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Abstract: The purpose of the present article is to study the bending strength of glulam prepared by
plane tree (Platanus Orientalis-L) wood layers adhered by UF resin with different formaldehyde
to urea molar ratios containing the modified starch adhesive with different NaOCl concentrations.
Artificial neural network (ANN) as a modern tool was used to predict this response, too. The
multilayer perceptron (MLP) models were used to predict the modulus of rapture (MOR) and the
statistics, including the determination coefficient (R2), root mean square error (RMSE), and mean
absolute percentage error (MAPE) were used to validate the prediction. Combining the ANN
and the genetic algorithm by using the multiple objective and nonlinear constraint functions, the
optimum point was determined based on the experimental and estimated data, respectively. The
characterization analysis, performed by FTIR and XRD, was used to describe the effect of the inputs
on the output. The results indicated that the statistics obtained show excellent MOR predictions
by the feed-forward neural network using Levenberg–Marquardt algorithms. The comparison of
the optimal output of the actual values obtained by the genetic algorithm resulting from the multi-
objective function and the optimal output of the values estimated by the nonlinear constraint function
indicates a minimum difference between both functions.

Keywords: glulam; UF-modified starch adhesive; ANN; genetic algorithm; optimization

1. Introduction

Starch is a polysaccharide found in many plants, such as cereals, and is very important
in industrial consumptions due to its cheapness, biodegradability, renewability, and safety.
However, when applied as an adhesive, it has constraints, such as low shear and thermal
resistance, thermal decomposition, and weak stability in solidification-melting. Hence, it
must be treated, which can be mainly based on three main hydrothermal, chemical, and
enzymic methods to improve its quality of application.

The modified starch can be a suitable substitute for synthetic resins, such as UF from
which formaldehyde gas can be emitted. Polycondensation of formaldehyde-based resins is
the main method of making these resins due to their high reactivity, chemical adaptability,
and economic competition [1]. The reaction between urea and formaldehyde is divided
into three stages: 1—the alkaline formation of mono-, di-, and tri-methylol urea; 2—the
acidic compression of methylols and destruction of some methylene-ether bonds to form
methylene bridges [2]; 3—neutralizing pH and adding the final urea to adjust the F/U
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molar ratio. When adding the modified starch to any of the stages above, the formaldehyde
molar ratio decreased due to the chemical change of the starch chain.

When applying modified starch as an adhesive to produce wood-based composites,
the process of the chemical treatment and oxidation of the starch polymer chains is very
important. Modified starch is usually prepared in the reaction with oxidizing agents such
as H2O2 or NaOCl under certain temporal, temperature, and pH conditions [3]. These
oxidizing agents convert some OH-starch groups in C-2, C-3, or C-6 positions to carbonyl
(−CO) or carboxyl (−COOH) groups [3]. During this process, NaOCl oxidizes hydroxyl
groups to carbonyl and converts them to carboxyl groups afterwards [4]. Oxidation also
modifies the molecular structure through polymerization [3,5]. A higher bonding strength
and more water resistance can be obtained by combining starch with other synthetic resins,
such as UF [6].

Due to the decrease in the crystallinity index and lower thermal stability, adding starch
could improve the properties of wood panels adhered by the UF resin. Adding starch also
results in a uniform distribution of the adhesive in the wood panels [7]. Luo et al. (2019)
showed that dialdehyde starch is involved in the aminoplast resin synthesis by in situ
polymerization between aldehyde groups in starch and amino group and hydroxymethyl
in resin [8]. During this process, polymerization resulted in the penetration of the soft
component of starch into the cross-linked network of rigid aminoplast resins and the
formation of a microphase separated structure so that the wet shear strength improved
in the plywood due to the increase in the cross-linking density, the curing acceleration of
aminoplast resin, and the microphase separated structure. The diagnostic analyses showed
that the wood composites made by the UF-modified starch adhesive had a lower intensity
in the peaks of OH groups in the FTIR analysis due to the starch chemical modification,
showing the increase in cross-linking density due to the decrease in the hydroxyl groups
after the condensation reaction and formation of a 3D network in the curing process [9,10].

