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Heartbeat rate, or cardiac activity, has been shown to serve

as an effective index for whole organism physiology for a vari-

ety of intertidal invertebrates including mollusks (Chelazzi et

al. 2001; Helm and Trueman 1967; Marshall et al. 2011; San-

tini et al. 1999, 2000) and arthropods (Bini and Chelazzi 2006;

Calosi et al. 2005; De Pirro et al. 1999a; Rovero et al. 2000;

Styrishave et al. 2003; Ungherese et al. 2008). Quantifying this

parameter under a variety of natural and experimental condi-

tions can aid in understanding the general physiological

responses of these organisms to abiotic stresses in the envi-

ronment (Logan et al. 2012; Stillman and Somero 1996; Styr-

ishave et al. 2003; Ungherese et al. 2008; Williams et al. 2011),

biotic interactions (Rovero et al. 1999, 2000), and exposure to

toxins (Chelazzi et al. 2004; Galloway et al. 2004; Halldórsson

et al. 2008; Marshall et al. 2004). In particular, these data can

improve our ability to predict the responses of species to

changing environments such as increases in temperature or

levels of pollution. Such predictions are particularly relevant

for the intertidal zone where many species are thought to

already live at or near their upper lethal limits of stress toler-

ance (Somero 2002).

Measuring cardiac activity of intertidal organisms has

been a focus of research for many decades (Bayne et al. 1976;

Braby and Somero 2006; Nicholson 2002; Pickens 1965). One

of the first methods, which is still used, measures the

changes of circulatory structures with electrical impedance.

This is an invasive technique, which requires implanting

electrodes in the pericardial cavity (Helm and Trueman

1967). Changes in the impedance between the electrodes are

proportional to the change of the circulatory cavity or vessel

during a heartbeat.

A more recently developed alternative to the impedance

method uses an infrared (IR) light emitting diode (LED),

which generates an electric signal that is electronically ampli-
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Abstract

Since its emergence two decades ago, the use of infrared technology for noninvasively measuring the heartbeat

rates of invertebrates has provided valuable insight into the physiology and ecology of intertidal organisms.

During that time period, the hardware needed for this method has been adapted to currently available electronic

components, making the original published description obsolete. This article reviews the history of heartbeat sens-

ing technology, and describes the design and function of a modern and simplified infrared heartbeat rate sensing

system compatible with many intertidal and marine invertebrates. This technique overcomes drawbacks and

obstacles encountered with previous methods of heartbeat rate measurement, and due to the sensor’s small size,

versatility, and noninvasive nature, it creates new possibilities for studies across a wide range of organismal types.
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fied and filtered, coupled with a phototransistor detector

(hereafter IR sensor). In the late 1980s, Depledge and Ander-

sen (1990) devised a computer-aided physiological monitoring

system (CAPMON) in which the average heartbeat frequency

of the target animal was automatically computed via custom-

made hardware connected to a PC. This method was quickly

adopted in marine and intertidal invertebrate physiology

research because it was noninvasive, allowed for multiple car-

diac activities to be measured simultaneously, could function

in both air and water, and was capable of measuring continu-

ously for long periods of time.

Studies using the CAPMON system have been confined to

a relatively small group of investigators (Curtis et al. 2000;

Morritt et al. 2007; Santini et al. 1999; Styrishave et al. 2003).

The CAPMON design has however been regularly upgraded to

be compatible with the evolving electronics technology and

modified, for example, to be connected to any data logger or

oscilloscope. The original hardware described by Depledge

and Andersen (1990) is difficult to assemble using parts cur-

rently available from electronics distributors. Unfortunately,

upgrades to the circuit design have not been widely dissemi-

nated and therefore remain unknown to the great majority of

researchers. Relatively recent studies using this technology

only cite the original CAPMON design although modified

versions of the apparatus are used (Chelazzi et al. 2001;

Chelazzi et al. 1999; De Pirro et al. 1999a; De Pirro et al.

1999b; Morritt et al. 2007; Santini et al. 1999; Sarà and De

Pirro 2011; Ungherese et al. 2008; Williams et al. 2011).

