanism is incorporated into the NSGA-III framework to autonomously select the most suitable operator while solving the
problem. Finally, the proposed algorithm is applied to a typical instance and compared with other algorithms to verify its
feasibility and effectiveness. Simulation results show that the proposed algorithm is successfully applied to the multiobjective
weapon-target assignment problem, which effectively improves the performance of the traditional NSGA-III and can produce
better solutions than the two multiobjective optimization algorithms NSGA-II and MPACO.

1. Introduction

With the rapid development of military air combat, the
weapon-target assignment (WTA) problem has attracted
worldwide attention [1]. The WTA problem is a classic
scheduling problem that aims to assign weapons to maximize
military effectiveness and meet all constraints. So, it is impor-
tant to find a proper assignment of weapons to targets.

The study of the WTA problem can be traced back to the
1950s and 1960s when Manne [2] and Day [3] built the
model of the WTA problem. From the perspective of the
quantity of objective functions, Hosein and Athans [4] clas-
sify the WTA problem into two classes: the single-objective
weapon-target assignment problem and the multiple-
objective weapon-target assignment (MWTA) problem.
When taking the time factor into account, Galati and Simaan
[5] divide the WTA problem into two categories: dynamic

weapon-target assignment problem and static weapon-
target assignment problem. The current research status of
various WTA problems are summarized in Table 1.

In contrast to the single-objective weapon-target assign-
ment problem, MWTA can take different criterions into con-
sideration that are more in line with real combat decision
making. In this paper, we mainly focus on the static multiob-
jective weapon-target assignment (SMWTA) problem, which
aims at finding proper static assignments.

The combination of simulation and optimization algo-
rithms to solve the SMWTA problem is not new. At present,
a number of studies address this problem. In Liu et al. [16],
an improved multiobjective particle swarm optimization
(MOPSO) was used to solve the SMWTA problem with
two objective functions: maximum enemy damage probabil-
ity and minimum total firepower unit. The specific example
they used contains only 7 platforms and 10 targets.
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Zhang et al. [17] proposed a decomposition-based evolu-
tionary multiobjective optimization method based on the
MOEA/D algorithm. Considering the constraints of attack
resource and damage probability, a mathematic model on
weapon-target assignment was formulated. Both the pro-
posed repair method and appropriate decomposition
approaches can effectively improve the performance of the
algorithm. But the algorithm has not been tested on a large-
scale WTA problem, and it has a low convergence speed.

In the work of Li et al. [19], a new optimization approach
for the MWTA problem was developed based on the combi-
nation of two types of multiobjective optimizers: NSGA-II
(domination-based) and MOEA/D (decomposition-based)
enhanced with an adaptive mechanism. Then, a comparison
study among the proposed algorithms, NSGA-II andMOEA/
D, on solving instances of a three-scale MWTA problem was
performed, and four performance metrics were used to eval-
uate each algorithm. They only applied the proposed adap-
tive mechanism to the MWTA problem, but they did not
verify the behavior of the proposed adaptive mechanism on
standard problems. In addition, they also considered the next
step to solve the MWTA problem with an improved version
of NSGA-II (called NSGA-III [24]).

In our previous work [23], we proposed a modified
Pareto ant colony optimization (MPACO) algorithm to solve
the bi-objective weapon-target assignment (BOWTA) prob-
lem and introduce the pilot operation factor into a WTA
mathematic model. The proposed algorithm and two multi-
objective optimization algorithms NSGA-II and SPEA-II
were applied to solve different scales of instances. Simulation
results show that the MPACO algorithm is successfully
applied in the field of WTA, which improves the perfor-
mance of the traditional Pareto ant colony optimization

(P-ACO) algorithm effectively and produces better solutions
than the other two algorithms.

Although the above methods have remarkable effects on
solving the SMWTA problem, all of them considered two
objectives, maximizing the expected damage of the enemy
and minimizing the cost of missiles, without considering
the attack power. Due to the fact that fighters cannot destroy
the targets at once, we put forward the value of fighter com-
bat to evaluate the ability of sustained operational capability.
On the basis of the original double-objective model, we pro-
pose the three-objective model, which is closer to real air
combat. The new three-objective model includes maximizing
the expected damage of the enemy, minimizing the cost of
missiles, and maximizing the value of fighter combat. As
the number of objectives is increased from two to three, the
performance of evolutionary multiobjective algorithms
(EMOAs) may deteriorate. They face some difficulties as fol-
lows: (i) A large fraction of the population is nondominated.
(ii) The evaluation of diversity is computationally complex.
(iii) The recombination operation may be inefficient [25].
Recently, EMOAs like the nondominated sorting genetic
algorithm III (NSGA-III) [26] have been proposed to deal
with these difficulties and scale with the number of objectives.

In 2014, Deb and Jain [24, 26] proposed a reference point-
based many-objective evolutionary algorithm following the
NSGA-II framework (namely, NSGA-III). The basic frame-
work of the NSGA-III remains similar to the NSGA-II algo-
rithm, but the NSGA-III improves the ability to solve the
multiobjective optimization problem (MOP) by changing
the selection mechanism of its predecessor. Namely, the main
difference is the substitution of crowding distance for a selec-
tion based on well-distributed and adaptive reference points.
These reference points help maintain the diversity of

Table 1: Summary of variant metaheuristic algorithms and implementation of various WTA [6].

Researchers Year Metaheuristic algorithm Implementation (WTA)

Lee et al. [6] 2002 IS +ACO Static single objective

Lee et al. [7] 2002 GA Static single objective

Lee et al. [8] 2003 GA+ACO Static single objective

Galati and Simaan [5] 2007 Tabu Dynamic single objective

Lee [9] 2010 VLSN Static single objective

Xin et al. [10] 2010 VP+ tabu Dynamic single objective

Li and Dong [11] 2010 DPSO+ SA Dynamic single objective

Chen et al. [12] 2010 SA Static single objective

Xin et al. [13] 2011 Rule-based heuristic Dynamic multiobjective

Fei et al. [14] 2012 Auction algorithm Static single objective

Bogdanowicz et al. [15] 2013 GA Static single objective

Liu et al. [16] 2013 MOPSO Static multiobjective

Zhang et al. [17] 2014 MOEA/D Static multiobjective

Ahner and Parson [18] 2015 Dynamic programming Dynamic multiobjective

Li et al. [19] 2015 NSGA-II, MOEA/D Static multiobjective

Dirik et al. [20] 2015 MILP Dynamic multiobjective

Hongtao and Fengju [21] 2016 CSA Static single objective

Li et al. [22] 2016 MDE Dynamic multiobjective

Li et al. [23] 2017 MPACO Static multiobjective
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population members and also allow the NSGA-III to per-
form well on MOP with differently scaled objective values.
This is an advantage of the NSGA-III and another reason
why we choose the NSGA-III algorithm to solve the
SMWTA problem.

The NSGA-III has been successfully applied to real-world
engineering problems [27, 28] and has several proposed var-
iants, such as combining different variation operators [29],
solving monoobjective problems [30], and integrating alter-
native domination schemes [31]. As far as we know, none
of the previous related work has studied the MWTA problem
of three objective functions and applied the NSGA-III algo-
rithm to solve the MTWA problem.

In this paper, we have proposed an improved NSGA-III
(I-NSGA-III) for solving the SMWTA problem. The pro-
posed algorithm is used to seek better Pareto-optimal
solutions between maximizing the expected damage, mini-
mizing the cost, and maximizing the value of fighter combat.
Based on the framework of the original NSGA-III, the pro-
posed algorithm is devised with several attractive features to
enhance the optimization performance, including an
improvement strategy of reference points and an online
operator selection mechanism.

Improvement Strategy of Reference Points. We can see
from studies [24, 26] that reference points of the original
NSGA-III are uniformly distributed on a hyperplane to
guide solutions to converge. The locations of these refer-
ence points are predefined, but the true Pareto front of
the SMWTA problem is unknown beforehand. So the mis-
matches between the reference points and the true Pareto
front may degrade the search ability of the algorithms. If
appropriate reference points can be continuously generated
during the evolution according to information provided by
the current population, it will be possible to achieve a
solution set with good performances. Therefore, we add
the improvement strategy of reference points to the origi-
nal NSGA-III algorithm, that is, continuously generating
good reference points and eliminating useless reference
points.

Online Operator Selection Mechanism. Crossover and
mutation operators used in the evolutionary process of
optimization with NSGA-III can generate offspring solu-
tions to update the population and seriously affect search
capability. The task of choosing the right operators
depends on experience and knowledge about the problem.
The online operator selection mechanism proposed in
this paper aims to automatically select operators from a
pool with simulated binary crossover, DE/rand/1, and
nonlinear differential evolution crossover. Different cross-
over operators can be selected online according to the
information of generations. Another benefit of this mech-
anism is that the operator choice can adapt to the search
landscape and improve the quality of Pareto-optimal
solutions.

The rest of this paper is organized as follows. Section 2
reviews the related work. In Section 3, a new mathematical
model of the SMWTA problem and assumption descriptions
are presented. Section 4 provides the introduction of the
NSGA-III algorithm and presents the proposed I-NSGA-III

for solving the WTA problem. Detailed improvements of
the proposed algorithm are also introduced in Section 4. Sec-
tion 5 is divided into two subsections as follows: (i) In order
to verify the proposed algorithm, five state-of-the-art algo-
rithms are considered for comparison studies. (ii) The pro-
posed algorithm and others, like NSGA-III [9], MPACO
[7], and NSGA-II [16], are tested on the SMWTA problem.
Section 6 concludes the paper and presents a direction for
future work.

2. Related Work

Many realistic problems contain several (two or more)
conflicting objectives that are to be minimized or maxi-
mized simultaneously [32]. Most single-objective optimiza-
tion problems can find only one solution (others may lack
the appropriate conditions), but multiobjective optimiza-
tion problems (MOPs) can find a set of Pareto solutions
that consider all the objective functions and constraints.
Generally, multiobjective optimization can be presented
as follows [33]:

y = f x = f1 x , f2 x ,… , f m x ,

e x = e1 x , e2 x ,… , ek x ≥ 0,

x = x1, x2,… , xn ∈ X,

y = y1, y2,… , ym ∈ Y ,

1

where X denotes the space of decision variables and Y
denotes the space of objective functions.