The connections made between two substrates by an adhesive layer are used normally
in many consumptions. The efficiency of the connections from these adhesives is evaluated
normally by common traditional experimental, analytical, or numerical methods. Due to the
absence of valid conventional methods to present a certain phenomenon correctly, machine
learning methods can be used to release the data-driven models [11,12]. In recent studies,
artificial intelligent methods were used to replace the traditional methods to analyze
the glue line bonding strength of the wood-based composites to make the predictive
models [11,13]. These methods can help decrease the large number of experiments to
achieve the optimal solution and decrease the cost. The artificial neural network (ANN) is
a famous artificial intelligence method that can be used to model the complex relationship
between the variables [11]. ANNs have become increasingly popular due to their ability
to solve complex problems in different contexts. This technique can draw the complex
relation between the variables related to each other without any presumption [14]. ANNs
are suitable in cases with numerous variables and complex relationships whose definition
is difficult with mathematical equations. When ANNs are trained correctly, they can
quickly conclude from a data input and consequently offer acceptable solutions on the
problem. It has made the ANN method superior to many modeling approaches, such as the
analytical and numerical methods. The most attractive advantage of ANN is the capability
of modeling multi-dimensional nonlinear and complex formulae without considering the
relationship behavior [15,16]. These methods support the understanding of very uncertain
designs helping predict their future outcomes by producing a stable mechanism in materials
science research so that the modeling of processes, optimization, and regression can be
used in different sections, including the materials structure [17,18].

Due to these advantages, ANNs have been used in different fields of wood science.
Using the experimental test data obtained by the studies on many properties of wood
and wood products, such as the veneer defects classification [19], the drying process [20],
identification [21], and physical properties [22] when applying different independent
factors, it was shown that, using different machine learning methods, the response being
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examined can be modeled successfully and an efficient method can be presented to identify,
predict, and optimize different features of wood and wood-based composites.

However, using the ANN methods has some disadvantages. During the modeling
by ANN and its accuracy, two factors are very important: weight connecting the structure
of ANN and modified quantities. This weight can have negative, positive, or zero values.
With respect to the type of used ANN, these values, which are produced stochastically,
may be real or an integer number [23]. The estimation of these values is difficult, basically.
The wrong selection of weight may cause a drop into the local minimum and decrease the
probability of detecting the optimum point. Additionally, it can decrease the convergence
velocity of methods [23]. It needs to eliminate these limitations. Hence, it is useful to use
GA in combination with ANN in order to reproduce network connection weights of the
ANN optimization process. GA is a global iterative optimization method in which, by
simulating the evolution of organisms, such as the selection and elimination colony that
is selected and mutated, repeatedly [24]. The survival of the best and elimination of the
worst is one of the most important evaluation and mutation laws, as well as an adaptive
estimation of every individual in which the better colony is produced, gradually. The best
individuals are optimized in the colony by global and parallel techniques [25]. Due to
the validity of the solution, GA has strengthened the ability of global searching. GA is
able to provide fast and enough solutions so that GA can be attractive for use in solving
optimization problems. GA can omit the limitation of ANN. Hence, this technique in which
ANN and GA are integrated is called GANN [26].

In the present research, the effect of the F to U molar ratio at three levels (MR; 1.5:1, 2:1
and 2.5:1), the weight ratio of the modified starch to UF resin at three levels (WR; 10, 20 and
30%), and the NaOCl solution concentration percent, as the starch treater to produce the
starch adhesive used to make the UF-MS adhesive at three levels (AC; 10, 15 and 20%), as
the independent input variables was evaluated on the bending strength of the three-layer
glulam produced during the loading perpendicular on the glue line as the dependent
output variable using the ANN technique. Using the genetic algorithm (GA) coupled with
ANN and the multi-objective and nonlinear constraint functions, the optimum limit of the
application of the independent variables to achieve the highest MOR was determined.