Therefore, the aim of this paper is to disseminate widely the

specific design of an IR sensor and corresponding amplifica-

tion system, thus enabling a uniform method of data collec-

tion by a wide range of researchers. We also report the results

of observational and experimental studies using previous ver-

sions of IR heartbeat sensors, further validating the technique

as an effective way to measure heartbeat rates of intertidal

invertebrates in both laboratory (Calosi et al. 2005; Marshall

et al. 2011; Rovero et al. 2000; Spooner et al. 2007) and field

experiments (Santini et al. 2000; Styrishave et al. 2003;

Williams et al. 2005).

Materials and procedures

The sensors typically used with the IR method of heart rate

measurement combine an IR emitter and an IR detector in a

small package. Fixing the sensor to the exoskeleton of an ani-

mal, above its heart, allows IR light to pass through the shell

of the animal and illuminate the heart and nearby circulatory

vessels. Changes in the shape or volume of the circulatory

structures during a heart contraction, or heartbeat, cause a

change in the amount of IR light reflected from the animal’s

internal anatomy back to the IR detector. These changes in

reflected IR light, transduced to changes in electrical current,

are then electronically amplified and filtered, and processed

by the software (Fig. 1).

The circuit board in the design presented here (Fig. 2) was

produced on a two-layer printed circuit card (ExpressPCB

Corp.). The power supply portion of the circuit (Fig. 2A)

consists of a 6 V battery pack connected to a LM7805 fixed

voltage regulator, which feeds the circuit with 5 V. Two

bypass capacitors (C1 and C2, with 1 µF and 22 µF, respec-

tively) are employed to improve supply voltage stability,

and an LED (D1) indicates when the circuit is powered. This

device uses a CNY70 (Vishay Intertechnologies) sensor (Fig.

2C), the same sensor as the original CAPMON system

(1990). The sensor is connected to a thin, flexible wire (e.g.,

unshielded 30 AWG wirewrap wire, Digikey part K329-ND

or shielded 30 AWG Pro Power 3027442, Newark part

98K8670), to minimize disturbance of the monitored ani-

mal. The other end of the wire connects to the main circuit

via an RJ-11 connector (J1).

The signal conditioning circuit (Fig. 2B) is built around a

single chip (LM 358) containing two identical high-gain oper-

ational amplifiers fed by the same power supply. A 1 µF

bypass capacitor (C7) at the LM 358’s power input is used to

further reduce power supply noise. The two noninverting

amplification stages yield a maximum gain of 78 dB and are

fitted with low-pass filters to reduce the amplification of

unwanted high frequency electrical noise from nearby

equipment or power lines. The combined cut-off frequency

Burnett et al. Cardiac activity of intertidal animals
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Fig. 1. Flowchart of the heartbeat signal from the IR sensor to the data logging device. 



is 2.2 Hz (at a 3 dB level), i.e., the maximum amplification is

approximately 7900¥ for frequencies between 0.2 Hz and 1

Hz, but at frequencies up to 3 Hz the amplification is still rea-

sonable (gain calculated using LTspice IV software, www.lin-

ear.com). The potentiometer (P1) can be manually adjusted,

reducing the overall amplification where needed. Two 22 µF

capacitors (C3 and C4) at the input of each amplifier filter out

the DC component in the signal. Faster capacitors (e.g., 2.2

µF) can also be used, but reduce the amplification of low fre-

quencies and thus should not be used for animals with heart

rates slower than approximately 1 Hz. The diodes Z1 and Z2

control the bias voltage (0.6 V) on the amplification stages,

and the LED D2, placed at the output of the second amplifier

stage, flashes as pulses are received and amplified by the cir-

cuit. The amplified signal is outputted to a BNC connector,

which can be used to connect the circuit to either an external

oscilloscope or PC. The complete bill of materials (BOM) is

provided in Table 1.

