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Summary. It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-
diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator.
The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265–270) for
individual-based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons)
to estimate the number of undetected species in samples. Applying a modified Good–Turing frequency formula, we derive
an approximate formula for the first-order bias of this traditional lower bound. The approximate bias is estimated by using
additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and
an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid
for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test
our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show
that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by
mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower
bounds to real data for illustration and for comparisons with previously developed estimators.
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1. Introduction
Species richness (i.e., the number of species present in a
community) is the simplest and most intuitive measure of
biodiversity. The estimation of species richness based on
incomplete samples has been widely applied not only in
macroecological and conservation-related studies, but also
in many other disciplines; see Bunge and Fitzpatrick (1993),
Colwell and Coddington (1994), Walther and Morand (1998),
Walther and Martin (2001), Magurran (2004), Royle and Do-
razio (2008), Gotelli and Colwell (2011), and Chao and Chiu
(2014) for various applications. In general contexts, “species”
can be defined in a broad sense: They may be biological
species, bugs in software programs, words in a book, genes or
alleles in genetic code, or other discrete entities. In this article,
we focus on biological applications, namely the unknown num-
ber of species within a community. Although we use biological
terminology, our framework applies to all other relevant fields.

In most biological surveys, data can be generally classi-
fied into two types: (Individual-based) abundance data and
(sampling-unit-based) incidence data. For abundance data,
the sampling unit is an “individual” and a sample of indi-
viduals is randomly taken from the community. For incidence
data, the sampling unit is usually a trap, net, quadrat, plot, or
timed survey, and it is these sampling units, not the individual
organisms, which are sampled randomly and independently.
Because it is not always possible to count individuals within
a sampling unit, estimation can be based on a set of sampling

units in which only the incidence (detection or nondetection)
of each species is recorded.

Due to sampling limitation, there are undetected species
in almost every survey. Consequently, the observed species
richness in a sample is almost always a negatively biased
estimate of the true (or total) species richness (observed
species plus undetected species). Since the pioneering work by
Fisher, Corbet, and Williams (1943), a wide range of statisti-
cal sampling-theory-based methodologies have been proposed
for both abundance and incidence data to estimate the true
species richness, or, equivalently, the number of undetected
species in the samples.

In this article, we focus on a nonparametric approach in
the sense that no assumptions are made about the underly-
ing distribution of species abundances. One of the first non-
parametric approaches was the jackknife method applied by
Burnham and Overton (1978, 1979), which obtained a class of
species richness estimators for both abundance and incidence
data. Their first- and second-order jackknife estimators have
been used in biological research, although Cormack (1989)
implied that the jackknife method does not have a theoreti-
cal basis for bias reduction of species richness estimation. For
comparative purposes, these two estimators are considered in
our simulation studies (see Section 5).

Both the parametric and nonparametric approaches have
so far suffered from increasing inaccuracies (large bias
and/or large variance) as the community becomes more
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hyper-diverse, especially if the community contains many
almost undetectable species (e.g., Novotny and Basset, 2000).
In such cases, the confidence intervals of point estimates of
species richness often become very wide. Given this difficulty,
the determination of a lower bound for species richness may
be of more practical use, especially if the accuracy of this
lower bound is much better than the point estimate of species
richness.

Based on the intuitive idea that, when using abundance
data, rare species yield the most information about unde-
tected species, Chao (1984) used only the frequencies of
the rarest species (namely, singletons and doubletons) to
construct a nonparametric lower bound estimator of the true
species richness. Here “singletons” and “doubletons” refer,
respectively, to the number of species that are observed only
once and twice in the sample. A similar-type lower bound
was later derived by Chao (1987) for incidence data, using
the information of those species that are detected in only
one or two sampling units. Colwell and Coddington (1994)
referred to these two lower bounds as the Chao1 estimator
(for abundance data) and Chao2 estimator (for incidence
data) in the ecological literature (see later sections for
mathematical formulas) as these two lower bounds converge
toward the true species richness when the sample size or the
number of sampling units is sufficiently large. Since then,
they have been used as species richness point estimators
and have been applied in various disciplines and featured
in several software programs. We will therefore use the
terms “lower bound” and “estimator” interchangeably for
Chao-type estimators throughout the article. Lanumteang
and Böhning (2011) derived an extended Chao1 estimator
under the gamma-Poisson model. Their estimator is also
included in our comparison (see Section 5).

For abundance data, the Chao1 estimator is nearly un-
biased for species richness when the species abundances are
homogeneous or the sample size is sufficiently large. However,
when the species abundances are highly heterogeneous and
the sample sizes are not large enough, the Chao1 estimator
becomes negatively biased (Chao and Chiu, 2014) because
it was derived as a lower bound, rather than as a point
estimator. The Chao2 estimator exhibits similar performance
for incidence data. Therefore, in this article, we derive an
approximation formula for the bias of the Chao1 and Chao2
estimators based on a generalization of the Good–Turing
frequency formula originally developed by Turing and Good
(Good, 1953, 2000). We then eliminate the biases of these
lower bounds and thus obtain new improved lower bounds
along with their variance estimators.

We focus on the new improved lower bound for abundance
data; all procedures for incidence data are generally parallel.
In Section 2, we briefly review the Chao1 lower bound. Since
the derivation of our improved lower bound is based on the
Good–Turing frequency formula, we provide necessary back-
ground information about the Good–Turing frequency the-
ory and propose a more accurate formula in Section 3. The
improved lower bound for abundance data is derived in Sec-
tion 4.1. The corresponding lower bound for incidence data
is summarized in Section 4.2. Section 5 examines the per-
formance of the proposed lower bounds by using abundance
data sets simulated from several species abundance models.

The performance of the proposed new Chao1 lower bound is
also compared with those of the Chao1 lower bound, two jack-
knife estimators and the estimator proposed by Lanumteang
and Böhning (2011). In Section 6, we use real data sets
to illustrate the proposed lower bound for abundance data
(Section 6.1) and incidence data (Section 6.2). Section 7 pro-
vides some concluding remarks and discussion.