There have been various studies on multiobjective evolu-
tionary optimization besides NSGA-III, such as a set-based
genetic algorithm for interval many-objective optimization
problems, set-based many-objective optimization guided by
a preferred region, a many-objective evolutionary algorithm
using a one-by-one selection strategy, and many-objective
evolutionary optimization based on reference points. The
review on the related work will be further enriched if these
studies are included.

2.1. Set-Based Evolutionary Optimization. The goal of a
multiobjective evolutionary algorithm (MOEA) is to seek
a Pareto solution set which is well converged, evenly dis-
tributed, and well extended. If a set of solutions and its
performance indicators are taken as the decision variable
and objectives of a new optimization problem, respectively,
it is more likely that a Pareto-optimal set that satisfies the
performance indicators will be obtained. Based on this
idea, a many-objective optimization (MaOP) can be trans-
formed into an MOP with two or three objectives, and
then a series of set-based evolutionary operators are
employed to solve the transformed MOP [34]. Compared
with the traditional MOEAs, set-based MOEAs have two
advantages: (i) the new objectives are used to measure a
solution set and (ii) each individual of the set-based evolu-
tionary optimization is a solution set consisting of several
solutions of the original problem.
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Researchers have carried out studies on set-based
MOEAs, including the frameworks, the methods of trans-
forming objectives, the approaches for comparing set-based
individuals, and so on The first set-based MOEA was pro-
posed by Bader et al. [35]. In their work, solutions in a
population are firstly divided into a number of solution
sets of the same size, and then the hypervolume indicator
is adopted to assess the performance of those sets. In the
method proposed by Zitzler et al. [36], not only is the
preference relation between a pair of set-based individuals
defined, but the representation of preferences, the design
of the algorithm, and the performance evaluation are also
incorporated into a framework. Bader et al. [35] presented
a set-based Pareto dominance relation and designed a fit-
ness function reflecting the decision maker’s preference
to effectively solve MaOPs. A comparison of results with
traditional MOEAs shows that the proposed method is
effective. Besides, Gong et al. [37] also presented a set-
based genetic algorithm for interval MaOPs based on
hypervolume and imprecision.

2.2. Local Search-Based Evolutionary Optimization. Ishibuchi
and Murata [38] firstly proposed the study combining
MOEA and local search method, IM-MOGLS for short. In
their work, a weighted sum approach is used to combine all
objectives into one objective. After generating offspring by
genetic operators, a local search is conducted starting from
each new individual, optimizing the combined objectives.
Based on IM-MOGLS, Ishibuchi et al. [39] add more selectiv-
ity to its starting points. Ishibuchi and Narukawa [40] pro-
posed a hybrid of NSGA-II and local search. Knowles and
Corne [41] combined local search with PAES. The use of
gradients appeared in the Pareto descent method (PDM)
proposed by Harada et al. in [42] and in the work of Bos-
man [43]. One of the few applications of achievement sca-
larization functions (ASFs) in MOEA area was done by
Sindhya et al. [44]. MOEA was combined with a rough
set-based local search in the work of Santana-Quintero
et al. [45]. A genetic local search algorithm for multiobjec-
tive combinatorial optimization (MOCO) was proposed by
Jaszkiewicz [46]. Firstly, Pareto ranking and a utility func-
tion are applied to obtain the best solutions. Secondly,
pairs of solutions are selected randomly to undergo
recombination. Finally, local search is applied to offspring
pairs. In their study, MOCO is used to successfully solve
the traveling salesperson problem (TSP).

The above studies combine an MOEA with classical
local search methods; however, none of them applies the
local search method to theoretically identify poor solutions
in a population. Abouhawwash et al. [47] proposed a new
hybrid MOEA procedure that first identified poorly con-
verged nondominated solutions and then improved it by
using an ASF-based local search operator. They encour-
aged researchers to pay more attention to the Karush
Kuhn Tucker proximity metric (KKTPM) and other theo-
retical optimality properties of solutions in arriving at bet-
ter multiobjective optimization algorithms.

2.3. Reference Point-Based Evolutionary Optimization. Exist-
ing reference point-based approaches usually adopt only one
reference point to represent the decision maker’s ideal solu-
tion. Wierzbicki [48] firstly proposed a reference point
approach in which the goal is to achieve a Pareto solution
closest to a supplied reference point of aspiration level based
on solving an achievement scalarization problem. Deb and
Sundar [32] introduced the decision maker’s preference to
find a preferred set of solutions near the reference point.
Decomposition strategies have also been incorporated into
reference point approaches to find preferred regions in the
method proposed by Mohammadi et al. [49].

Up to date, there is only a few researches on achieving
the whole Pareto-optimal solution set by employing multi-
ple reference points. Figueira et al. [50] proposed a parallel
multiple reference point approach for MOPs. In their
work, the reference points are generated by estimating
the bounds of the Pareto front, and solutions near each
reference point can be obtained in parallel. This priori
method is very convenient; however, the later evolution
process increases the computational complexity. Wang
et al. [51] proposed a preference-inspired coevolutionary
approach. Although solutions and reference points are
optimized simultaneously during the evolution process,
the fitness value of an individual is calculated by the tradi-
tional Pareto dominance. In the work done by Deb and
Jain [24], a hyperplane covering the whole objective space
is obtained according to the current population, then a set
of well-distributed reference points are generated on the
hyperplane. However, the Pareto fronts of most practical
problems are not uniformly distributed in the whole objec-
tive space, and it is necessary to adopt reference points
which are adaptive to various problems. Liu et al. [52]
proposed a reference point-based evolutionary algorithm
(RPEA) method. However, the value of δ which seriously
affects the performance of the algorithm is a constant dur-
ing evolution. In addition, the Tchebychev approach is
only adopted in this study, and it may not be appropriate
to all kinds of problems.

2.4. Indicator-Based Evolutionary Optimization. Compared
with the above approaches, indicator-based evolutionary
algorithms (IBEAs) [53] adopt a single indicator which
accounts for both convergence and distribution perfor-
mances of a solution set. Because solutions can be selected
one by one based on the performance indicator, the algo-
rithm is also called one-by-one selection evolutionary opti-
mization. The hypervolume is usually adopted as the
indicator in IBEAs. However, the computational complexity
for calculating hypervolume increases exponentially as the
number of objectives increases. So it is hard to be used to
solve MaOPs. To address this issue, Bader and Zitzler
[54] proposed an improved hypervolume-based algor-
ithm—HypE. In their work, Monte Carlo simulations are
applied to estimate the hypervolume. This method can
save computational resources while ensuring the accuracy
of the estimated hypervolume. In recent years, some algo-
rithms [55, 56] are also proposed to enhance the compu-
tational efficiency of IBEAs for solving MaOPs.
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Motivated by simultaneously measuring the distance of
the solutions to the Pareto-optimal front, and maintaining
a sufficient distance between each other, Liu et al. [57]
proposed a many-objective evolutionary algorithm using
a one-by-one selection strategy, 1by1EA for short. How-
ever, there are two issues in this algorithm. (i) In 1by1EA,
the contour lines formed by the convergence indicator
have a similar shape to that of the Pareto-optimal front
of an optimization problem. However, the shape of the
Pareto-optimal front of a practical optimization problem
is frequently unknown beforehand. (ii) The algorithm does
not include a mechanism that can adaptively choose an
appropriate convergence indicator or use an ensemble of
multiple convergence indicators during the evolution.
Based on the above two issues, we have improved the
original NSGA-III.

3. Problem Formulation

The WTA formation can be described as finding a proper
assignment of weapon units to target units as illustrated in
Figure 1. Some formulation of the problem, including the
assumptions and the new three-objective mathematical
model, are introduced in this section.

3.1. Assumption Description. In this research, to establish a
reasonable WTA mathematical model, the following
assumptions can be defined:

Assumption 1. We assume that the mathematical model is
composed of F fighters, M missiles, and T targets and the
opposing groups are not necessarily equal in quantity. (Each
fighter is equivalent to one platform, which possess different
kinds and quantities of missiles).

Assumption 2. Each fighter can use different missiles to attack
one target. (Each missile can only attack one target).

Assumption 3. The distributed unit total of each type of mis-
sile cannot exceed the number of assigned missile unit
resources in a military air operation.

Assumption 4.We assume that the probability of a kill, which
is labeled as qij, between the missile (ith unit of M) and the

unit being attacked (jth unit of T) is provided.

Assumption 5. If the target is within the work area, a missile
can be assigned effectively. If not, the missile is not.

3.2. Mathematical Model. Multiobjective WTA optimization
is used to seek a balance among the maximum expected dam-
age, minimum missile consumption, and maximum combat
value. Thus, definitions and constraints related to the optimi-
zation model are shown as follows.

Definition 1. One introduces a new objective—the value
fighters engage in combat on the basis of the bi-objective
WTA model that one established in the literature [23]. The
multiobjective model of WTA is to maximize the total

effectiveness of attack, minimize the cost of missiles, and
maximize the value of fighter combat. The mathematical
functions of the model are shown as

f1 =max 〠
n

j=1

1 − ∏
m

i=1

1 − ρkqij
xi j

,

f2 =min 〠
m

i=1

〠
n

j=1

cixij,

f3 =max 〠
s

k=1

1 −
1

Ak

wk ,

f =min
1

f1
, f2,

1

f3

2

Definition 2. Ak represents the number of missiles carried by
the kth fighter, and wk represents the number of missiles that
have been launched on the kth fighter.

Definition 3. qij ∈ 0, 1 represents the kill probability of each

M i = 1, 2,… ,m missile attacking different T j = 1, 2,… ,
n targets.

Definition 4. The decision table X = xij M×T
can be described

as Table 2, where xij is a Boolean value and represents
whether i missile is assigned to j target. The relationship
between the Boolean value and missile allocation is shown
in Table 3.

Definition 5. The constant ci represents the cost of ith missile
in this paper.

Definition 6. Based on the real battlefield, we assume that the
number of missiles per fighter is not more than 4.

Targets

Missiles

Fighters

Figure 1: Illustration of the WTA problem.
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Definition 7. ρk is the pilot operation factor proposed by our
previous article [23] ρk ∈ 0, 1 .