2. Materials and Methods
2.1. Chemical Modification of Starch

First, 100 gr corn starch powder was loaded in a flask containing 200 mL distilled
water. While the mixture was mixed on a magnetic stirrer-heater, the NaOCl solution with
10%, 15%, or 20% concentration (7, 10, or 13 g) was added to the mixture, according to the
test design used, and it was mixed for 30 min at the temperature 30 ◦C (with pH = 9.5).
After being mixed well, the mixture was neutralized using sulfuric acid 20% and was put
on the stirrer-heater for 10 min at the temperature 30 ◦C. After being put in the falcons, the
resulting solution was centrifuged for 20 min at 2000 rpm to separate its water. Then, the
starch deposited in the falcons was washed by distilled water for five times. To remove
more moisture from the mixture, a Buchner funnel equipped with a vacuum pump was
used and the obtained starch was dried on the filter paper at room temperature. This
process was repeated with the different sodium hypochlorite percentages used in the
chemical treatment of starch.

2.2. Synthesis of Starch Adhesive

The UF-MS adhesive synthesis was in two stages. According to the test design used,
42 g urea consumed at the first stage together with 120 cc, 150 cc, or 200 cc formalin
(equivalent to 1.5 mol, 2 mol, or 2.5 mol formaldehyde, respectively) and 18 g, 24 g, or
30 g starch consumed to be added in the second stage were weighed. After installing the
heater and setting the temperature in the oil bath and stabilizing the three-necked flask
equipped with the condenser, thermometer, and pH-meter (blocked by cork) in the bath,
formalin and the first part of urea were added to the flask while the mixture was mixed
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constantly by the magnetic stirrer. The mixture’s pH was increased to 8–8.5 by adding
few drops of NaOH 0.5 mol with the concentration 20% and it was mixed for 15 min at
the temperature 90–95 ◦C. To decrease the time of the reaction more, the mixture’s pH
was decreased to 4–4.5 by adding sulfuric acid 1% (0.5–3 mL). The approximate period
was 15 min at the temperature 90–95 ◦C. This time was enough to achieve a homogeneous
single-phase mixture. After removing the condenser from the flask and opening two other
necks, the extra water evaporated at the temperature 90–95 ◦C for 10–20 min. The formed
acidic medium was neutralized by adding a few drops of NaOH. Decreasing the reaction
medium to 50–60 ◦C, the starch which replaced urea at the second stage was added to the
mixture at the three levels according to the test design. At this temperature, the mixture was
mixed for 30 min until the starch dissolved completely. After cooling at room temperature,
the formaldehyde urea adhesive was prepared.

2.3. Making Glulam

After cutting the plane tree (Platanus Orientalis-L) and slicing it, radial slats were cut
by the band saw with the dimensions 400 × 70 × 7 mm and then dried to a moisture
content of 8%. According to the test design used (Table 1), three-layered glulams (with two
replicates per treatment) using an adhesive (with the concentration 50% and dry substance
consumption of 150 g/m2) put on two lower and upper surfaces of the middle board
were pressed (at 15 kg/cm2) inside an experimental hydraulic press with the press plate
temperature of 160 ◦C for 20 min. After keeping the boards in the laboratory conditions for
2 weeks, they were trimmed by a circular saw to prepare the bending test specimens. The
direction of pressure during the bending test was perpendicular to the glue line surface.
The bending test was performed at the loading speed 5 mm/min using a universal tester
(load cell-2 ton: Sanaf Co. LTD., Tehran, Iran) according to the EN 302-1 standard [27].

Table 1. Experimental design.

Run MR WR AC Run MR WR AC

1 2 80 15 25 2.5 90 20
2 2.5 70 10 26 1.5 90 20
3 2 70 15 27 2 80 20
4 1.5 70 20 28 2.5 70 20
5 2 90 15 29 1.5 90 10
6 1.5 80 15 30 1.5 90 20
7 2 80 15 31 2 70 15
8 2 90 15 32 2.5 70 20
9 2.5 70 20 33 2 80 10
10 2.5 70 10 34 2.5 90 10
11 1.5 90 10 35 2 90 15
12 2 80 15 36 1.5 70 20
13 2 80 15 37 1.5 80 15
14 2.5 70 10 38 2 80 20
15 2 80 15 39 1.5 90 20
16 2 80 20 40 1.5 70 20
17 1.5 70 10 41 2 80 15
18 2 80 10 42 1.5 70 10
19 2.5 90 20 43 1.5 90 10
20 1.5 80 15 44 2.5 80 15
21 2 70 15 45 2.5 90 10
22 2 80 10 46 2.5 80 15
23 2.5 90 20 47 2.5 90 10
24 1.5 70 10 48 2.5 80 15
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2.4. Characterization Analysis