2. The Chao1 Lower Bound

Here, we briefly review the traditional lower bound of species
richness for abundance data (Chao, 1984). Assume that there
are S different species in a community, and the species are
indexed by 1, 2,. . . , S, with S unknown. Suppose n individ-
uals are independently selected with replacement from the
community, and their species identities are determined. Let
pi denote the detection probability that the ith species is de-
tected in any randomly observed individual, i = 1, 2,. . . , S,∑S

i=1
pi = 1. The detection probability is a combination of

species abundance and individual detectability, which in turn
is determined by species characteristics such as size, color,
vocalizations, and movement patterns. The species sample
frequencies X1, X2,. . . , XS (only those species with Xi > 0
are observed in the sample) follow a multinomial distribution

with the cell total n = ∑S

i=1
Xi and the cell probabilities (p1,

p2,. . . , pS).
Let fk (abundance frequency counts), k = 0, 1, . . . , n, be

the number of species that were observed or represented ex-
actly k times in the sample. Here, f0 denotes the number of
undetected species in the sample while f1 denotes the number
of “singletons” and f2 denotes the number of “doubletons.”
Define Sobs = ∑S

i=1
I(Xi > 0) = ∑

k≥1
fk as the number of dis-

tinct species observed in the sample, where I(A) is the indi-
cator function, that is, I(A) = 1 if the event A occurs, and 0
otherwise.

Chao (1984) proposed a lower bound of species richness
via estimating E(f0) by a nonparametric approach. Under the
assumption that (p1, p2,. . . , pS) are fixed unknown parame-
ters, the sample frequency Xi follows a binomial distribution.
Thus, we have a general expectation formula:

E(fk) = E

[
S∑

i=1

I(Xi = k)

]

=
S∑

i=1

(
n

k

)
pk

i (1 − pi)
n−k, k = 0, 1, 2, ...,n. (1a)

In Web Appendix A, we show that with slight modifications
all the derivations and estimators below are also valid under
the binomial-mixture and Poisson-mixture models. For sim-
plicity, our presentation throughout the article is focused on
the fixed-parameter formula (1a) under a multinomial model
for the species sample frequencies (X1, X2,. . . , XS) as de-
scribed earlier.

Based on (1a), the Cauchy-Schwarz inequality yields

[
S∑

i=1

(1 − pi)
n

][
S∑

i=1

p2
i (1 − pi)

n−2

]
≥

[
S∑

i=1

pi(1 − pi)
n−1

]2

.

(1b)
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Thus, a theoretical lower bound for E(f0) is derived as

E(f0) ≥ n − 1

n

[E(f1)]
2

2E(f2)
.

The following lower bound for species richness S is thus pro-
vided:

S = E(Sobs) + E(f0) ≥ E(Sobs) + n − 1

n

[E(f1)]
2

2E(f2)
. (2a)

The Chao1 lower bound or estimator of species richness is
obtained by replacing the expected values in (2a) with the
observed data:

ŜChao1 = Sobs + (n − 1)

n

f 2
1

2f2

. (2b)

When f2 = 0, a bias-corrected estimator when species abun-
dances are homogeneous was suggested (e.g., Chao and Shen
2010, p. 15):

Ŝ∗
Chao1 = Sobs + (n − 1)

n

f1(f1 − 1)

2(f2 + 1)
. (2c)

The equality in (2a) holds when species abundances are homo-
geneous, that is, p1= p2 = · · · = pS . Thus, the Chao1 estima-
tor is nearly unbiased for species richness in the homogeneous
case.

Applying the standard asymptotic approach (Chao, 1987),
the following estimated variance estimators can be obtained:

vâr(ŜChao1) = f2

[
1

4

(
n − 1

n

)2
(

f1

f2

)4

+
(

n − 1

n

)2
(

f1

f2

)3

+ 1

2

(
n − 1

n

)(
f1

f2

)2
]
, (3a)

vâr(Ŝ∗
Chao1) = 1

4

(n − 1)2

n2
f1(2f1 − 1)2

+ 1

2
f1(f1 − 1) − 1

4

f 4
1

Ŝ∗
Chao1

. (3b)

When sample size n is sufficiently large and ŜChao1 > Sobs,
the associated 95% confidence interval of species richness
based on the Chao1 estimator is constructed using a log-
transformation (Chao, 1987) because the distributions of
ŜChao1 (and ŜChao1 − Sobs) are generally skewed to the right.
Treating log(ŜChao1 − Sobs) as an approximately normal ran-
dom variable, a 95% interval of S is obtained as[

Sobs + (ŜChao1 − Sobs)/R, Sobs + (ŜChao1 − Sobs)R
]
, (4)

where R = exp{1.96[1 + vâr(ŜChao1)/(ŜChao1 − Sobs)
2]1/2}. In

this case, the resulting lower confidence limit is always greater
than or equal to the observed species richness (see Web
Appendix B for a sketch of the derivations of equations (3a,
3b, and 4)). A reviewer suggested that an alternative approach

would treat log(ŜChao1)as an approximately normal random
variable. A simulation was carried out to compare our and
this alternative approach; see Web Appendix B for details.

When the sample size is not sufficiently large so that the
community is under-sampled, the Chao1 estimator may have
a large negative bias. In this case, it is more sensible to infer
a minimum value of species richness by applying a one-sided
95% confidence interval [Sobs + (ŜChao1 − Sobs)/R

∗, ∞), where
R∗ = exp{1.64[1 + vâr(ŜChao1)/(ŜChao1 − Sobs)

2]1/2}. See Sec-
tion 6.1 for an example.