Constraint. Three constraints that the above function vari-
ables must satisfy are shown in Table 4.

4. Nondominated Sorting Genetic Algorithm III

4.1. Introduction of NSGA-III. The basic framework of the
NSGA-III algorithm remains similar to the NSGA-II algo-
rithm with significant changes in its mechanism [24]. But
unlike in NSGA-II, a series of reference points are introduced
to improve the diversity and convergence of NSGA-III. The
proposed improved NSGA-III is based on the structure of
NSGA-III; hence, we give a description of NSGA-III here.

The algorithm starts with an initial population (feasible
solutions) of size N and a series of widely distributed G

-dimensional reference points. p represents the division and

is given by the user. Das and Dennis’s systematic approach
[58] is used to place reference points on the normalized
hyperplane having an intercept of one on each axis. The total
number of reference points (H) in anM-objective problem is
given by

H =
G + p − 1

p
3

The NSGA-III uses a set of reference directions to main-
tain diversity among solutions. A reference direction is a ray
starting at the origin point and passing through a reference
point, as illustrated in Figure 2. The population size N is cho-
sen to be the smallest multiple of four greater than H, with
the idea that for every reference direction, one population
member is expected to be found [30].

Let us suppose the parent population at the generation t
is Pt (of size N). The offspring population Qt having N mem-
bers is obtained by recombination and mutation of Pt . Ct is
the combination of parent and offspring population (of size
2N). To preserve elite members, Ct is sorted to different non-
domination levels (L1, L2,… , Ll). Thereafter, individuals of
each nondomination level are selected to construct a new
population St , starting from the first nondomination level
L1, until the size of St ≥N (the first time larger than N). Sup-
pose that the last level included is the lth level. In most situ-
ations, individuals of the lth level are only sorted partially by
the diversity maintenance operator. This is achieved by com-
puting crowding distance for the lth level in NSGA-II. But
the NSGA-III replaces it with reference direction-based nich-
ing. Before the above operation, objective values are normal-
ized by formulas (4), (5), and (6).

f g′ x = f g x − zmin
g , 4

ASF x,w =
maxGg=1 f g′ x

wg

, 5

f ng x =
f g x

ag − zmin
g

, 6

where the ideal point of the population St is determined by
identifying the minimum value (zmin

g ), for each objective

function g = 1, 2,… ,G and by constructing the ideal point
z = zmin

1 , zmin
2 ,… , zmin

G . f g′ x denotes the translated objec-

tive functions x ∈ St . ASF x,w denotes the extreme point
value in each objective axis, and wg is the weight vector of
each objective (when wg = 0, it will be replaced by a small
number 10−6). f ng x denotes the normalized objective func-

tions, and ag represents the intercept of the gth objective
axis.

After the normalizing operation, the original reference
points calculated by formulas (4) and (6) lie on this normal-
ized hyperplane. In order to associate each population mem-
ber with a reference point, the shortest perpendicular
distance between each individual of St and each reference line
is calculated.

Finally, a niche-preservation strategy is employed to
select individuals from lth level that are associated with each
reference point. αh represents the number of population
members from Pt+1 = St/Ll connected to the hth reference
point. The specific niche-preservation strategy is shown as
follows:

(1) The reference point set Jmin = h arg minhαh with
the min αh is identified. When Jmin > 1, one h ∈
Jmin is selected at random.

(2) According to the value of αh, two cases are discussed.

(i) αh = 0

(a) If one or more members in front the lth level
are associated with the hth reference point,

Table 2: The decision table of WTA.

T1 T2 T3 ⋯ Tn

M1 x11 x12 x13 ⋯ x1n

M2 x21 x22 x23 ⋯ x2n

M3 x31 x32 x33 ⋯ x3n

M4 x41 x42 x43 ⋯ x4n

M5 x51 x52 x53 ⋯ x5n

M6 x61 x62 x63 ⋯ x6n

⋮ ⋮ ⋮ ⋮ xij ⋮

Mm xl1 xl2 xl3 ⋯ xmn

Table 3: The relationship between Boolean value and missile
allocation.

Missile allocation Boolean value

i missile of k fighter unit is assigned to target j xij = 1

i missile of k fighter unit is not assigned to target j xij = 0
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the one having the shortest perpendicular
distance from the hth reference line is added
to Pt+1. The count αh will also add one.

(b) If one member in the front lth level is associ-
ated with the hth reference point, the hth ref-
erence point will be ignored for the current
generation.

(ii) αh ≥ 1

A randomly chosen member from the front lth level that
is associated with the hth reference point is added to Pt+1, and
the count αh is then incremented by one.

After counts are updated, the above procedure will be
repeated for individuals to fill the entire Pt+1.

The flow chart of the NSGA-III algorithm is shown
in Figure 3.

4.2. Improvement Strategy of Reference Points. In this sec-
tion, an improvement strategy of reference points is
proposed. The strategy mainly includes two parts: (i) gen-
eration of new reference points and (ii) elimination of
useless reference points.

NSGA-III requires a set of reference points to be supplied
before the algorithm can be applied [26]. If the user does not
put forward specific requirements for the Pareto-optimal
front, a structured set of points created by Das and Dennis’s

approach [58] is located on a normalized hyperplane. NSGA-
III was originally designed to find Pareto-optimal points that
are closer to each of these reference points, and the positions
of the structured reference points are predefined at the begin-
ning. However, the true Pareto front of a practical optimiza-
tion problem (like the MWTA problem) is usually unknown
beforehand, so the preset reference points may not reflect the
development trend of the true Pareto-optimal front. In this
study, a set of reference points with good performances in
convergence and distribution are created by making full use
of information provided by the current population. Due to
the increase of the new reference points, the total number
of reference points increases, and the computational com-
plexity of the algorithm increases simultaneously. In order
to keep the convergence speed of the algorithm, we propose
the elimination mechanism of the reference point.

4.2.1. Generation of New Reference Points.We can learn from
the above NSGA-III algorithm that the Pt+1 population is
created and the niche count α for different supplied reference
points is updated after the niche operation. All reference
points are expected to be useful in finding nondominated
fronts (α = 1 for every reference point). If the hth reference
point is not associated with any population member, the
niche count of the hth reference point (αh) is zero. If the
NSGA-III will never find an associated population member
for the hth reference point, the hth reference point is con-
sidered useless. It is then better to replace the hth refer-
ence point with a new reference point that correctly
reflects the direction of the Pareto-optimal front. However,
we do not know if the hth reference point is eventually
useful in advance. Under this circumstance, we simply
add a set of reference points by adopting the formulas
(7) and (8). The scale of new reference points equals the
number of α = 0 reference points.

hgnew =min
x∈Pt

f g x + εg, 7

εg = δ fmax
g − fmin

g , 8

where δ is a random number that belongs to 0, 1 and
hgnew = h1new, h

2
new,… , hGnew denotes a new reference point

for the objective g. fmax
g x and fmin

g x are the maximal

and minimal values, respectively, of the gth objective.
The pseudo code can be demonstrated as follows:
In many cases, the total number of reference points

will be greatly increased by the above operations, and
many of the new reference points eventually become

Table 4: Detailed information about the constraints.

Constraint Explanation Formula

Missile assignment constraint At most, one missile is assigned to one target 〠m

i=1
xij ≥ 1 ∀j = 1, 2,… , n

Quantity assignment constraint One missile can attack only one target 〠n

j=1
xij ≤ 1 ∀i = 1, 2,… ,m

Parameter constraint The total allocation does not exceed the total number of missiles 〠m

i=1
〠n

j=1
xij ≤m

f2

f1Origin point

Reference point 3

Reference point 2

Reference point 1

Figure 2: Three reference points are shown on a normalized
reference line for a two-objective problem.
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useless. With the large increase of reference points, the
algorithm will also be slowed down. Thus, we consider
keeping the convergence speed of the algorithm by elim-
inating useless reference points, as described in the fol-
lowing subsection.

4.2.2. Elimination of Useless Reference Points. After new
reference points are generated by the above operation,
the niche count α of all reference points will be recalcu-
lated and recorded. Note that the total value of niche
count α is equal to population size N (namely, ∑H

h=1αh
=N). Ideally, each reference point is exactly associated
with one solution from the Pt+1 population; that is, solu-
tions are well-distributed among the reference points.
Then, all reference points for α = 0 are removed from
the total reference point set H. However, in order to
maintain uniform distribution of the reference points,
the reference points obtained by Das and Dennis’s

systematic approach [58] will not be deleted. Thus, the
existing reference points consist of two parts: (i) the orig-
inal reference points (even if their niche count is zero)
and (ii) all α = 1 reference points.

Based on the niche count α of the respective reference
points and information provided by the current popula-
tion, the reference point set is adaptively redefined by gen-
eration and elimination operations. The improvement
strategy for the reference points is intended to maintain
diversity and guide the solutions closer to the Pareto-
optimal front.

4.3. Online Operator Selection Mechanism. In multiobjective
evolutionary algorithms (MOEAs), crossover and mutation
operators are used to generate offspring solutions to update
the population, and it can seriously affect search capability.
In the original NSGA-III algorithm, only a simulated binary
crossover (SBX) operator is adopted, and different crossover
operators cannot be selected online according to the infor-
mation of generations. Therefore, we propose a strategy
based on the performance of previous generations to select
operators adaptively from a pool, that is, an online operator
selection (OOS) mechanism. According to a study in the lit-
erature [59], adaptive operator selection can select an appro-
priate strategy to adapt to the search landscape and produce
better results.

Based on the information collected by the credit
assignment methods, the OOS is applied to select operators
for generating new solutions. In this paper, we use a probabil-
ity method that uses a roulette wheel-like process for
selecting an operator to solve the dilemma of exploration
and exploitation.

Probability matching (PM) is one of the famous probabil-
ity operator selection methods. The formula for calculating
the probability of operator op being selected at next genera-
tion t + 1 is shown below [60]:

dop t + 1 = dmin + 1 − K ⋅ dmin ⋅
λop t + 1

〠K
i=1
λi t + 1

, 9

where K is the number of operators and dmin is the min-
imal probability of any operator. λop is the quality associ-
ated with operator op. Clearly, the sum of probabilities for
all operators is 1 ∑K

i=1λi t + 1 = 1 . If one operator gets
rewards during many generations and the others’ rewards
are almost 0, its maximum selection probability dmax is
equal to 1 + 1 − K dmin.