A PicoScope 2200 (Pico Technology) or USB-6009 (National

Instruments) is used to convert the analog signal from the sig-

nal conditioning circuit to a digital format, which is then read

and plotted on a PC running PicoScope 6 software

(www.picotech.com) or NI LabView Signal Express

(http://www.ni.com/labview/signalexpress/). Cardiac fre-

quency is calculated using a spectral analysis procedure or

manually by dividing the number of regular voltage oscilla-

tions by the amount of time recorded.

Assessment

In contrast with the CAPMON system, the signal condi-

tioning circuit here described does not transform the analog

signals from the IR sensor into square waves for automatic cal-

culation of cardiac frequencies (Depledge and Andersen 1990;

Depledge et al. 1996). The CAPMON system was originally

intended for measuring heartbeat of decapod crustaceans, so

the automatic counting feature was specific to typical decapod

crustacean heartbeat patterns (Depledge and Andersen 1990).

The benefit of collecting raw, non-square heartbeat signal

waves is that animals can have unique heartbeat patterns that

may otherwise be misinterpreted by an automatic counting

circuit (Fig. 3).

The IR method is most easily used on arthropods and mol-

lusks, as the exoskeletons of these animals provide the IR sen-

sor a stable surface for attachment, enabling consistent mea-

surements of each over time. Though this method and similar

principles have been previously validated in crustaceans

(Depledge and Andersen 1990) and bivalve mollusks (Haefner

et al. 1996), we compared the reliability of the updated ampli-

fier to heartbeat recordings made with the standard imped-

ance method (Helm and Trueman 1967). Simultaneous heart-

beat measurements were made in an adult Atlantic blue crab,

Callinectes sapidus, using the IR method with our updated

amplifier and the impedance method with the implantation

of 30 gauge Teflon-coated magnet wire. Data from the two

methods were collected as analog signals (impedance con-

Burnett et al. Cardiac activity of intertidal animals
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Fig. 2. Functional schematic diagram of IR cardiac sensing amplification circuit. See Table 1 for the Bill of Materials. Note chip LM358 (U1) has two

operational amplifiers, so each is depicted with its pin connections. 



verted by UFI Impedance Converter, UFI) by a single data

acquisition system (Sable Systems UI-2 Data Acquisition Inter-

face, Sable Systems International) at a sampling rate of 5 Hz.

Heartbeat signals from the impedance and IR methods showed

the same heartbeat pattern and frequency (Fig. 4).

The placement of the sensor has a strong effect on the qual-

ity of the heartbeat signal (see “Discussion” for details). In crabs

there are markings on the carapace just dorsal to the heart,

facilitating effective placement of the IR sensor. However, in a

bivalve mollusk, it can be more difficult to place the sensor

effectively over the heart. Using the IR method on the bivalve

Septifer virgatus (shell length = 3 cm), we compared the quality

of heartbeat signals collected at various locations around the

valves of the mussel (Fig. 5). The heartbeat signals at an opti-

mal position (position B) had amplitudes twice that of signals

from a poorly positioned sensor, and more importantly, a reg-

ular repeating pattern. Signals with better quality for S. virgatus

were typically found next to the mid-dorsal posterior hinge

area of the valves, although each was slightly different. Shell

curvature and thickness, as well as the whole animal size, cer-

tainly contribute to variations among conspecifics, so other

species should be evaluated in a similar manner to find the best

location for sensor placement to detect heart contractions. This

evaluation can be performed by observing real-time changes in

signal quality at different locations, even before bonding the

sensor to the animal. Uncertainty in the placement of the sen-

sor does not necessarily mean clear heartbeat signals are diffi-

cult to obtain. For example, limpets of the genus Patella are

fairly resilient to handling disturbance, and it is possible to

identify the most effective sensor placement by simply pressing

the sensor against the limpet’s shell and holding the apparatus

still for the whole measurement. This method is not useful for

organisms that exhibit irregular heartbeat patterns in response

to handling disturbance. Conversely, with proper cleaning of

the area where the sensor is to be attached and by using a

strong bonding agent, a durable yet unintrusive system can be

assembled, which enables longer experiments to be performed.