3. A More Accurate Modified Good-Turing
Frequency Formula

The Good–Turing frequency formula was originally devel-
oped during the World War II cryptographic analyses by the
founder of modern computer science, Turing and Good. Tur-
ing never published this theory, but permitted Good to pub-
lish it; see Good (1953), Good and Toulmin (1956), and Good
(2000). The Good–Turing frequency theory can be formulated
as follows: For those species that appeared r times in a sample
of size n within a multinomial sample, how can one estimate
the true mean relative abundance of those species? Good and
Turing focused on the case of small r, that is, rare species (or
rare code elements, in Turing’s case). For example, Turing
recognized that singletons (those species with frequency one)
have a mean relative abundance that is not 1/n, but instead
the frequency formula as summarized below.

Turing and Good discovered a surprisingly simple and re-
markably effective, although nonintuitive answer. Given data,
define αr = ∑S

i=1
piI(Xi = r)/fr, r = 0, 1, . . . as the true mean

relative abundance of those species that appeared r times in
a sample of size n. The Good–Turing frequency formula then
states that αr, r = 1, 2, . . . is not estimated by its sample fre-
quency r/n, but rather by

α̃r = (r + 1)

n

fr+1

fr

≡ r∗

n
, r = 1, 2 . . . (5a)

where r∗ = (r + 1)fr+1/fr. For r = 0, α̃0 is not obtainable be-
cause f0 is unknown. However, the product of α̃0 and f0 (i.e.,
the sum of abundances of all undetected species in the sam-
ple) can be well estimated by the proportion of singletons,
f1/n. The Good–Turing formula has been extensively dis-
cussed and used in statistics, computer science, linguistics,
and many other disciplines (Chao and Jost, 2012). This for-
mula implies that, for those species that appeared as a sin-
gleton in a sample, the mean relative abundance should be
close to α̃1 = 2f2/(nf1). The Good–Turing frequency formula
is thus contrary to most people’s intuition because the esti-
mator in (5a) depends not only on the sample frequency r of
the focal species, but also on the frequency information de-
rived from the other species. Good (1953) used a Bayesian
approach to obtain (5a) whereas Robbins (1968) derived it as
an empirical Bayes estimator.

Below we provide a more direct derivation of (5a) in order
to present our extension. Considering the expected total prob-
abilities of those species with frequency r in the sample, the
following approximation for small r = 0, 1,. . . can be derived
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from (1a):

E

[
S∑

i=1

piI(Xi = r)

]
=

S∑
i=1

(
n

r

)
pr+1

i (1 − pi)
n−r

≈
S∑

i=1

(
n

r

)
pr+1

i (1 − pi)
n−(r+1)

= r + 1

n − r
E(fr+1) ≈ r + 1

n
E(fr+1).

(5b)

If all the expected values in (5b) are approximated by their ob-
served data, then the definition of αr implies (r + 1)fr+1/n ≈
αrfr, leading to the Good–Turing frequency formula (5a).
Chao and Jost (2012) advocated that one notion of sample
completeness can be objectively measured by the sample cov-
erage (Good, 1953; Good and Toulmin, 1956), which is defined

as C =
S∑

i−1

piI(Xi > 0) = 1 −
s∑

i−1

piI(Xi = 0) = 1 − α0f0. Based

on the Good–Turing formula, the sample coverage estimator
thus becomes 1 − α̃0f0 = 1 − f1/n (see Chao and Jost, 2012,
for a brief review).

Instead of considering the total probabilities of those
species with frequency r in the sample in (5b), we evaluate
the total odds as follows:

E

[
S∑

i=1

pi

1 − pi

I(Xi = r)

]
=

S∑
i=1

pi

1 − pi

(
n

r

)
pr

i (1 − pi)
n−r

=
S∑

i=1

(
n

r

)
pr+1

i (1 − pi)
n−(r+1)

= r + 1

n − r
E(fr+1). (6)

An advantage of our approach is that no approximation needs
to be used in the above derivation, and thus a more accurate
formula can be obtained. Combining (6) and the approxima-
tion

E

[
S∑

i=1

pi

1 − pi

I(Xi = r)

]
≈ αr

1 − αr

E(fr),

we obtain our proposed estimator of αr:

α̂r = (r + 1)fr+1

(n − r)fr + (r + 1)fr+1

, r = 1, 2, . . . (7a)

For r = 0, the above formula is in terms of f0 and thus is not
obtainable. However, if we replace f0 with the estimator f̂0

from the Chao1 estimator given in (2b) and (2c), then a more
accurate estimator of the sample coverage is measured by 1 −
α̂0f̂0, which can be expressed by this estimator published in

Chao and Jost (2012):

Ĉ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − f1

n

[
(n − 1)f1

(n − 1)f1 + 2f2

]
, if f2 > 0;

1 − f1

n

[
(n − 1)(f1 − 1)

(n − 1)(f1 − 1) + 2

]
, if f2 = 0.

(7b)

4. New Improved Lower Bounds

4.1. A New Improved Lower Bound for Abundance Data

Our approach is to evaluate the magnitude of the bias asso-
ciated with the Chao1 lower bound. The magnitude of the
first-order bias from (2a) is:∣∣bias(ŜChao1)

∣∣ = E(f0) − (n − 1)

n

[E(f1)]
2

2E(f2)

= E(f0){2E(f2)/[n(n − 1)]} − [E(f1)/n]2

2E(f2)/[n(n − 1)]
.

(8a)

Using (1a) and the definition of αr in the Good–Turing fre-
quency formula, we can then separately approximate each
term in the numerator of (8a) as follows:

E(f0) =
S∑

i=1

(1 − pi)

pi

1

n
E[I(Xi = 1)]

≈ 1 − α1

α1

S∑
i=1

pi(1 − pi)
n−1.

2E(f2)

n(n − 1)
=

S∑
i=1

(1 − pi)

pi

(
n

3

)−1

E[I(Xi = 3)]

≈ 1 − α3

α3

S∑
i=1

p3
i (1 − pi)

n−3.