The pool ζ in the proposed algorithm is composed of
three well-known strategies: simulated binary crossover
(SBX), DE/rand/1, and nonlinear differential evolution
crossover (NDE). The parent individuals x1, x2, and x3
are randomly selected from the population Pt in the orig-
inal NSGA-III algorithm. The small difference in our algo-
rithm is that the first parent individual x1 of all strategies
is equal to the current solution. Three operators are shown
as below.

4.3.1. Simulated Binary Crossover. The simulated binary
crossover (SBX) operator is proposed by Deb and Agrawal

Initialization
operation

Recombination &
mutation

Nondominant sort

Last front partly accept

Last front overall accepted

Pt + 1

Normalization of
objectives

Association
operation

Niche preservation
operation

Termination
conditions

Pareto-optimal
fronts

Yes

No

Figure 3: A flow chart of the NSGA-III algorithm.
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and is found to be particularly useful in problems where
the upper and lower bounds of the multiobjective global
optimum are not known a priori [61]. Two offspring solu-
tions, y1 and y2, are created from two parent solutions, x1 and
x2, by formulas (10) and (11) as follows:

y1 =
1

2
1 − β1 x1 + 1 + β1 x2 , 10

y2 =
1

2
1 + β2 x1 + 1 − β2 x2 , 11

where the spread factor βi is defined as the ratio of the
absolute difference in offspring values to that of the parents
and is a random number; βi can be calculated by the formula
(12) as follows:

βi =
2φi

1/ ηc+1 , φi ≤
1

2
,

2 1 − φi
− 1/ ηc+1 , otherwise,

12

where φi is a random number between 0, 1 , and ηc is the
crossover parameter given by the user.

4.3.2. DE/rand/1. The DE/rand/1 operator is one of the most
commonly used DE variants [62], and all different solutions
are randomly chosen from the population. So, this strategy
does not generate biased or special search directions, and
then a new direction is selected at random each time. The
DE/rand/1 strategy can be defined by formula (13).

y = x1 +U ⋅ x2 − x3 , 13

where U represents the mutation scaling factor.

4.3.3. Nonlinear Differential Evolution Crossover. The non-
linear differential evolution crossover (NDE) strategy
was presented in the literature [63] for the MOEA/D
framework and was a hybrid crossover operator based
on polynomials. The advantage of this strategy is that
it ignores the values of the crossover rate and the muta-
tion scaling factor. The offspring can be generated by
formula (14).

y = ψ2μ1 + ψμ2 + μ3, 14

where ψ is generated according to an interpolation proba-
bility (V itr) [63] and can be defined by formula (15).

ψ =
rand 0, 2 , V itr ≥ 1,

rand 2, 3 , otherwise
15

The parameters μ1, μ2, and μ3 are given by formulas (16),
(17), and (18) accordingly.

μ1 =
x3 − 2x2 + x1

2
, 16

μ2 =
4x2 − 3x3 − x1

2
, 17

μ3 = x3 18

4.4. The Proposed NSGA-III Algorithm. In this paper, we add
the improvement strategy of reference points and online
operator selection mechanism to the NSGA-III framework.
The pseudo code of the proposed NSGA-III is shown in
Algorithm 2, where differences with the original NSGA-III
are set in italic and bold-italic.

Compared with the original NSGA-III, the proposed
algorithm has two main parts. Bold-italic marks are the
improvement strategy of the reference points, and italic
marks are the online operator selection mechanism.

(1) In the bold-italic parts, the reference points that
satisfy the condition (Section 4.2.2) are first removed
according to the niche count α of all reference points.
Second, new reference points are generated by
referring the process of Algorithm 1. Based on the
niche count α of each reference point and informa-
tion provided by the current population, the refer-
ence point set is adaptively redefined by generation
and elimination operations.

(2) There are two differences between our proposed algo-
rithm and the original NSGA-III in the italic parts.

(i) The first difference is the selection of the operator
to be used (Step 4), which occurs based on the
probabilities associated with each operator. With
the success probability of an operator increasing,
the most successful operator will be selected
more often, and the quality of the solutions will
also be improved theoretically. Because the same
operator is selected by a deterministic approach
during all recombination (Step 5) of the same
generation, an undesirable bias should be intro-
duced to select the best performance operator in
the initial generations. So, stochastic selection
mechanisms are applied in this paper.

(ii) Other differences are the calculation of the
rewards (Step 22) and the update of information
with each operator (Step 23).

(a) In this paper, the op in the pool ζ has associ-
ated a probability dop t of being selected at
generation t by formula (9). The adapted
process is based on its quality λop t , which
is updated according to a reward eop t .

The reward eop t adopted in this paper is a
Boolean value eop t = 0, 1 in Step 22. If
x is generated by the operator op, x does
not belong to Pt but belongs to Pt+1; then,
eop t = 1; otherwise, eop t is equal to 0.
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(b) After calculating the rewards, the quality
λop t of the operator op available in the pool
can be updated by formula (19):

λop t + 1 = 1 − θ ⋅ λop t + θ ⋅ eop t , 19

where θ is the adaption rate θ ∈ 0, 1 .

Finally, the operator selection probabilities are updated
by formula (9).

5. Experiment Results and Analysis

5.1. Test Problem. In order to verify the proposed algorithm,
five state-of-the-art algorithms are considered for comparison
studies. They areNSGA-III-OSD[64],NSGA-III [24],NSGA-

Input: P0, Imax, N ,H
Output: Pareto solutions
1: Initialize uniform distribution reference points H;
2: t = 0;
3: while termination conditions are not satisfied (t < Imax) do
4: op←Select operator();
5: Ct =Qt ∪ Recombination & Mutation (Pt);
6: (L1, L2,… , Ll) =Non-dominated-sort (Ct);
7: i = 1;
8: repeat
9: Pt+1 = Pt+1 ∪ Li;
10: i = i + 1;
11: until Pt+1 ≥N ;
12: if Pt+1 =N then

13: break;
14: else

15: Normalize the objectives;
16: Delete the useless reference points;
17: Associate each solution in Pt+1 with a reference point;
18: Compute niche count α of reference points;
19: Fill Pt+1 with N − Pt+1 solutions from Li using niching information;
20: Generate new reference points;
21: end if
22: Calculate operator rewards (Pt , Pt+1);
23: Update operator information ();
24: t = t + 1;
25: end while
26: return Pareto-optimal front.

Algorithm 2: The Proposed NSGA-III Algorithm.

Input: Pt+1, α, δ
Output: hgnew
1: After niche operation, Pt+1 is created and α is updated;
2: for hgnew = h1new→ hGnew do
3: for g = 1→G do
4: According to formula (7) and (8), then generate the reference points hgnew based on these selected
individuals;
5: check position hgnew ;
6: if hgnew lie on the first quadrant then
7: check existence hgnew ;
8: if hgnew doesn’t exist in then

9: store hgnew ;
10: end if
11: end for
13: end for
14: Output hgnew .

Algorithm 1: Generation of New Reference Points.
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II [65], MPACO [23], and MOEA/D [66]. NSGA-III and
NSGA-II are the traditional NSGA algorithms. NSGA-III-
OSD is an improved version of the NSGA-III based on objec-
tive space decomposition. In MOEA/D algorithm, a prede-
fined set of weight vectors is applied to maintain the solution
diversity. MPACO is the algorithm we proposed before. All
algorithms are testedwith 4 different benchmarkMaOPprob-
lems known as DTLZ1 to DTLZ4 [67].

For DTLZ, 4 instances (DTLZ1–4) with 3, 5, 8, 10, and 15
objectives are used. Based on the work of Deb et al. [67], the
number of decision variables is set as DV = G + r − 1, where
r = 5 for DTLZ1 and r = 10 for DTLZ2–4. According to the
work [68], the number of decision variables is set as DV = p
v + dv. The parameters the position-related variable pv and
the distance-related value dv are set to 2 × G − 1 and 20,
respectively. The main characteristics of all benchmark prob-
lems are shown in Table 5.

In this subsection, inverted generational distance
(IGD) indicator [69] is used to evaluate the quality of a
set of obtained nondominated solutions. This indicator
can measure the convergence and diversity of solutions
simultaneously. Smaller IGD values indicate that the last
nondominated population has better convergence and cov-
erage of the Pareto front. Each algorithm is conducted 30
runs independently on each test problem. Aiming to be as
fair as possible, in each run, all the comparison algorithms
perform the same maximum iteration Imax as shown in
Table 6. The population size used in this study for differ-
ent numbers of objectives is shown in Table 7.

The six algorithms considered in this study need to set
some parameters, and five of them are shown in Table 8.
The parameters of the MPACO algorithm can be found in
the literature [23].

Comparison results of I-NSGA-III withfive otherMOEAs
in terms of IGDvalues on different objectives ofDTLZ1–4 test
problems are presented in Tables 9–12. It shows both the
median and standard deviation of the IGD values on 30 inde-
pendent runs for the six compared MOEAs, where the best
median and standard deviation are highlighted in italic.

Based on the statistical results of DTLZ1, we can see that
I-NSGA-III shows better performance than the other five
MOEAs on three-, eight- and ten-objective test problems.
For five- and fifteen-objective problems, it achieves the sec-
ond smallest IGD value. Furthermore, NSGA-III can obtain
the best IGD value on the fifteen-objective test problem and
MPACO can obtain the best IGD value on the five-objective
test problem. NSGA-II can deal with three-objective
instances but works worse on more than three objectives.

Based on the statistical results of DTLZ2, we can see that
the performance of I-NSGA-III, NSGA-III-OSD, and
MOEA/D is comparable in this problem. The NSGA-III is
worse than two improved algorithms (I-NSGA-III and
MOEA/D) and MOEA/D, however, is better than MPACO.
Based on the IGD values obtained by NSGA-II on three-
and five-objective problems, we find that this algorithm can
perform well. But when the number of objectives increases,
NSGA-II still works worst among the six algorithms.