The chemical compound of natural starch, modified starch, pure UF resin, and the
mixture of the UF resin with the modified starch treated in alkali medium with the concen-
tration 10% and 20% (after complete curing at the temperature 160) (as the index adhesives)
were analyzed by FT-IR (Fourier transform infrared) spectroscopy using the pelletized sam-
ples. For this purpose, after mixing 100 mg potassium bromide (KBr) with 2 mg adhesive
sample that was chopped into flour, the prepared samples were scanned using a Thermo
Scientific Nicolet 6700 FT-IR Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA)
in the wave number range 600–4000 cm−1. The X-ray diffraction (XRD) patterns of the
samples were recorded by a STOE-STADV (Germany) wide angle X-ray diffractometer
using a CuKα radiation source with a wavelength of λ = 0.154 nm.

2.5. Artificial Neural Network (ANN) as a Prediction Tool

The widest type of ANN used for prediction is the multi-layer perceptron (MLP). The
typical example of the MLP structure is shown in Figure 1. The MLP Equation (1) is the
mathematical statement of MLPs output as Figure 1.

Y = g

(
θ +

m

∑
j=1

ϑj

[
n

∑
i=1

f
(
wijXi + β j

)])
(1)

where Y is the prediction value of the dependent variable, Xi is the i-th input value of the
independent variable, wij is the weight of connection between the i-th input neuron and the
j-th hidden neuron, βj is the bias of the j-th hidden neuron, νj is the weight of connection
between the j-th hidden neuron and the output neuron, θ is the bias of the output neuron,
and g(.) and f(.) are the active functions of the output and hidden neurons, respectively.
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Figure 1. The ANN architecture used as the prediction model of MOR.

In order to avoid underfitting and statistical bias on the one hand, and overfitting,
high variance, and increasing time for training the network, the correct number of neurons
in the hidden layer needs to be determined. For this porpoise, the best neuron numbers in
the hidden layer can be calculated by different methods, such as the following: the number
of hidden neurons should be less than twice the size of the input layer; the number of
hidden neurons should be 2/3 the size of the input layer, plus the size of the output layer.
According to obtained statistics, there was no difference between the mentioned methods
and the trial-and-error process, which is described as the best way to obtain the hidden
layer [21].
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Training a MLP using a backpropagation learning algorithm as the commonest neural
network algorithm to model various engineering applications [28] means to determine the
best weight of the relations between neurons to achieve a minimum difference between the
measured and estimated values of the dependent variable [29].

Training was performed by attempts made to receive different ANN models with
different network configurations and by training the parameters. The models were tested
using the test data set for the training process to test the network’s performance. For this
purpose, three algorithms consisting of the Levenberg–Marquardt algorithm (trainlm),
scaled conjugate gradient (trainscg), and Bayesian regularization (trainbr) were selected as
feed-forward neural network models for training data sets. As a result, the ANN model
producing the closest values to the measured values of MOR was chosen as the prediction
model. This was performed based on some statistical criteria, such as R2, RMSE and MAPE
showing the best performance of each model, so that the three-layer ANN architecture,
including one input layer, one hidden layer, and one output layer was chosen (Figure 1).

The formaldehyde to urea molar ratio (MR), the weight ratio of starch to urea added
in second stage (WR), and the NaOCl concentration treating starch (AC) were chosen as the
network input in the chemical treatment of the starch used while the variable MOR was
used as the network output in the prediction model. Thus, there are three input neurons and
one output neuron in the ANN model developed to predict the MOR. The best performance
of the ANN model was obtained by statistical indicators showing the performance, such
as the mean absolute percentage error (MAPE, Equation (2)), the root mean square error
(RMSE, Equation (3)) and the determination coefficient (R2, Equation (4)) for a configuration
with six neurons according to the Figure 1. Hence, the neuron configuration 3-6-1 was
determined as the optimum configuration.