E(f1)

n
=

S∑
i=1

(
1 − pi

pi

)2
(

n

3

)−1

E[I(Xi = 3)]

≈
(

1 − α3

α3

)2 S∑
i=1

p3
i (1 − pi)

n−3.

Using the above three approximations, the numerator of (8a)
becomes

E(f0)

{
2E(f2)

n(n − 1)

}
−

[
E(f1)

n

]2

≈
[

1 − α1

α1

1 − α3

α3

−
(

1 − α3

α3

)2
]

×
[

S∑
i=1

pi(1 − pi)
n−1

]
×

[
S∑

i=1

p3
i (1 − pi)

n−3

]
. (8b)



An Improved Nonparametric Lower Bound of Species Richness 675

For the last two terms in the above formula, the Cauchy–
Schwarz inequality yields:[

S∑
i=1

pi(1 − pi)
n−1

][
S∑

i=1

p3
i (1 − pi)

n−3

]
≥

[
S∑

i=1

p2
i (1 − pi)

n−2

]2

.

(8c)

From (8b), (8c), and (1a), the magnitude of the bias of the
Chao1 lower bound is approximately equal to

∣∣bias(ŜChao1)
∣∣ ≈ 1 − α3

α3

[
1 − α1

α1

− 1 − α3

α3

]
2E(f2)

n(n − 1)
. (9)

The right hand side of the above formula is positive because
species that are observed three times in a sample should have
a larger mean abundance than that of singletons (i.e., α3 is
larger than α1). Applying the Good–Turing estimates in (7a)
for α3 and α1 in (9), we then obtain a lower bound of species
richness:

ŜChao1 + (n − 3)

4n

f3

f4

× max

(
f1 − (n − 3)

2(n − 1)

f2f3

f4

, 0

)
.

(10a)

When n is large enough, we can omit the two terms (n − 3)/n
and (n − 3)/(n − 1) in (10a) and thus obtain the improved
lower bound. From hereupon, we refer to it as the iChao1
(here i refers to “improved”) lower bound or estimator:

ŜiChao1 = ŜChao1 + f3

4f4

× max

(
f1 − f2f3

2f4

, 0

)
. (10b)

If f4 = 0, we suggest replacing f4 with f4+1 in (10b) so that
the iChao1 lower bound is always obtainable. The standard
asymptotic method can be applied to derive a variance esti-
mator for any species richness estimator Ŝ, which is a function
of frequency counts (f1, f2, . . ., fn) (such as the Chao1 or the
iChao1 estimator). Using this approach, we derive a variance
estimator:

vâr(Ŝ) =
n∑

i=1

n∑
j=1

∂Ŝ

∂fi

∂Ŝ

∂fj

côv(fi, fj), (11)

where

côv(fi, fj) =
{

fi(1 − fi/Ŝ), if i = j;

−fifj/Ŝ, if i �= j.

The performance of this variance estimator is examined in
Section 5. The associated confidence intervals of species
richness based on the iChao1 estimator can be similarly
constructed as the one given in (4), Section 2. The iChao1 es-
timator uses information of the first four frequency counts (f1,
f2, f3, and f4) to estimate the number of undetected species
in the samples; it is thus unavoidable that it has a larger
associated variation than the Chao1 estimator, which only
uses (f1, f2) to estimate the number of undetected species.

From this derivation, we can derive the following justifi-
cations and properties for the use of the iChao1 bound for
estimating species richness. (i) Like the Chao1 estimator, the
iChao1 estimator is an approximate lower bound for any sam-
ple size; the iChao1 estimator is a greater lower bound because
it is always greater than or equal to the Chao1 estimator.
(ii) The iChao1 estimator becomes asymptotically unbiased
when the sample size n is sufficiently large. Consequently, the
use of a two-sided confidence interval is justified in this case.
(iii) In the homogeneous case, we can apply (1a) and prove
that the expected value of f1 − f2f3/(2f4) is approximately
equal to 0. Here, the approximation is satisfactory in the fol-
lowing sense: The ratio of the error over the expected value of
the number of undetected species tends to zero. In this case,
the iChao1 estimator reduces to the original Chao1 estimator,
implying that the iChao1 estimator is also a nearly unbiased
estimator of species richness in the homogeneous case.

4.2. A New Improved Lower Bound for Incidence Data

Assume that there are T sampling units, and that they are
indexed 1, 2,. . . ,T. The detection or nondetection of each
species within each sampling unit is recorded to form a
species-by-sampling-unit incidence matrix (Zij) with S rows
and T columns. Here, Zij = 1 if species i is detected in sam-
pling unit j, and Zij = 0 otherwise. Let Zi+ be the number of

sampling units in which species i is detected, Zi+ = ∑T

j=1
Zij

whereby Zi+ is analogous to Xi in the abundance data. Species
present in the community but not detected in any sampling
unit yield Zi+ = 0. Let Sobs be the total number of species
observed in the T sampling units, that is, only species with
Zi+ > 0 contribute to Sobs.

Our model is based on that Zi+, i = 1, 2,. . . , S follows a bi-
nomial distribution with the total number T and the detection
probability θi, which is defined as the chance of encountering
at least one individual of the ith species in any sample. Denote
the sample incidence frequency counts by (Q1, Q2, . . ., QT ),
where Qk is the number of species that are detected in ex-
actly k sampling units in the data, k = 1, 2,. . . , T. Here, Qk

is analogous to fk in the abundance data. Hence, Q1 repre-
sents the number of “unique” species (those that are detected
in only one sampling unit), and Q2 represents the number
of “duplicate” species (those that are detected in only two
sampling units). It follows from the distribution of Zi+ that

E(Qk) =
S∑

i=1

P(Zi+ = k) =
S∑

i=1

(
T

k

)
θk
i (1 − θi)

T−k.