Based on the statistical results of DTLZ3, we find that I-
NSGA-III performs significantly best among six algorithms

on different objectives of the DTLZ3 problem. NSGA-III-
OSD can achieve a similar IGD value as NSGA-III. Although
MOEA/D can achieve the close to smallest IGD value on the
three- and five-objective test problems, it significantly
worsens on more than five-objective test problems. MPACO
can defeat MOEA/D on eight-, ten- and fifteen-objective test
problems. In addition, NSGA-II is still helpless for more than
three-objective problems.

Based on the statistical results of DTLZ4, we find that I-
NSGA-III performs significantly better than the other five
MOEAs on almost all DTLZ4 test problems, except the
eight-objective instance. Furthermore, the standard deviation
of IGD obtained by I-NSGA-III shows that the proposed

Table 5: Characteristics of test problems.

Test problem Characteristics

DTLZ1 Linear, multimodal

DTLZ2 Concave

DTLZ3 Concave, multimodal

DTLZ4 Concave, biased

Table 6: Maximum iteration for each test problem.

The number of objectives
3 5 8 10 15

DTLZ1 400 600 750 1000 1500

DTLZ2 250 350 500 750 1000

DTLZ3 1000 1000 1000 1500 2000

DTLZ4 600 1000 1250 2000 3000

Table 7: Number of population size.

The number of objectives The size of populations Divisions

3 92 {12}

5 212 {6}

8 156 {3,2}

10 276 {3,2}

15 136 {2,1}

Table 8: Parameter setting of each algorithm.

ηc ηm pc pm Other parameters

I-NSGA-III —
dmin = 0 1

U = 0 5

NSGA-III-OSD [64]

30

1/DV

μ = 0 2

20 μ = 0 7

1.0 θ = 5

NSGA-III [24] —

NSGA-II [65] —

MOEA/D [66] 20

T = 20

δ = 0 9

θ = 5
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Table 9: Median and standard deviation of the IGD values achieved by each algorithm on DTLZ1 (the best medians are in italic font).

G I-NSGA-III NSGA-III-OSD NSGA-III MPACO MOEA/D NSGA-II

DTLZ1

3
3.687e− 04
7.68e− 05

4.087e− 04
2.14e− 04

4.056e− 04
1.76e− 03

7.063e− 04
1.25e− 04

5.709e− 04
5.75e− 04

1.861e− 03
1.16e− 02

5
3.492e− 04
1.10e− 04

2.863e− 03
2.45e− 03

3.119e− 03
2.62e− 03

3.428e− 04
4.06e− 03

3.781e− 04
7.05e− 05

2.321e− 02
3.22e− 03

8
2.559e− 03
2.280e− 04

3.125e− 03
2.32e− 03

3.356e− 03
4.31e− 03

3.863e− 03
3.29e− 03

3.414e− 03
2.50e− 02

4.023e− 02
1.26e− 01

10
2.942e− 03
3.62e− 04

3.243e− 03
1.28e− 02

3.397e− 03
2.87e− 03

4.163e− 03
6.44e− 03

4.596e− 03
6.54e− 03

5.873e− 02
4.13e− 02

15
2.212e− 02
2.15e− 03

2.315e− 02
2.76e− 02

2.080e− 02
2.87e− 04

2.273e− 02
2.15e− 02

2.271e− 02
6.56e− 03

4.873e+ 01
3.32e + 01

Table 10: Median and standard deviation of the IGD values achieved by each algorithm on DTLZ2 (the best medians are in italic font).

G I-NSGA-III NSGA-III-OSD NSGA-III MPACO MOEA/D NSGA-II

DTLZ2

3
4.921e− 03
6.09e− 05

4.944e− 03
1.45e− 04

5.212e− 03
1.08e− 04

6.898e− 03
1.94e− 03

5.021e− 03
1.01e− 04

7.915e− 03
1.865e− 03

5
2.540e− 02
3.17e− 04

2.549e− 02
4.24e− 05

2.593e− 02
3.37e− 04

2.821e− 02
2.25e− 03

2.548e− 02
1.58e− 03

3.815e− 02
9.29e− 03

8
3.438e− 02
2.01e− 03

3.459e− 02
1.46e− 03

3.461e− 02
1.23e− 03

4.045e− 02
1.18e− 02

3.451e− 02
3.43e− 03

6.992e− 02
4.97e− 02

10
3.563e− 02
1.56e− 03

3.573e− 02
1.322e− 03

3.581e− 02
2.19e− 03

4.092e− 02
8.63e− 03

3.552e− 02
9.83e− 04

7.865e− 02
7.65e− 03

15
4.638e− 02
2.22e− 03

4.618e− 02
2.23e− 03

4.656e− 02
1.89e− 03

5.252e− 02
8.50e− 03

4.622e− 02
9.99e− 04

3.561e+ 01
1.42e + 01

Table 11: Median and standard deviation of the IGD values achieved by each algorithm on DTLZ3 (the best medians are in italic font).

G I-NSGA-III NSGA-III-OSD NSGA-III MPACO MOEA/D NSGA-II

DTLZ3

3
6.164e− 03
1.10e− 04

6.456e− 03
6.54e− 03

6.353e− 03
4.14e− 03

8.129e− 03
1.96e− 03

6.192e− 03
5.33e− 04

8.092e− 03
2.74e− 02

5
2.639e− 02
7.93e− 05

2.783e− 02
6.12e− 03

2.679e− 02
3.77e− 03

2.896e− 02
3.83e− 03

2.658e− 02
5.75e− 04

6.013e− 02
5.18e− 01

8
3.582e− 02
1.65e− 03

3.632e− 02
7.12e− 03

3.812e− 02
8.49e− 03

4.040e− 02
6.91e− 03

4.378e− 02
1.69e− 01

6.816e− 02
1.63e− 01

10
3.666e− 02
1.11e− 03

3.706e− 02
3.25e− 03

3.797e− 02
5.74e− 03

4.260e− 02
1.12e− 02

5.684e− 02
6.79e− 02

8.562e− 02
2.11e− 01

15
4.636e− 02
2.13e− 03

6.509e− 02
8.32e− 02

6.488e− 02
3.42e− 02

5.403e− 02
6.25e− 02

7.613e− 02
2.04e− 01

9.866e+ 01
7.11e + 01

Table 12: Median and standard deviation of the IGD values achieved by each algorithm on DTLZ4 (the best medians are in italic font).

G I-NSGA-III NSGA-III-OSD NSGA-III MPACO MOEA/D NSGA-II

DTLZ4

3
6.165e− 03
2.14e− 05

7.171e− 03
3.45e− 04

1.436e− 02
3.73e− 03

1.851e− 02
2.13e− 01

5.514e− 02
2.64e− 03

6.411e− 02
3.58e− 01

5
2.696e− 02
6.38e− 04

2.919e− 02
6.51e− 04

2.733e− 02
6.57e− 04

3.057e− 02
1.58e− 03

4.622e− 02
1.53e− 01

5.536e− 02
1.99e− 01

8
4.747e− 02
9.73e− 04

4.74e− 02
8.56e− 04

4.753e− 02
9.83e− 04

5.222e− 02
6.75e− 02

7.999e− 02
2.46e− 02

9.623e− 02
1.25e− 01

10
4.535e− 02
1.53e− 04

4.621e− 02
6.19e− 05

5.09e− 02
1.87e− 02

5.899e− 02
6.02e− 03

7.92e− 02
1.87e− 02

8.478e− 02
9.56e− 02

15
5.831e− 02
1.21e− 02

5.893e− 02
1.37e− 02

6.777e− 02
3.91e− 02

6.581e− 02
1.46e− 02

9.01e− 02
3.52e− 01

9.969e− 02
7.48e− 02
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algorithm is rather robust. NSGA-III-OSD shows the closest
overall performance to I-NSGA-III. MOEA/D is significantly
worse than MPACO. NSGA-II still has no advantage on the
DTLZ4 test problem.

The above results show that the proposed I-NSGA-III
could perform well on almost all the instances in DTLZ1–4,
and the obtained solution sets have good convergence and
diversity. In the next subsection, the proposed algorithm will
be applied to solve an SMWTA problem.

5.2. SMWTA Problem

5.2.1. Parameter Setting. For the MWTA problem, the popu-
lation size N of the I-NSGA-III algorithm is 150, and the
maximum number of iterations Imax is 200. According to
the approach in the literature [58], the total number of refer-
ence points H is set to 120. The DE scaling factor U , polyno-
mial mutation probability pm, and PM minimum probability
dmin are used in this work, as they are frequently used in the
literature [68]. Some parameters for the I-NSGA-III are
shown in Table 13.

Table 14 shows the number of reference points H, popu-
lation size N , and maximum iteration Imax for different algo-
rithms. Other parameters in the NSGA-III algorithm are the
same as those in the literature [24]. The parameters of the
MPACO algorithm and the NSGA-II algorithm can be found
in the literature [23].

5.2.2. Simulation Environment. We can see from Table 15
that the proposed algorithm has been implemented in C++
on a CPU Intel(R) Core(TM) i5-4460T with 1.90GHz and
8GB of RAM. The operating system is Windows 7 64-bit.

5.2.3. Numerical Experiments and Analysis. We use the same
specific instance as in our previous work [23] to verify the
performance of the algorithm. The instance includes 4
fighters that carry different numbers of missiles (12 missiles
in total) and 10 targets. Appendix A shows missile damage
probability pij i = 1,… , 12 j = 1,… , 10 , pilot operation fac-

tor ρk k = 1,… , 4 , and cost of missiles ci.
First, an enumeration approach [19] is employed to get a

set of evenly distributed true optimal solutions and thus
obtain evenly distributed true Pareto solutions (PSs) for the
specific instance. Second, in order to verify the applicability
and feasibility of the proposed algorithm, we apply I-
NSGA-III, NSGA-III, MPACO, and NSGA-II to find PSs in
the instance. The statistical results are shown in Figures 4–7.

Figures 1–4 show the distribution of the true PSs solved
by the enumeration method and final PSs obtained by I-
NSGA-III, NSGA-III, MPACO, and NSGA-II. We can see
that the optimization results of the I-NSGA-III algorithm
are obviously better than those of the other algorithms
because the I-NSGA-III can find close and even PSs in the
objective space. It is evident that the algorithm can guarantee
the quality of solutions. So the I-NSGA-III for optimizing the
SMWTA is well verified to be feasible.