RMSE =

√
1
n

n

∑
i=1

(ti − tdi)
2 (2)

MAPE =
1
n

n

∑
i=1

(
|ti − tdi|

ti

)
100 (3)

R2 = 1− ∑n
i=1 (ti − tdi)

2

∑n
i=1 (ti − t)2 (4)

where ti is the measured value, tdi is the predicted value, n is the total number of data, and
t is the predicted mean value.

In the designed model, the tansig transfer function (tansig) in the hidden layer and
the pure line transfer function (purelin) in the output layer were used as the activation
functions. The Levenberg–Marquardt back-propagation algorithm was preferred as the
training algorithm. The data in the range from −1 to 1 were normalized. Then, the
normalized data were changed into the original values using an inverse normalization. The
ANN programs were performed using MATLAB software, version R2015a, The MathWorks,
Inc, Natick, MA, USA.

3. Results and Discussion
3.1. FTIR and XRD Characterization Analysis

FTIR and XRD analyses were conducted to investigate the possible interactions be-
tween oxidized starch and UF resin. FTIR spectra of native starch, modified starch, and
synthesized adhesives are presented in Figure 2.
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Figure 2. FTIR spectra of neat starch (a); modified starch by 10% (b) and 20% (c) NaOCl and modified
starch/urea/formaldehyde adhesives synthesized by different F:U molar ratios (d) 1.5:1 and (e) 2.5:1.

The presence of a band at 3200–3300 cm−1 in all samples is attributed to OH stretching
vibrations. For native starch, the characteristic bands were mainly observed at 2922 cm−1,
1650 cm−1, 1364 cm−1, 1149 cm−1, and 1075 cm−1. The bands at 2922 cm−1 and 1364 cm−1

originated from C-H stretching vibrations of methylene (−CH2) groups [30]. The band at
1650 cm−1 is assigned to C-O bending vibrations associated with hydroxyl groups. The
stretching vibrations of asymmetric C-O-C and C-O functional groups would cause the ab-
sorption bands at 1149 cm−1 and 1075 cm−1, respectively [31,32]. Based on previous reports,
the carboxyl and aldehyde groups for oxidized starch appeared in the 1650–1735 cm−1

range [33]. For oxidized starch (b and c spectra), the band at 1650 cm−1 became stronger
and it was also shifted to a lower wavenumber, confirming the formation of more aldehyde
groups during the oxidation process. The symmetric stretching band of carboxyl groups
(−COO) arising from oxidized starch might overlap with the band belonging to C-O bend-
ing vibrations of native starch, which resulted in band broadening. The band at ~3260 cm−1

was strengthened and widened, which was assigned to the formation of free hydroxyl
groups as a result of chain scission in the oxidative process. The band’s broadening at
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2922 cm−1 after oxidation is related to chain scission, which further evidenced the success-
ful oxidation of starch [34]. For the UF/MS adhesive (c and d spectra), the appearance of
two bands at 1470 cm−1 and 1150 cm−1 are attributed to the stretching vibration of the N-H
group and the deformation vibration of the C-H group, respectively. This finding verified
the transformation of oxidized starch and UF into adhesive resin via a polycondensation
reaction [35]. Furthermore, the bands at ~3300 cm−1 and 2920 cm−1 belonging to O-H and
C-H stretching vibrations were weakened, which confirmed the generation of polyconden-
sation and partial intermolecular hydrogen bonds [34]. It was reported that N–H stretching
of the primary amide in the UF resin overlapped with –OH groups of MS at 3300 cm−1.
Indeed, the intra-molecular O–H of oxidized starch at 1640–1650 cm−1 overlapped with the
C = O bond of the amide group in the UF resins [36].