(12a)

Comparing (12a) and (1a), we see that the expectations for
frequency counts under abundance data and incidence data
are similar. Therefore, all derivations are parallel with n be-
ing replaced by T, and the frequencies counts (f1, f2, . . ., fn)
being replaced by (Q1, Q2, . . ., QT ). For example, the Chao2
lower bound or estimator (Chao, 1987) for incidence data has
an analogous form to the Chao1 lower bound:

ŜChao2 =
{

Sobs + [(T − 1)/T ]Q2
1/(2Q2), if Q2 > 0;

Sobs + [(T − 1)/T ]Q1(Q1 − 1)/2, if Q2 = 0.

(12b)
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The variance formulas are also similar to those given in (3a)
and (3b). Using exactly the same derivations as for the abun-
dance data (Section 4.1), we obtain the following improved
lower bound (which we refer to as the iChao2 lower bound or
estimator from hereupon):

ŜiChao2 = ŜChao2 + (T − 3)

4T

Q3

Q4
× max

(
Q1 − (T − 3)

2(T − 1)

Q2Q3

Q4
, 0

)
.

(13)

Unlike for the abundance data, T may be a small number.
Therefore, we suggest retaining (T−3)/T and (T−3)/(T−1) in
the above formula for the iChao2 lower bound. The variance
estimator of the iChao2 estimator and the associated con-
fidence interval can be obtained as those in the abundance
data.

5. Simulation Results

To investigate the behavior of the new estimators and to
compare them with some previously developed estimators,
we performed extensive simulations by generating data sets
from various species abundance models. Here, we report the
results from six representative models for generating abun-
dance data. In each model, we fixed the number of species
at 200. The functional forms for species’ relative abundances
(p1, p2, . . ., p200) or the species abundance distributions are
given below, whereby c is a normalizing constant in all cases,
such that

∑S

i=1
pi = 1. When species abundances were sim-

ulated from a distribution, we first generated a set of 200
random variables, which we regarded as fixed parameters in
the simulation. In each case, we also give the CV of the gen-
erated set (which is the ratio of the standard deviation over
the mean) of (p1, p2, . . ., p200). The CV value quantifies the
degree of heterogeneity of the probabilities (p1, p2, . . ., pS).
When all probabilities are equal, CV = 0. A larger value of
CV indicates a higher degree of heterogeneity among proba-
bilities.

Model 1 (a homogeneous model) with pi = 1/S and S = 200.
This is the model with no heterogeneity among species relative
abundances (CV = 0).

Model 2 (negative binomial model) with parameter k = 4,
r = 0.04, and pi = cai, where (a1, a2,. . . , a200) is a ran-
dom sample from a negative binomial (4, 0.04) distribution
with a density function f (a) = {(a − 1)!/[(k − 1)!(a − k)!]}(1 −
r)a−krk, a ≥ k. This is the classical species abundance distri-
bution first used by Fisher et al. (1943) (CV = 0.49).

Model 3 (broken-stick model, MacArthur, 1957) with
pi = cai, where (a1, a2,. . . , a200) is a random sample from an
exponential distribution. Or, equivalently, (p1, p2, . . ., p200)
follows a Dirichlet distribution with parameter 1 (CV = 0.96).

Model 4 (log-normal model) with parameters μ = 0, σ2 = 1,
and pi = cai, where (a1, a2,. . . , a200) is a random sample from
a log-normal (0, 1) distribution (CV = 1.82).

Model 5 (Zipf–Mandelbrot model) with pi = c/(i − 0.1),
i = 1, 2,. . . , 200. This is a commonly used model in litera-
ture and linguistics (Magurran, 2004) (CV = 3.08).

Model 6 (power decay model) with pi = c/i1.2, i = 1,. . . ,
200 (CV = 4.20).

The CV values of the above six models range from 0 to
4.20 and thus cover most practical cases in real applications.

For each fixed model, we considered a range of sample sizes
(n = 100–800 in an increment of 100). For each combination of
abundance model and sample size, 1000 simulated data sets
were generated from the abundance model. For each gener-
ated data set, we then computed the observed species rich-
ness (Sobs) as well as the following nonparametric estimators
and their estimated standard errors (s.e.) based on a standard
asymptotic method; see (11):

(i) The first- and second-order jackknife estimators: The
first-order jackknife estimator (Sobs + f1) uses the num-
ber of singletons to estimate the number of undetected
species. The second-order jackknife estimator (Sobs +
2f1−f2) uses both singletons and doubletons to estimate
the number of undetected species.

(ii) A new estimator proposed by Lanumteang and Böhning
(2011), which we refer to as the LB estimator from here-
upon.

(iii) The Chao1 estimator; see (2b, 2c).
(iv) The proposed iChao1 estimator; see (10b).

In Tables 1 and 2, we show the results for three sample sizes
(n = 200, 400, and 800) for Model 2 (negative-binomial model)
and Model 6 (power-decay model), respectively. The simu-
lation results for the other four models are given in Web
Appendix C.

For each estimator, the estimates and their estimated s.e.
were averaged over 1000 simulated data sets to give the “av-
erage estimate” and the “average estimated s.e.” (columns 3
and 5 in Tables 1 and 2). The sample s.e. and the root sample
mean squared error (RMSE, see Walther and Moore, 2005)
over the 1000 estimates were obtained to give “sample s.e.”
and “sample RMSE” (columns 4 and 6 in Tables 1 and 2).
The percentage of data sets in which the 95% confidence in-
tervals cover the true value is shown in column 7. The average
of the number of observed species is also listed in the tables.
In Figure 1, we specifically plot the average estimates of our
five estimators as a function of sample size (from 100 to 800)
so that we can examine and compare the bias behavior as a
function of sample size.

A good species richness estimator should have a small
magnitude of bias and a high accuracy (i.e., low RMSE;
see Walther and Moore, 2005). Furthermore, the coverage
probability of its associated confidence interval should be
close to the nominal level 95%. As sample size increases, the
estimator should also exhibit the following intuitive pattern:
Its bias, accuracy (as measured by RMSE) and coverage
probability of the confidence interval should generally im-
prove as sample size increases, and its estimates should thus
increasingly approach the true species richness. Using these
criteria, we generated the following general results which are
given in Figure 1, Tables 1 and 2, Web Tables C1–C4, and
other unreported simulation results.