In Figure 1, 150 evenly distributed solutions in the real
Pareto front are found, while only 120 reference points are
preset. Since the reference point and the solution are one-

to-one correspondence, the effectiveness of the improvement
strategy of reference points—generating new reference points
and eliminating useless reference points operations—is dem-
onstrated. This strategy increases the number of reference
points from 120 to 150, improves the efficiency of the algo-
rithm, and finds more Pareto-optimal solutions that meet
the requirements. Meanwhile, due to the adoption of the
online operator selection mechanism in the I-NSGA-III algo-
rithm, the search landscape is reduced and the quality of the
solutions is improved. However, in Figure 2, the original
NSGA-III algorithm can only find 95 solutions on the pre-
mise of the initial 120 reference points, and only a small
number of individuals are located at the Pareto front. There-
fore, the original NSGA-III is less efficient than the algorithm
proposed in this paper for solving the SMWTA problem. As
we can see from Figures 3 and 4, although MPACO is supe-
rior to NSGA-II to some extent, the two algorithms are obvi-
ously inferior to the I-NSGA-III algorithm.

We analyze results from Appendix B and Appendix C
as follows:

When funds fornational defense are sufficient anddetailed
enemy information are available, we can choose Scheme 1,
which costs themostmoney and obtains the greatest expected
damage to the enemy to complete a fatal attack. As we are in a
repressive state of military power, we can accomplish the task
with only one attack in Scheme 1. However, this situation is
rare in real combat. When we have only a small amount of
information about the enemy or it is difficult to launch a
large-scale attack, we choose one scheme among Schemes
147, 149, and 150 that can achieve maximum fighter combat
value to launch aprobing attack. In these three schemes, taking
into account the least cost in terms of money and the greatest
expected damage value, we should choose Scheme 150.

Table 13: Parameters of I-NSGA-III algorithm (Part).

Parameter Value

ηc 30

ηm 20

dmin 0.1

pm 0.07

U 0.5

H 120

N 150

Imax 200

Table 14: Number of reference points, population size, and
maximum number of iterations for all algorithms.

I-NSGA-III NSGA-III MPACO NSGA-II

Reference points
(H)

120 120

Population size
(N)

150 120 150 150

Maximum
iteration(Imax)

200
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Considering that funds are insufficient, we can only choose
Scheme 148. Considering that all targets must be allocated
and that the cost ofmissiles should beminimized, we can only
choose Scheme 4.

Solving the SMWTA problem is the foundation of the
dynamic multiobjective weapon-target assignment problem
(DMWTA). The goal of the DMWTA is to provide a set of
near-optimal or acceptable real-time decisions in real air
combat. So, the time performance of algorithms is also an
important index. In the end part, we test four algorithms
on the specific instance in 30 runs and record the iteration

Table 15: Parameters of simulation environment.

Computer
specifications

Intel(R) Core(TM) i5-4460T CPU at 1.90GHz
with 8.00GB RAM

Operating
system

Windows 7 (x64) operating system

Language C++

Software Microsoft Visual C++ 6.0
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Figure 4: Plots of the true PSs and the final PSs found by I-NSGA-
III on the specific instance.
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Figure 5: Plots of the true PSs and the final PSs found by NSGA-III
on the specific instance.
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Figure 6: Plots of the true PSs and the final PSs found by NSGA-II
on the specific instance.
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Figure 7: Plots of the true PSs and the final PSs found by MPACO
on the specific instance.
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time of each algorithm. The statistical results of time perfor-
mances are shown in Figure 8.

In real air combat situations, pilots often make deadly
decisions within seconds or even within milliseconds. We
can see from Figure 5 that I-NSGA-III has a time advantage
in solving the special instance compared with other algo-
rithms, and the time performance of the NSGA-II is worst
among the four algorithms. Although improvement of the
strategy of reference points affects the iteration rate, an
appropriate strategy can be selected by an online operator
selection mechanism to improve the mutation efficiency
and the quality of solutions. Compared with the original
NSGA-III algorithm, the improvement strategy of reference
points plays a more important role than the online operator
selection mechanism in the time performance field.

In this section, we do some work as follows: Firstly, we
use four classic test problems (DTLZ1–4) to evaluate the pro-
posed algorithm and compare it with the other five state-of-
the-art algorithms. Secondly, we test the four different algo-
rithms on a specific example, verify the applicability and fea-
sibility of the proposed algorithm, give a comparison study
among the four algorithms, and show the corresponding dis-
tribution results in Appendix B and Appendix C. Thirdly, we
show the time performance of four algorithms in 30 runs. To
summarize, I-NSGA-III has been proved to be an effective
technique for the SMWTA optimization problem and is
obviously the best among the four algorithms.

6. Conclusion

We apply NSGA-III to the WTA problem and propose the I-
NSGA-III to solve SMWTA in this paper. Themain contribu-
tions of the thesis are summarized as follows: on the one hand,
the expected damage to the enemy and the cost of missiles are
taken into account from a practical viewpoint; in terms of the
other objective—the value of fighter combat was introduced
to make the model in line with real air combat. In this paper,
an improvement strategy of reference points and an online
operator selection mechanism are proposed and embedded
into the original NSGA-III algorithm to improve the perfor-
mances of the I-NSGA-III algorithm. The experiments have

shown that I-NSGA-III can find better Pareto solutions than
the other three algorithms for the SMWTA problem. More
importantly, I-NSGA-III ismore suitable for solving the prob-
lem from the time performance viewpoint.

However, we have mainly studied the SMWTA prob-
lem; few studies have focused on dynamic problems,
which are more instructive to real air combat. In recent
years, more and more studies have begun to pay attention
to DWTA problems. A further study on this topic is one
of our future tasks.

Appendix

Appendix A contains three data tables. These three tables
come from our previous work [23] and are used to express
the data used in the instance to verify the performance of
the proposed algorithm. In Table 16, each data represents
the damage probability of different missiles attacking differ-
ent targets. In Table 17, ρk is the pilot operation factor and
represents the talent, training time, and operation stability
of the pilot which may affect the attack performance. In Table
18, ci represents the cost of ith missile (ci). The larger the
value is, the more the missile costs.

The data in Appendix B represent the results and the
corresponding distribution by I-NSGA-III. In each scheme,
the first three columns represent the values of the three
objective functions, and the latter twelve columns represent
the corresponding results of the WTA distribution. (As
an example, in Scheme 33, 1/f1 = 0 07168, f2 = 5 72, and
1/f3 = 0 70588. Missile 2 is assigned to Target 3, Missiles 3
and 4 are assigned to Target 7, Missiles 6 and 10 are assigned
to Target 9, Missiles 8 and 12 are assigned to Target 5, and
Missile 9 is assigned to Target 1).

In order to compare the statistical results of all algo-
rithms, the statistical results obtained by NSGA-III,
MPACO, and NSGA-II are given in Appendix C and shown
in Figures 6–8.

A. The Value of the Specific Example Used in
This Paper
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Figure 8: Time performance of four different algorithms. ∗ represent
extreme outliers.

Table 16: Missile damage probability.

Missile
unit

Target
1 2 3 4 5 6 7 8 9 10

1 0.82 0.85 0.78 0.75 0.52 0.88 0.44 0.76 0.72 0.56

2 0.56 0.72 0.88 0.46 0.64 0.47 0.68 0.45 0.48 0.75

3 0.45 0.62 0.54 0.73 0.84 0.76 0.78 0.42 0.53 0.65

4 0.56 0.42 0.76 0.84 0.73 0.83 0.86 0.62 0.78 0.82

5 0.45 0.58 0.81 0.44 0.63 0.59 0.78 0.77 0.65 0.70

6 0.46 0.61 0.55 0.68 0.75 0.83 0.73 0.66 0.82 0.48

7 0.66 0.71 0.65 0.44 0.86 0.79 0.59 0.85 0.53 0.56

8 0.56 0.42 0.76 0.84 0.73 0.72 0.44 0.75 0.48 0.47

9 0.88 0.78 0.44 0.67 0.56 0.86 0.58 0.65 0.73 0.42

10 0.56 0.88 0.68 0.45 0.75 0.73 0.61 0.76 0.84 0.78

11 0.84 0.54 0.44 0.42 0.65 0.56 0.71 0.55 0.45 0.88

12 0.83 0.76 0.84 0.62 0.82 0.75 0.42 0.68 0.57 0.54
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B. The Value of PSs and Results of
WTA Distribution

Table 17: Pilot operation factor table.

Fighter F1 F2 F3 F4

Missile unit M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

ρk 0.96 0.95 0.98 0.93

Table 18: The cost of each missile.