An XRD analysis was performed to investigate the phase structure of the samples dur-
ing the synthesis and curing, too. The diffractograms of native starch and modified starch
are shown in Figure 3A. The XRD pattern of native starch showed prominent diffraction
peaks at 2θ values of 15.31◦, 17.5◦, 19.43◦, and 23.13◦, which were the characteristic peaks of
type A starch [37]. Modified starch oxidized by 10% and 20% NaOCl (MS10% and MS20%)
exhibited similar diffraction peaks illustrating that the oxidation mainly occurred in the
amorphous region of starch [38]. These findings are consistent with the previously pub-
lished data [39–42]. Figure 3B presented the XDR diffractograms of the MS/UF adhesives
synthesized by different F:U mole ratios. As could be seen, all of the characteristic peaks of
oxidized starch disappeared or were significantly weakened, which revealed the alteration
of the crystalline region into an amorphous structure. This verified the conversion of MS
and UF into adhesive [42].

Materials 2022, 15, x FOR PEER REVIEW 8 of 21 
 

 

groups during the oxidation process. The symmetric stretching band of carboxyl groups 

(‒COO) arising from oxidized starch might overlap with the band belonging to C-O bend-

ing vibrations of native starch, which resulted in band broadening. The band at ~3260 cm−1 

was strengthened and widened, which was assigned to the formation of free hydroxyl 

groups as a result of chain scission in the oxidative process. The band’s broadening at 2922 

cm−1 after oxidation is related to chain scission, which further evidenced the successful 

oxidation of starch [34]. For the UF/MS adhesive (c and d spectra), the appearance of two 

bands at 1470 cm−1 and 1150 cm−1 are attributed to the stretching vibration of the N-H 

group and the deformation vibration of the C-H group, respectively. This finding verified 

the transformation of oxidized starch and UF into adhesive resin via a polycondensation 

reaction [35]. Furthermore, the bands at ~3300 cm−1 and 2920 cm−1 belonging to O-H and 

C-H stretching vibrations were weakened, which confirmed the generation of polycon-

densation and partial intermolecular hydrogen bonds [34]. It was reported that N–H 

stretching of the primary amide in the UF resin overlapped with –OH groups of MS at 

3300 cm−1. Indeed, the intra-molecular O–H of oxidized starch at 1640–1650 cm−1 over-

lapped with the C = O bond of the amide group in the UF resins [36]. 

An XRD analysis was performed to investigate the phase structure of the samples 

during the synthesis and curing, too. The diffractograms of native starch and modified 

starch are shown in Figure 3A. The XRD pattern of native starch showed prominent dif-

fraction peaks at 2θ values of 15.31°, 17.5°, 19.43°, and 23.13°, which were the characteristic 

peaks of type A starch [37]. Modified starch oxidized by 10% and 20% NaOCl (MS10% 

and MS20%) exhibited similar diffraction peaks illustrating that the oxidation mainly oc-

curred in the amorphous region of starch [38]. These findings are consistent with the pre-

viously published data [39–42]. Figure 3B presented the XDR diffractograms of the MS/UF 

adhesives synthesized by different F:U mole ratios. As could be seen, all of the character-

istic peaks of oxidized starch disappeared or were significantly weakened, which revealed 

the alteration of the crystalline region into an amorphous structure. This verified the con-

version of MS and UF into adhesive [42]. 
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3.2. Experimental Results of Glulam’s MOR

The effect of MR, WR, and AC was examined on the bending strength and was
modeled by ANN. Table 2 presents the bending strength values obtained as the result
of experimental study together with the estimated values. In addition, the statistical
evaluation of the effects of the independent variables was performed on the response
being studied by ANOVA (Table 3). This statistical method can determine the difference
or similarity between two or more data groups based on the comparison of the average
value of the properties being examined. Based on the ANOVA results, the quadratic model
was chosen. The effects of the linear parameters WR (x2), AC (x3), interactive parameters
MR×WR (x1x2), MR×AC (x1x3), WR×AC (x2x3), and quadratic parameters MR (x12), WR
(x22), and AC (x32) on the bending strength were significantly and statistically different
with p < 0.05%. Moreover, the non-significance of the lack of fit also shows the fitness of the
quadratic model.
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Table 2. Real and estimated values and error percentage at any treatment/repeat.