As expected, the traditional approach of using the observed
richness in a sample as an estimator of species richness seri-
ously underestimates in all cases (Figure 1 and all tables), es-
pecially at small sample sizes, thus reiterating prior findings
(e.g., Colwell and Coddington, 1994; Walther and Morand,
1998; Walther and Martin, 2001; Walther and Moore, 2005).



An Improved Nonparametric Lower Bound of Species Richness 677

Table 1
Comparison of five species richness estimators based on 1000 simulation trials under a negative binomial (4, 0.04) model,

with S = 200 and CV = 0.49. The five estimators are: The iChao1 estimator as given in (10b), the Chao1 estimator as given
in (2b, 2c), Jackknife1, Jackknife2 = the first- and second-order jackknife estimators (Burnham and Overton, 1979), and the

LB estimator (Lanumteang and Böhning, 2011); see text for details.

Size n Average Sample Average Sample 95% CI
(species seen) Estimator estimate sample s.e. estimated s.e. RMSE coverage

Jackknife1 182.03 10.35 11.36 20.73 0.76
Jackknife2 214.40 18.35 19.68 23.31b 0.85

200
LB 225.03 90.54 70.93 93.85 0.88

(117.29)
Chao1 184.88 22.32 22.23 26.94 0.90
iChao1 194.94a 28.14 28.44 28.57 0.93c

Jackknife1 212.10 9.38 10.26 15.30 0.71
Jackknife2 221.96 16.56 17.77 27.49 0.62

400
LB 209.31 35.22 30.86 36.40 0.91

(159.30)
Chao1 193.05 12.22 12.08 14.04b 0.92
iChao1 198.91a 15.19 15.36 15.22 0.94c

Jackknife1 213.33 6.24 7.24 14.71 0.30
Jackknife2 208.28 12.41 12.54 14.91 0.72

800
LB 206.34 17.75 15.62 18.83 0.89

(186.94)
Chao1 198.83 6.37 6.08 6.47b 0.94c

iChao1 200.19a 7.69 7.54 7.69 0.93

aDenotes the smallest bias. bDenotes the smallest RMSE. cClosest to 95% coverage.

Table 2
Comparison of five species richness estimators based on 1000 simulation trials under a power decay model pi = c/i1,2, with

S = 200 and CV = 4.20. See Table 1 for the abbreviations of the estimators.

Size n Average Average Sample 95% CI
(species seen) estimator estimate Sample s.e. Estimated s.e. RMSE coverage

Jackknife1 95.55 9.19 8.45 104.85 0.00
Jackknife2 121.64 14.60 14.64 79.71 0.01

200
LB 501.05 2067.20 683.99 2087.98 0.79

(59.84)
Chao1 135.06 42.64 37.75 77.68 0.63
iChao1 147.03a 47.88 43.57 71.39b 0.80c

Jackknife1 135.39 10.81 9.66 65.51 0.00
Jackknife2 165.79 17.09 16.73 38.24b 0.60

400
LB 289.81 274.68 200.07 288.86 0.83

(88.09)
Chao1 160.87 30.72 29.46 49.74 0.74
iChao1 172.79a 34.98 34.74 44.31 0.88c

Jackknife1 175.72 10.76 10.25 26.56 0.49
Jackknife2 203.23a 17.60 17.75 17.89b 0.93

800
LB 243.25 125.61 94.53 132.79 0.86

(123.63)
Chao1 181.48 22.40 21.44 29.06 0.87
iChao1 194.70 26.31 26.09 26.62 0.94c

aDenotes the smallest bias. bDenotes the smallest RMSE. cClosest to 95% coverage.

The two jackknife estimators typically underestimate when
the sample size is relatively small, but then exceed the true
species richness and overestimate at larger sample sizes. For
example, in the negative binomial model (Figure 1b and Table
1), the first-order jackknife estimator for n < 200 has negative
bias, crosses the true parameter line around n = 300 where-

abouts it appears nearly unbiased; however, for n > 400, it
becomes appreciably positively biased. The second-order jack-
knife exhibits a similar behavior with an earlier crossing point
at around n = 130. Similar patterns exist for the other mod-
els. In some cases, their crossing points are not shown be-
cause they exceed the maximum sample sizes displayed in our
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figures. It is thus clear that, for each model, there is a limited
range of sample sizes (near crossing points) where jackknife es-
timators are close to the true species richness. This is the likely
reason why many studies (e.g., Palmer, 1991; Chiarucci et al.,

2003; Walther and Moore, 2005; Xu et al., 2012) found a rela-
tively good performance of the jackknife estimators. However,
this narrow range of good performance changes with each
model and is therefore not predictable. Outside this range,

Figure 1. Comparison of the average biases for five species richness estimators and the number of observed species richness
in samples when sample size ranges between 100 and 800 under six different models as indicated from panel a to panel f. The
biases were obtained by averaging over 1000 data sets generated from six different species abundance models (see text for
details). The true parameter is S = 200. A good estimator should closely approach the S = 200 line (the horizontal dotted line
in each panel). See Table 1 for the abbreviations of the estimators.
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the two jackknife estimators have appreciable biases (Figure
1 and all tables) and exhibit counter-intuitive patterns: Their
bias, accuracy and coverage probability regularly do not im-
prove as sample size increases (e.g., bias and coverage prob-
ability in Table 1). Although the jackknife estimators have
the smallest RMSE in some cases, their coverage probabili-
ties are significantly lower than the nominal level. Burnham
and Overton (1978, 1979) proposed a testing procedure to ob-
tain an interpolated jackknife estimator up to the fifth-order.
The general performance of the interpolated jackknife esti-
mator is examined and summarized in Web Appendix C and
Web Figure C1.