Missile unit M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

ci 0.62 0.63 0.69 0.80 0.72 0.90 0.96 0.68 0.72 0.65 0.66 0.65

Table 19

1/f1 f2 1/f3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

1 0.06822 8.68000 100.00000 9 3 5 7 7 9 5 5 1 9 7 3

2 0.06860 8.02000 3.00000 9 3 7 7 7 9 5 3 1 9 0 5

3 0.06853 8.00000 4.00000 9 3 5 7 7 9 5 0 1 9 7 3

4 0.06867 7.96000 2.00000 9 3 7 7 0 9 5 3 1 9 7 5

5 0.06879 7.88000 2.00000 9 3 7 0 7 9 5 3 1 9 7 5

6 0.06880 7.72000 4.00000 9 3 5 7 7 9 0 3 1 9 7 5

7 0.06912 7.34000 1.71429 9 3 5 7 7 9 5 0 1 9 0 3

8 0.06917 7.37000 1.50000 9 3 5 7 7 9 5 3 1 9 0 0

9 0.06924 7.30000 1.20000 9 3 7 7 0 9 5 3 1 9 0 5

10 0.06936 7.12000 1.71429 9 3 5 7 7 0 5 3 1 9 0 9

11 0.06956 7.27000 1.20000 9 3 0 7 0 9 5 3 1 9 7 5

12 0.06956 7.06000 1.33333 9 3 7 7 0 0 5 3 1 9 7 5

13 0.06957 7.23000 1.20000 9 3 7 0 7 9 5 3 1 0 7 5

14 0.06961 7.22000 1.20000 9 3 7 0 7 9 5 3 1 9 0 5

15 0.06973 7.16000 1.00000 9 3 7 0 0 7 5 3 1 9 7 5

16 0.06987 6.92000 1.33333 9 3 5 0 7 7 0 3 1 9 7 5

17 0.06991 6.69000 1.09091 9 3 5 7 7 9 5 0 1 0 0 3

18 0.06996 6.72000 1.00000 9 3 5 7 7 9 5 3 1 0 0 0

19 0.06997 6.82000 2.00000 9 3 5 7 9 0 0 5 1 9 7 3

20 0.07002 6.44000 1.20000 9 3 5 7 7 0 5 0 1 9 0 3

21 0.07004 6.65000 0.85714 9 3 7 7 0 9 5 3 1 0 0 5

22 0.07015 6.40000 0.92308 9 3 7 7 0 0 5 3 1 9 0 5

23 0.07041 6.57000 0.85714 9 3 7 0 7 9 5 3 1 0 0 5

24 0.07053 6.32000 0.92308 9 3 7 0 7 0 5 3 1 9 0 5

25 0.07056 6.35000 0.92308 9 3 5 7 0 9 0 5 1 0 7 3

26 0.07060 6.10000 1.00000 9 3 5 7 0 0 0 3 1 9 7 5

27 0.07087 6.51000 0.75000 9 3 7 0 0 9 5 5 1 0 7 3

28 0.07094 6.26000 0.80000 9 3 7 0 0 0 5 3 1 9 7 5

29 0.07130 6.00000 0.66667 9 3 7 7 0 9 5 5 1 0 0 0

30 0.07142 5.75000 0.70588 9 3 7 7 0 0 5 5 1 9 0 0

31 0.07152 5.94000 0.70588 9 3 0 7 0 9 5 0 1 0 7 5

32 0.07165 5.67000 0.75000 9 3 5 7 0 9 0 0 1 0 7 5

33 0.07168 5.72000 0.70588 0 3 7 7 0 9 0 5 1 9 0 5

34 0.07169 5.92000 0.66667 9 3 7 0 7 9 5 5 1 0 0 0
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Table 19: Continued.

1/f1 f2 1/f3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

35 0.07192 5.45000 0.75000 9 3 5 7 0 0 0 5 1 9 7 0

36 0.07200 5.83000 0.63158 9 3 7 0 0 9 5 0 1 0 7 5

37 0.07211 5.41000 0.75000 9 3 0 7 0 0 0 5 1 9 7 5

38 0.07212 5.58000 0.66667 9 3 7 0 0 0 5 0 1 9 7 5

39 0.07224 5.61000 0.63158 9 3 7 0 0 0 5 5 1 9 7 0

40 0.07247 5.55000 0.63158 9 3 7 0 0 9 0 5 1 0 7 5

41 0.07278 5.88000 0.60000 9 0 7 0 0 9 5 5 1 0 7 3

42 0.07306 5.32000 0.57143 9 3 7 7 0 9 5 0 1 0 0 0

43 0.07319 5.07000 0.60000 9 3 7 7 0 0 5 0 1 9 0 0

44 0.07341 5.29000 0.57143 9 3 0 7 0 9 5 0 1 0 7 0

45 0.07347 5.24000 0.57143 9 3 7 0 7 9 5 0 1 0 0 0

46 0.07374 5.17000 0.52174 9 3 7 0 0 7 5 0 1 9 0 0

47 0.07400 5.02000 0.60000 9 3 5 7 0 9 0 0 1 0 7 0

48 0.07404 4.93000 0.54545 9 3 7 0 0 0 5 0 1 9 7 0

49 0.07413 4.77000 0.63158 9 3 5 7 0 0 0 0 1 9 7 0

50 0.07451 4.79000 0.60000 9 3 5 7 0 0 0 5 1 9 0 0

51 0.07490 4.87000 0.54545 9 3 5 0 0 7 0 0 1 9 7 0

52 0.07502 5.23000 0.50000 9 0 7 0 0 9 5 3 1 0 7 0

53 0.07520 4.95000 0.52174 9 7 7 0 0 0 5 3 1 9 0 0

54 0.07522 4.81000 0.60000 9 0 5 7 0 0 0 5 1 9 0 3

55 0.07538 4.62000 0.57143 9 3 7 0 0 0 0 0 1 9 7 5

56 0.07611 4.63000 0.48000 9 3 0 7 0 9 5 0 1 0 0 0

57 0.07625 4.38000 0.50000 9 3 0 7 0 0 5 0 1 9 0 0

58 0.07674 4.36000 0.50000 9 3 5 7 0 9 0 0 1 0 0 0

59 0.07689 4.11000 0.52174 9 3 5 7 0 0 0 0 1 9 0 0

60 0.07728 4.68000 0.46154 9 0 0 7 0 9 5 3 1 0 0 0

61 0.07742 4.04000 0.54545 9 3 5 7 0 0 0 0 0 9 0 1

62 0.07772 4.52000 0.44444 9 3 7 0 0 9 5 0 1 0 0 0

63 0.07786 4.27000 0.46154 9 3 7 0 0 0 5 0 1 9 0 0

64 0.07809 4.16000 0.50000 9 0 5 7 0 0 0 3 1 9 0 0

65 0.07895 4.57000 0.42857 9 0 7 0 0 9 5 3 1 0 0 0

66 0.07910 4.32000 0.44444 9 0 7 0 0 0 5 3 1 9 0 0

67 0.07920 4.21000 0.46154 9 3 7 0 0 9 0 0 1 0 0 5

68 0.07987 3.90000 0.50000 9 3 7 0 0 0 0 0 0 9 1 5

69 0.08025 3.99000 0.46154 9 3 7 0 0 0 0 5 1 9 0 0

70 0.08042 3.97000 0.48000 9 3 7 0 0 0 0 0 1 0 7 5

71 0.08140 3.73000 0.42857 9 3 0 7 0 0 5 0 1 0 0 0

72 0.08235 3.39000 0.46154 9 3 5 7 0 0 0 0 0 9 0 0

73 0.08269 3.90000 0.38710 0 3 7 0 0 9 5 0 1 0 0 0

74 0.08275 3.78000 0.41379 9 0 0 7 0 0 5 3 1 0 0 0

75 0.08308 3.60000 0.44444 9 3 0 7 0 9 0 0 0 0 0 5

76 0.08325 3.62000 0.40000 9 3 7 0 0 0 5 0 1 0 0 0

77 0.08347 3.55000 0.41379 9 3 7 0 0 0 5 0 0 9 0 0

78 0.08351 3.51000 0.42857 9 0 5 7 0 0 0 3 1 0 0 0

79 0.08372 3.44000 0.44444 9 0 5 7 0 0 0 3 0 9 0 0

80 0.08408 3.95000 0.37500 0 0 7 0 0 9 5 3 1 0 0 0

81 0.08424 3.85000 0.40000 0 0 7 0 0 9 5 0 0 9 0 3

82 0.08436 3.67000 0.40000 0 0 7 0 0 0 5 0 1 9 0 3

83 0.08472 3.85000 0.38710 9 0 7 0 0 9 5 3 0 0 0 0

84 0.08491 3.49000 0.41379 1 3 7 0 0 9 0 0 0 0 0 5

85 0.08518 3.24000 0.42857 9 3 7 0 0 0 0 0 0 9 0 5
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Table 19: Continued.