For example, Fig. 6 shows a week’s worth of heartbeat data

obtained from a single Patella vulgata.

Discussion

In general, the IR sensor amplifier modifications described

in this article are a simplification of the original CAPMON sys-

tem. In lieu of an automatic triggering function that calculates

average heartbeat rates, the updated amplifier preserves the

raw signal after amplifying it to a specific voltage scale. Main-

taining the true shape of the wave is beneficial because each

organism is likely to exhibit a unique heartbeat pattern that

may otherwise be misinterpreted by an automatic counting

circuit, like that seen with the CAPMON system. This is par-

ticularly important for animals that have irregular heartbeat

rates (Depledge et al. 1996).

Noise on the IR heartbeat signal in combination with irreg-

ular or extremely slow heartbeats can create a heartbeat signal

Burnett et al. Cardiac activity of intertidal animals
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Table 1. Bill of Materials for the IR cardiac sensing amplification circuit. Digikey: www.digikey.com; Newark: www.newark.com. 

Reference Type Description Manufacturer part nr Digikey part nr Newark part nr

R1 Resistor 2 kW, 250 mW, 1% CMF1/42001FLFTR CMF502K0000FHEB 40M8448

R5 Resistor 120 W, 250 mW, 1% MCMF0W4FF1200A50 MFP-25BRD52-120R 58K3804

R7, R8, R9 Resistor 47 kW, 250 mW, 1% MCMF0W4FF4702A50 MFP-25BRD52-47K 58K3860

R6 Resistor 22 kW, 250 mW, 1% MCMF0W4FF2202A50 RNMF14FTC22K0 58K3829

R10, R11 Resistor 10 kW, 250 mW, 1% CMF1/41002FLFTR MFP-25BRD52-10K 40M8391

R13 Resistor 1 MW, 250 mW, 1% HVR2500001004FR500 MFR-25FRF-1M00 24R8876

R2, R3, R4 Resistor 4.7 kW, 250 mW, 1% MCMF0W4FF4701A50 MFP-25BRD52-4K7 58K3858

R14 Resistor 5 kW, 250 mW, 1% MCMF0W4BB5001A50 RN60D5001FB14 97M6277

R12 Resistor 1 kW, 250 mW, 1% MCMF0W4FF3900A50 MFP-25BRD52-1K 58K3796

P1 Potentiometer 2 MW, 0.5 W 3299W-1-205LF 3299W-205LF-ND 32K7942

C5,C6 Capacitor 68 hF, 50 V, 5%, Metal Poly BFC237022683 3012PH-ND 95C1397

C2, C3, C4 Capacitor 22 µF, 50 V, 20%, Electrolytic ECA-1EM220 P5149-ND 58T1652

C1, C7 Capacitor 1 µF, 50 V, 20%, Radial ECA-1HM010I P10421TB-ND 38K1171

D1 Green LED 3 mm, 568 nm, 2.2 V, 10 mA WP3A8GD 754-1217-ND 93K6987

D2 Red LED 5 mm, 623 nm, 2 V, 10 mA LTL-10223W 160-1087-ND 93K6988

PC1 Voltage regulator 5 V, 1A LM7805CT LM7805CT-ND 34C1092

U1 Dual op amp 700 kHz dual 8 DIP LM358 296-9554-5-ND 41K4888

Z1, Z2 Zener diode 500 mW, 6.2V, 5% 1N753A — 10M6196

BNC BNC connector 50 W 31-5431-2010 ARF1065NW-ND —

J1 RJ-11 plug 4 conductor 30-9910 — 30-9910

J2 RJ-11 connector 4 pin 5520250-2 A31405-ND —

CNY70 IR sensor 950 nm emitter/transducer CNY70 751-1025-ND 95B4223
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Fig. 3. Unfiltered heartbeat signals of the limpet Cellana grata (A), the mussel Septifer virgatus (B), and the mud crab Panopeus herbstii (C). The scale of

the y-axes varies among graphs. Note that depending on the species (and also on the sensor placement), the shape of the curve may feature multiple

peaks per heartbeat. Signal noise also varies among the graphs, potentially caused by electrical noise from the oscilloscope. Therefore, automatic peak

counting may not give accurate results. Shaded areas are provided to facilitate signal comparison. 