The LB estimator was derived from a Poisson-gamma
model, which includes the broken stick model as a special
case. Thus, as expected, the LB estimator performs well for
the broken stick model when sample sizes are sufficiently large
(Figure 1c and Web Table C2), and it has the smallest bias
when applying the broken stick model. However, it is not ro-
bust to departures from its base model. With other models, it
seriously overestimates, especially when sample sizes are small
and the CV is large. In some cases, its variance is extremely
large, leading to a large RMSE (Table 2 and Web Tables C3
and C4), which indicates that the LB estimator is only useful
when its model assumption is satisfied.

In the homogeneous model (Figure 1a and Web Table C1),
the Chao1 and the iChao1 estimators are close to each other
(the latter has slightly higher positive bias), and both are
nearly unbiased. For heterogeneous models (CV > 0), both
estimators have negative biases because they are derived as
lower bounds. Nevertheless, they follow the intuitive pattern:
The magnitude of bias and RMSE decrease as sample size
increases. The iChao1 estimator has smaller bias (Figure 1),
but larger variance (in all tables) than the Chao1 estimator
due to its use of more frequencies to estimate the number
of undetected species. In terms of bias, the proposed iChao1
estimator always outperforms the Chao1 estimator (Figure
1). In terms of RMSE and coverage probabilities, the iChao1
estimator is preferable to the Chao1 estimator when CV is
relatively large (say, CV > 1), as shown in Table 2 and Web
Tables C2–C4. When sample sizes are sufficiently large, the
coverage probabilities are close to the nominal levels.

The proposed asymptotic variance formulas for both the
Chao1 and iChao1 estimators generally work well because the
estimated s.e. (column 5 in each table) are close to the cor-
responding sample s.e. (column 4 in each table) in all cases.
Based on the simulations (Tables 1 and 2 and Web Appendix
C), the estimated s.e. for the Chao1 estimator slightly under-
estimates, whereas the estimated s.e. performs better for the
iChao1 estimator.

6. Applications

6.1. Tropical Insect Data

Janzen (1973a, 1973b) presented data sets of tropical foliage
insects from sweep samples in Costa Rica. We selected two
beetle data sets to illustrate the performance of our estima-
tors and to compare day-time and night-time beetle species
richness determined at the site “Osa-primary-hill, dry season,
1967.” The abundance frequency counts of beetles collected
during day-time were (f1, f2, f3, f4, f5, f6, f11) = (59, 9, 3, 2,

Table 3
Comparison of five species richness estimators for the beetle
data (Janzen, 1973a, 1973b). The estimated s.e. is shown in

parentheses. See Table 1 for the abbreviations of the
estimators.

Estimator Day-time Night-time

Jackknife1 137.0 (10.9) 135 (10.6)
Jackknife2 187.0 (18.8) 182 (18.3)
LB 464.8 (770.7) 1343 (1436.9)
Chao1 271.4 (82.9) 253.2 (75.7)
iChao1 290.9 (89.1) 296.3 (81.3)

2, 2, 1), and other frequencies were 0. There were 78 species
among 127 individuals. The sample coverage using (7b) is es-
timated to be 53.7%. The abundance frequency counts during
night-time were (f1, f2, f3, f5, f7, f10, f14, f16, f18) = (56, 9, 7,
2, 1, 1, 1, 1, 1), and other frequencies were 0. There were
79 species among 170 individuals. The corresponding sam-
ple coverage is estimated to be 67.1%. As is evident from
these two data sets, most species were observed only once
or twice, and there are only a few abundant species. Both
communities were therefore clearly under-sampled, as indi-
cated by the low estimated sample coverage, implying there
were still many rare species, which were not recorded. Using
the CV estimator proposed in Chao and Lee (1992) based
on the frequency counts, the estimated CVs for these two
data sets are 2.973 and 7.460, respectively. These relatively
large CVs indicate that the community was highly heteroge-
neous in species abundances. Therefore, both the Chao1 and
iChao1 estimators may still return severely negatively biased
estimates for species richness (as discussed in our simulation
studies in Section 5). Nevertheless, we use these data sets to
compare various estimates and to demonstrate the use of the
proposed iChao1 estimate as a lower bound of species richness.
In such under-sampled cases, it is statistically infeasible to ob-
tain accurate point and interval estimates of species richness,
especially when the heterogeneity among species abundances
is high. At best, we can obtain a more accurate lower bound
and lower confidence interval based on the proposed iChao1
lower bound.

In Table 3, we compare five estimators, namely the Chao1,
iChao1, the first-order jackknife, second-order jackknife and
the LB estimator. For each estimator, the estimated s.e. com-
puted from (11) is also given. The LB estimate is much higher
than the other four estimates and has extremely large s.e.
for this data set, suggesting that the true model may devi-
ate greatly from the Poisson-gamma model. The two jack-
knife estimates are much lower than the Chao1 and iChao1
estimates. Our simulations for highly heterogeneous models
and small sample sizes (Table 2, Figure 1e and f, and Web
Table C4) show that the two jackknife estimators are gener-
ally lower than the Chao1 and iChao1 estimators in highly
heterogeneous cases and thus have larger negative biases.

Using the Chao1 and iChao1 estimators, we obtain respec-
tive richness estimates of 271.4 (s.e. 82.9) and 290.9 (s.e. 89.1)
for the day-time data and of 253.2 (s.e. 75.7) and 296.3 (s.e.
81.3) for the night-time data (Table 3). For each sample, the
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Table 4
Comparison of five species richness estimators for the

ciliates data (Foissner et al., 2002). The estimated s.e. is
shown in parentheses. The four estimators for incidence data

are: The iChao2 estimator as given in (13), the Chao2
estimator as given in (12b), Jackknife1, Jackknife2 = the
first- and second-order jackknife estimator (Burnham and
Overton, 1978) and the LB estimator (Lanumteang and

Böhning, 2011).