1/f1 f2 1/f3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

86 0.08599 3.34000 0.40000 9 3 7 0 0 0 0 5 1 0 0 0

87 0.08693 3.29000 0.37500 0 3 0 7 0 9 5 0 0 0 0 0

88 0.08755 3.01000 0.38710 9 3 0 7 0 0 5 0 0 0 0 0

89 0.08840 2.74000 0.40000 9 3 5 7 0 0 0 0 0 0 0 0

90 0.08904 3.18000 0.35294 0 3 7 0 0 9 5 0 0 0 0 0

91 0.08911 3.06000 0.37500 9 0 0 7 0 0 5 3 0 0 0 0

92 0.08964 2.79000 0.40000 0 0 5 7 0 0 0 0 0 9 0 3

93 0.08999 2.79000 0.38710 9 0 5 7 0 0 0 3 0 0 0 0

94 0.09133 2.95000 0.35294 9 0 7 0 0 0 5 3 0 0 0 0

95 0.09158 2.98000 0.35294 0 0 7 0 0 0 5 3 0 9 0 0

96 0.09169 2.84000 0.36364 9 3 5 0 0 7 0 0 0 0 0 0

97 0.09267 2.92000 0.35294 0 0 7 0 0 9 0 3 0 0 0 5

98 0.09288 2.62000 0.36364 9 3 7 0 0 0 0 5 0 0 0 0

99 0.09365 2.67000 0.36364 0 0 7 0 0 0 0 3 0 9 0 5

100 0.09366 3.20000 0.34286 0 0 0 0 0 9 5 3 0 0 7 0

101 0.09528 2.87000 0.35294 0 3 0 0 0 9 0 5 0 0 7 0

102 0.09603 2.59000 0.36364 9 3 0 0 0 0 0 5 0 0 7 0

103 0.09658 2.61000 0.36364 9 0 0 0 0 0 0 3 0 0 7 5

104 0.09662 2.74000 0.35294 0 0 7 0 0 0 0 3 9 0 0 5

105 0.09706 2.55000 0.37500 3 7 0 0 0 0 0 0 0 9 0 5

106 0.09733 2.93000 0.34286 0 3 0 0 0 7 0 5 9 0 0 0

107 0.09777 2.98000 0.34286 9 0 0 0 0 0 5 3 7 0 0 0

108 0.09789 2.71000 0.35294 3 0 7 0 0 0 0 5 9 0 0 0

109 0.09955 2.65000 0.35294 9 3 0 0 0 0 0 5 7 0 0 0

110 0.10275 2.38000 0.34286 9 0 0 7 0 0 5 0 0 0 0 0

111 0.10392 2.11000 0.35294 9 0 5 7 0 0 0 0 0 0 0 0

112 0.10424 2.14000 0.35294 0 0 5 7 0 0 0 0 0 9 0 0

113 0.10445 2.35000 0.34286 0 0 0 7 0 9 0 0 0 0 0 5

114 0.10571 2.27000 0.32432 9 0 7 0 0 0 5 0 0 0 0 0

115 0.10695 2.10000 0.34286 9 0 0 7 0 0 0 5 0 0 0 0

116 0.10779 2.05000 0.35294 9 5 0 7 0 0 0 0 0 0 0 0

117 0.10850 2.21000 0.32432 9 0 5 0 0 7 0 0 0 0 0 0

118 0.10883 1.99000 0.33333 0 0 7 0 0 0 0 0 0 9 0 5

119 0.10884 2.52000 0.31579 0 0 0 0 0 9 5 0 0 0 7 0

120 0.11016 1.99000 0.32432 9 0 7 0 0 0 0 5 0 0 0 0

121 0.11105 1.94000 0.33333 9 5 7 0 0 0 0 0 0 0 0 0

122 0.11152 2.58000 0.30769 0 0 0 0 0 7 5 0 9 0 0 0

123 0.11280 1.93000 0.33333 9 0 0 0 0 0 0 0 0 0 7 5

124 0.11319 1.90000 0.33333 9 7 0 0 0 0 0 0 0 0 0 5

125 0.11357 2.24000 0.31579 0 0 0 0 0 9 0 5 0 0 7 0

126 0.11463 1.96000 0.32432 9 0 0 0 0 0 0 5 0 0 7 0

127 0.11503 1.93000 0.32432 9 7 0 0 0 0 0 5 0 0 0 0

128 0.11560 1.91000 0.33333 9 5 0 0 0 0 0 0 0 0 7 0

129 0.11648 2.30000 0.30769 0 0 0 0 0 7 0 5 9 0 0 0

130 0.11774 1.92000 0.33333 9 0 0 0 0 0 0 0 0 7 0 5

131 0.11968 2.02000 0.31579 9 0 0 0 0 0 0 5 7 0 0 0

132 0.13725 1.70000 0.30769 0 0 0 7 0 9 0 0 0 0 0 0

133 0.13881 1.42000 0.31579 9 0 0 7 0 0 0 0 0 0 0 0

134 0.14259 1.59000 0.29268 0 0 7 0 0 9 0 0 0 0 0 0

135 0.14490 1.34000 0.30000 0 0 7 0 0 0 0 0 0 9 0 0

136 0.15017 1.56000 0.29268 0 0 0 0 0 9 0 0 0 0 7 0
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C. The Statistical Results of NSGA-III, MPACO,
and NSGA-II

Table 19: Continued.

1/f1 f2 1/f3 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

137 0.15204 1.28000 0.30000 9 0 0 0 0 0 0 0 0 0 7 0

138 0.15274 1.25000 0.30000 9 7 0 0 0 0 0 0 0 0 0 0

139 0.15276 1.86000 0.28571 0 0 0 0 0 9 5 0 0 0 0 0

140 0.15531 1.62000 0.28571 0 0 0 0 0 7 0 0 9 0 0 0

141 0.15858 1.55000 0.29268 0 0 0 0 0 9 0 0 0 0 0 5

142 0.16067 1.27000 0.30000 9 0 0 0 0 0 0 0 0 0 0 5

143 0.16082 1.38000 0.29268 0 0 0 0 0 0 0 0 9 0 7 0

144 0.16223 1.58000 0.28571 0 0 0 0 0 9 0 5 0 0 0 0

145 0.16441 1.30000 0.29268 9 0 0 0 0 0 0 5 0 0 0 0

146 0.17473 1.40000 0.28571 0 0 0 0 0 0 0 5 9 0 0 0

147 0.24888 0.90000 0.26667 0 0 0 0 0 9 0 0 0 0 0 0

148 0.25407 0.62000 0.27273 9 0 0 0 0 0 0 0 0 0 0 0

149 0.27956 0.72000 0.26667 0 0 0 0 0 0 0 0 9 0 0 0

150 0.42517 0.68000 0.26667 0 0 0 0 0 0 0 9 0 0 0 0

Table 20

NSGA-III
1/f1 f2 1/f 3

1 0.06952 8.68 100

2 0.07019 7.72 4

3 0.07036 8.02 3

4 0.07093 6.82 2

5 0.07122 7.37 1.5

6 0.07145 6.47 1.09091

7 0.0719 7.16 1

8 0.07208 6.02 1

9 0.07256 6.2 0.8

10 0.07341 5.3 0.66667

11 0.0741 6.48 0.63158

12 0.07627 4.62 0.57143

13 0.07792 5.3 0.54545

14 0.07802 5.6 0.52174

15 0.07985 4.87 0.54545

16 0.08105 5.85 0.5

17 0.0817 4.95 0.44444

18 0.08333 3.97 0.48

19 0.08402 4.27 0.4

20 0.08459 3.89 0.48

21 0.0884 3.21 0.42857

22 0.09031 4.21 0.4

23 0.09554 3.56 0.35294

24 0.09752 3.36 0.4

25 0.10173 3.36 0.35294

26 0.10595 3.67 0.34286

27 0.10874 3.55 0.34286

28 0.10988 2.99 0.31579

Table 20: Continued.

NSGA-III
1/f1 f2 1/f 3

29 0.11019 2.89 0.34286

30 0.1147 2.71 0.31579

31 0.11756 2.65 0.32432

32 0.12685 2.55 0.33333

33 0.13384 2.24 0.31579

34 0.15216 2.03 0.29268

35 0.16145 1.92 0.3

36 0.17051 1.99 0.29268

37 0.17871 1.27 0.3

38 0.18988 1.34 0.29268

39 0.25602 1.27 0.27273

40 0.27956 1.34 0.26667

41 0.1 7.8 42.5

42 0.1 7.2 33.5

43 0.1 6.8 27.5

44 0.1 6.2 18.5

45 0.1 5.6 12.5

46 0.1 5 7.1

47 0.16 4.4 4.675

48 0.16 3.8 2.975

49 0.1 4.4 5.9

50 0.16 3.2 1.775

51 0.1 3.8 5.6625

52 0.1 3.2 5.6125

53 0.22 3.4 2.6125

54 0.22 2.8 0.625

55 0.37577 0.996 3.34975

56 0.06623 7.3388 3.34975
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Table 20: Continued.

NSGA-III
1/f1 f2 1/f 3

57 0.24409 2.1668 3.34975

58 0.20791 2.7876 3.34975

59 0.17189 3.5728 3.34975

60 0.13616 4.561 3.34975

61 0.10086 5.7982 3.34975

62 0.20791 2.7876 3.34975

63 0.20791 8.7876 3.34975

64 0.38368 2.3574 3.34975

65 0.35316 0.996 3.34975

66 0.28033 1.678 3.34975

67 0.0352 9.9994 3.34975

68 0.40638 8.8566 3.34975

69 0.38431 8.337 3.34975

70 0.38979 8.547 3.34975

71 0.32185 2.349 3.34975

72 0.03548 9.6992 3.34975

73 0.13622 4.5612 3.34988

74 0.13634 4.5616 3.35023

75 0.03543 9.6266 3.56358

76 0.3168 1.295 3.57137

77 0.14243 4.0068 3.60527

78 0.13617 4.561 3.61382

79 0.28181 1.8256 3.70112

80 0.06495 9.9334 3.74135

81 0.05946 9.998 3.77945

82 0.03234 9.2458 3.78025

83 0.28132 1.678 3.7807

84 0.35609 1.433 3.8949

85 0.38276 2.0834 4.91208

86 0.05692 9.7142 5.08312

87 0.14241 6.1792 5.13159

88 0.3838 8.7272 5.54011

89 0.31968 1.9758 6.90731

90 0.37994 7.7678 8.09498

91 0.38328 2.2392 8.89547

92 0.38012 1.3922 9.5236

93 0.40638 8.8566 9.88592

94 0.38335 8.6474 61.00714

95 0.35273 0.996 86.38796

Table 21

MPACO
1/f1 f2 1/f3

1 0.06952 8.68 100

2 0.07256 6.2 0.8

3 0.07341 5.3 0.66667

4 0.0741 6.48 0.63158

5 0.07627 4.62 0.57143

6 0.07792 5.3 0.54545

Table 21: Continued.

MPACO
1/f1 f2 1/f3

7 0.07802 5.6 0.52174

8 0.07985 4.87 0.54545

9 0.08105 5.85 0.5

10 0.09752 3.36 0.4

11 0.10173 3.36 0.35294

12 0.10595 3.67 0.34286

13 0.10874 3.55 0.34286

14 0.10988 2.99 0.31579

15 0.11019 2.89 0.34286

16 0.1147 2.71 0.31579

17 0.17051 1.99 0.29268

18 0.17871 1.27 0.3

19 0.18988 1.34 0.29268

20 0.25602 1.27 0.27273

21 0.27956 1.34 0.26667

22 0.03346 9.2458 3.34975

23 0.35273 0.9962 3.35025

24 0.15292 9.0056 3.56627

25 0.2462 2.3204 3.64173

26 0.20956 3.0006 3.67611

27 0.31718 1.437 3.77513

28 0.24848 2.4014 3.79922

29 0.28457 1.876 3.82353

30 0.17966 4.1672 4.10582

31 0.25343 6.60826 4.11647

32 0.13914 2.5606 4.14042

33 0.28639 2.0884 4.35678

34 0.14175 3.698 4.46223

35 0.14277 2.987 4.51727

36 0.08449 2.43 4.55926

37 0.17589 4.6238 4.7343

38 0.08002 2.0406 4.7849

39 0.14984 5.929 4.83138

40 0.12355 7.461 4.8318

41 0.14186 6.0588 4.98583

42 0.28437 2.3816 5.13553

43 0.18122 4.935 5.1871

44 0.21446 3.8735 5.25744

45 0.21328 3.9618 5.30667

46 0.24787 9.3158 5.31994

47 0.19132 5.1524 5.51549

48 0.32606 3.1232 5.76914

49 0.21922 4.3486 6.03888

50 0.17991 5.6686 6.33581

51 0.1799 5.6758 6.34759

52 0.32229 2.2544 6.54919

53 0.29146 5.6102 6.90432

54 0.32349 2.3852 7.04616

55 0.32211 2.4028 7.11377

56 0.32594 2.9264 9.26279
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