Fig. 4. Heartbeat patterns of an Atlantic blue crab (Callinectes sapidus) measured simultaneously with the standard impedance method (black line) and

with IR sensors (red line). Both lines show seven complete heartbeats in the 10 s interval. Shaded areas are provided to facilitate signal comparison. 



too complex for automatic analysis (e.g., FFT analysis, peri-

odogram) and often requires heartbeat frequencies to be iden-

tified and counted manually. In this context, it is important to

clarify that the IR method is primarily designed to measure

heartbeat frequency and not signal amplitude. Sensor place-

ment must therefore be optimized (see above) to obtain the

best signal quality—i.e., cyclic fluctuations in voltage can be

identified, the number occurring over a continuous period can

be determined, and rate can then be calculated (Fig. 7).

Because even the continuous monitoring of one animal with-

out repositioning the sensor can reveal changes in amplitude

and shape of the signal (e.g., Fig. 7A-D), one cannot use the

amplitude and shape of the signal to assess cardiac function.

Additionally, preserving heartbeat signals in raw format may

allow further analyses to be made, such as the identification of

bradycardia or periods of no heartbeat (Chelazzi et al. 2001;

De Pirro et al. 1999b; Marshall et al. 2004).

The sensor component of the system described here has

been modified to detect heartbeat of smaller invertebrates (<1

cm) by direct contact of the IR sensor (Calosi et al. 2003) or

indirectly by placing the animal within the confinement of an

aluminum foil bag (Van Aardt and Vosloo 1996). It can also be

modified to measure cardiac activity of animals under simu-

lated hyperbaric conditions (Robinson et al. 2009). Tailoring

IR sensors to particular species allows the IR method to be

fairly reliable, robust, flexible, and most important, noninva-

sive. The application of this method to other organisms has

likely been limited by the availability and awareness of the

method, rather than the compatibility of the sensor with the

study organisms. Apart from the amplification circuitry, fur-

ther simple modifications to the hardware can expand and

enhance the use of the system in physiology and ecology stud-

ies. For example, finer gauge wire for the entire length

between the amplifier and the IR sensor reduces movement

Burnett et al. Cardiac activity of intertidal animals
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Fig. 5. Variation in measurements of the heartbeat signal of the mussel Septifer virgatus with the IR sensor placed on three regions on the shell (A, B,

and C). Shaded sections are provided to facilitate comparison of signals. 



restriction when measuring heartbeat rate in mobile or bur-

rowing animals (shielded 30 AWG Pro Power 3027442,

Newark part 98K8670), we commonly use sensor leads of 2 m

without detectable signal attenuation; smaller and flatter IR

sensors, e.g., reflective optical sensor TCRT1010 (Vishay

Intertechnologies, Inc.), facilitate measuring heartbeat rate in

smaller organisms or in burrowing organisms; multichannel

analog data loggers, e.g., National Instruments USB-6009

(National Instruments Corp.), allow for multiple individuals

to be monitored concurrently. The circuit described here has

to be printed in a PCB board and manually assembled, using

the parts listed in Table 1, which might be a serious obstacle

to researchers unfamiliar or un-equipped to work with elec-

tronics. Alternatively, electrical contractors can easily con-

struct the circuit boards and sensors for this system at rela-

tively low cost (e.g., AMP-3, Newshift Lda). These

professionally built systems have the additional advantage of

improved voltage stability, industrial quality assemblage, and

sturdy connectors.

Limitations to the IR method may be encountered when

recording the heartbeat of active animals. Distortions to the

signal can be caused by body movements such as foot move-

ment in small littorinid snails, radula movement in gas-

tropods, and siphon activity in bivalves. Foot movement dur-

ing locomotion or radula movement while feeding can create

a signal that is momentarily greater than the signal of the true

heartbeat. Detecting foot movement may be difficult to avoid

in smaller active gastropods, but disturbance from the radula

movement can be minimized by placing the IR sensor on an

alternative location on the shell where a heartbeat signal is

still detectable. To some extent this is also the case for the elec-

trical impedance method, since the measurement of imped-

ance variation between two points in the organism’s body is

also susceptible to movement artifacts.