Southern Central Etosha
Estimator Namibia Namibia Pan

Jackknife1 233.33 (12.38) 200.94 (11.23) 352.42 (15.18)
Jackknife2 283.66 (20.58) 238.66 (18.74) 427.08 (25.47)
LB 418.39 (183.66) 281.91 (105.69) 681.10 (249.54)
Chao2 270.26 (34.90) 216.50 (26.07) 402.21 (41.43)
iChao2 290.69 (38.46) 235.55 (33.74) 436.88 (46.83)

iChao1 estimate is higher than the Chao1 estimate, as ex-
pected from our theory and simulations when the CV is high.
As shown in our simulations, the iChao1 estimate is a greater
lower bound than the Chao1 estimate. Therefore, we can con-
clude for these data based on the iChao1 estimates that the
minimum species richness for the day-time data is 291 with a
one-sided 95% lower confidence bound of 188, and the corre-
sponding minimum species richness for the night-time data is
297 with a one-sided 95% lower confidence bound of 199; see
Section 2 for the formula for constructing a one-sided confi-
dence interval.

6.2. Ciliates Data

Foissner, Agatha, and Berger (2002) took 51 soil samples
from three areas of Namibia and recorded the detection or
nondetection of soil ciliate species in each sample. Detailed
sampling locations, procedures, and species identifications
were described in Foissner et al. (2002). In short, 331 species
were detected within three sampled areas, namely the South-
ern Namibia Desert (15 samples, 154 species), the Central
Namibia Desert (17 samples, 136 species), and the Etosha Pan
Desert (19 samples, 234 species). For simplicity, we will refer
to these three areas as Southern Namibia, Central Namibia,
and Etosha Pan. The first four incidence frequency counts
(Q1, Q2, Q3, Q4) for these three areas were (85, 29, 14, 9),
(69, 28, 13, 4), and (125, 44, 26, 14), respectively. The pur-
pose here is to compare and rank the species richness of these
three areas.

The estimated sample coverage for these three areas is
76.6%, 82.1%, and 77.6%, respectively, and the corresponding
estimated CVs are 3.00, 3.39, and 2.55. These high estimated
CVs imply that the three communities are highly heteroge-
neous in species detection probabilities. Since these data are
incidence data, we report in Table 4 various estimates (along
with their estimated s.e.) including the Chao2 estimator given
in (12b), the iChao2 estimator given in (13), the LB estimate
and the two jackknife estimators.

Table 4 shows that the LB estimate for the incidence data
is substantially larger than the other four estimates and is
also associated with a large variation. The first-order jack-

knife estimator is lower than the other three estimates, but
the second-order jackknife estimate is very close to the pro-
posed iChao2 estimate. For each of the three areas, the iChao2
estimate is consistently higher than the corresponding Chao2
estimate. Nevertheless, all methods show a consistent species
richness ranking of the three areas: The species richness of the
Etosha Pan was significantly higher than that of Southern
Namibia, which was significantly higher than that of Cen-
tral Namibia. The proposed iChao2 estimates demonstrate
that the extent of under-estimation of the observed number
of species for the three areas is at least 47%, 42%, and 46%,
respectively.

7. Conclusion and Discussion

In highly heterogeneous communities, the traditional Chao1
lower bound for abundance data and the Chao2 lower bound
for incidence data unavoidably have large negative bias when
sample sizes are not sufficiently large. For both data types, we
propose an improved lower bound called iChao1 and iChao2
estimator, respectively. Although our derivations focus on the
model that the species abundances (for abundance data) or
species detection probabilities (for incidence data) are fixed
parameters, all the proposed estimators are also valid under
a binomial-mixture model. For abundance data, a classical
model is the Poisson-gamma mixture model as presented by
Fisher et al. (1943). With a little modification in the model
formulation, we can further show that the proposed iChao1
estimator is also valid under a Poisson-gamma model (Wang,
2010); see Web Appendix A for details. A worthwhile future
research topic is to extend this work to the mixed power series
distributions as discussed in Böhning et al. (2013).

Our simulations show that the iChao1 estimator removes
a large portion of the negative bias which was associated
with the traditional Chao1 and Chao2 estimators. Further-
more, the new estimators have good accuracy and coverage
probability for the associated confidence intervals. These new
estimators always reduce bias over the traditional estimators
and improve accuracy and confidence interval coverages
when the heterogeneity of species abundances is relatively
high. These new estimators will be featured in the Program
SPADE (Species Prediction And Diversity Estimation,
http://chao.stat.nthu.edu.tw/softwareCE.html) following the
publication of this article.

The proposed new estimators were derived under the as-
sumption of sampling with replacement, in which individu-
als (or any other sampling unit) can be repeatedly observed.
However, in some surveys, sampling is done without replace-
ment. This type of sampling scheme is widely used in trap/net
surveys when multiple individuals such as insects are killed
when sampled, so that no sampled individual can be re-
peatedly observed. Chao and Lin (2012) derived Chao1 type
and Chao2 type estimators under sampling without replace-
ment. Parallel derivations to those developed in Section 5
lead to the corresponding improved estimators under sam-
pling without replacement. We summarize the results in Web
Appendix D.

For abundance data and the Chao1 estimator, only the
numbers of singletons and doubletons are used to estimate
the number of undetected species. For the iChao1 estimator,
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we use additional information (tripletons and quadrupletons).
Thus, greater sampling effort is needed to collect this addi-
tional information. However, the payback is that we can have
a less biased and more accurate nonparametric species rich-
ness estimator. Our simulation results revealed that the im-
provement is warranted, especially for highly heterogeneous
communities. Thus, we suggest expending more sampling ef-
fort to reach species frequencies of up to the fourth frequency,
for both abundance and incidence data.

8. Supplementary Materials

Web Appendices and Web Tables referenced in Sections 2, 5–
7 are available with this paper at the Biometrics website on
Wiley Online Library.
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