Further limitations may be encountered when using the IR

method due to the penetration and detection of the IR light.

Infrared light penetration of the shell depends on shell thickness

and structure. Therefore, this method may not work well for ani-
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Fig. 6. Cardiac frequency of a china limpet (Patella vulgata) exposed to 7 d of simulated tides under laboratory conditions. The sensor was attached to

the animal during the acclimation period, and remained in place for the whole experiment. Heartbeat was measured every 30 min in the period between

1 h before the low tide and 2 h after the low tide. Closed circles show heartbeat measurements. The dashed gray line shows the thermal profile to which

the animal was exposed during the experiment. The vertical shaded regions indicate periods of immersion, and the vertical unshaded regions indicate

periods of emersion. Inserts A-D show the heartbeat signal recorded at the 4 different times indicated, illustrating that even with considerable variability

in signal shape and amplitude, it is still possible to obtain comparable heartbeat rates. Signal amplitude was 2.5 V in A, C, and D and 1.3 V in B. 



mals with extremely thick shells, though the upper limit of

thickness has not been established. Detecting a heartbeat signal

may be difficult if changes in ambient IR light cause signal fluc-

tuations that mask the heartbeat. This ambient IR light problem

can be avoided by creating a seal around the junction of the IR

sensor and the animal’s shell to block out ambient IR light.

The compact design and relative simplicity of the amplifier

circuit and sensor described herein should facilitate more in

situ studies of marine invertebrates, particularly those in the

intertidal zone. Use of a computer or oscilloscope that can be

enclosed in water-proof containers or transported quickly to

measure heartbeats of animals in wave-exposed parts of a

shore (Santini et al. 2000; Williams et al. 2005) complements

the portable design of the amplifier circuit and sensor. The

noninvasive nature of the sensor promotes longer term phys-

iological studies (Fig. 6) and behavioral studies (Curtis et al.

2000; Rovero et al. 2000; Santini et al. 2002) for many species

that would otherwise be hindered by the disturbance from the

implantation of electrodes associated with the impedance

method of heartbeat measurement. Along the same lines,

marine microbiological and immunological studies requiring

sterile methods for measuring physiological responses (Bur-

nett et al. 2006) can also benefit from the application of non-

invasive sensing.

It is the authors’ hope that the integration of taxonomi-

cally diverse physiological and ecological data, as enabled by

the widespread compatibility of the IR method, can provide

more comprehensive surveys of ecosystem health (Galloway

et al. 2004; Hagger et al. 2009) in response to environmental

stressors (Calosi et al. 2005; Chelazzi et al. 2001; Williams et

al. 2011) or pollution (Bloxham et al. 1999; Curtis et al. 2001;

Marshall et al. 2004).
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Fig. 7. Examples of heartbeat signals of P. vulgata recorded under various laboratory conditions. Signal quality can be degraded by numerous factors:

signal below amplification power (A, B), poor insulation of sensor wiring (C), presence of electronic noise (E, F), sub-optimal placement of the sensor

(G), or movement of internal organs other than the heart (possibly H). Such conditions can render the signal useless (A) or almost useless (B), but as

long as a regular repeating pattern can be found the signal has sufficient quality for heartbeat rate to be calculated (C). Signals like that in G may require

additional recordings so they can be more safely interpreted. Better quality signals are usually composed of two crests per heartbeat, with crests having

equal or very different amplitudes (D, H-I, K-L, but see J). Clipping occurs when the signal voltage exceeds the circuit output range (F, G, I), and results

in a flat top or bottom in the signal; this situation is fairly common and does not necessarily indicate a poor signal. It can, however, be avoided by tun-

ing the potentiometer P1 in the circuit (see Fig. 2). 
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