Run Actual Value
(MPa)

Estimated
Value
(MPa)

Error
(%) Run Actual Value

(MPa)

Estimated
Value
(MPa)

Error (%)

1 127 126.7825 1.2600 25 128 129.3212 1.2699
2 114 113.5608 1.1300 26 131 131.7027 1.2999
3 132 132.1597 1.3099 27 120 119.8225 1.1900
4 125 125.8852 1.2399 28 125 125.4881 1.2399
5 140 139.7595 1.3900 29 121 118.6683 1.2002
6 126 126.6249 1.2499 30 132 131.7027 1.3100
7 125 126.7825 1.2398 31 133 132.1597 1.3200
8 139 139.7595 1.3799 32 126 125.4882 1.2500
9 126 125.4881 1.2500 33 108 107.6981 1.0700
10 114 113.5608 1.1300 34 120 119.8915 1.1900
11 118 118.6682 1.1699 35 141 139.7595 1.4000
12 127 126.7825 1.2600 36 126 125.8851 1.2500
13 127 126.7825 1.26001 37 126 126.6249 1.2499
14 114 113.5608 1.1300 38 118 119.8225 1.1698
15 127 126.7826 1.2600 39 131 131.7027 1.2999
16 120 119.8225 1.1900 40 126 125.8851 1.2500
17 109 109.1891 1.0799 41 128 126.7826 1.2700
18 107 107.6981 1.0599 42 109 109.1891 1.0799
19 131 129.3211 1.3001 43 119 118.6683 1.1800
20 128 126.6249 1.2701 44 126 126.8605 1.2499
21 133 132.1597 1.3200 45 119 119.8915 1.1799
22 108 107.6981 1.0700 46 127 126.8605 1.2600
23 130 129.3211 1.2900 47 119 119.8915 1.1799
24 109 109.1891 −1.0799 48 127 126.8605 1.2600

Table 3. ANOVA for response surface quadratic model.

Source Sum of
Squares df Mean Square F-Value p-Value

Model 3390 8 424 311 <0.0001 ***
WR (x2) 342 1 342 251 <0.0001 ***
AC (x3) 1190 1 1190 875 <0.0001 ***

MR×WR (x1x2) 8.63 1 8.63 6.34 0.0161 *
MR×AC (x1x3) 15.9 1 15.9 11.7 0.0015 **
WR×AC (x2x3) 7.25 1 7.25 5.32 0.0264 *

MR2 (x12) 6.08 1 6.08 4.47 0.041 *
WR2 (x22) 695 1 695 510 <0.0001 ***
AC2 (x32) 1510 1 1510 1110 <0.0001 ***
Lack of Fit 23.4 6 3.91 4.35 0.244 NS

Note: * significant at 95%, ** significant at 99%, *** significant at 999%.

Based on Table 3, the F-value of the quadratic effect of AC (x32) had the highest effect
on the response with the highest value (1110) and the quadratic effect of MR (x12), the
interaction effects of MR×WR (x1x2) and WR×AC (x2x3) had the lowest effect on the
response with the lowest value. However, when applying an average level of MR, the low
level WR, and an average level AC, the maximum MOR (140 MPa) was obtained.

3.3. Predicting MOR by ANN

The predicted values of the experimental MOR and their error percentage in Table 2
and their analysis indicate that the predicted values resulting from ANN have a very low
error percentage. This level of error is satisfactory for MOR so that it can be said that the
ANN models have had a suitable performance to predict the bending strength of glulam.
The maximum error percentage of the model does not exceed 1.55.
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Three different models with a higher precision and three inputs were chosen to
estimate the MOR so that the MR, WR, and AC were used as three inputs in the first
layer and the MOR was used as the output in the last layer. The feed-forward neural
network was trained by the Levenberg–Marquardt algorithm (trainlm), scaled conjugate
gradient (trainscg), and Bayesian regularization (trainbr) algorithms. Meanwhile, the
backpropagation learning algorithm was used in the feed-forward neural network with one
hidden layer. In the produced model, the tansig activation and purelin functions were used
between the input-hidden layer and hidden-output layer, respectively. The statistics R2,
RMSE, and MAPE were used to evaluate the performance of each ANN model with three
different training algorithms for MOR (Table 4). The statistical performances of the models
were somewhat close to each other for training, testing, and validation data sets. Among
the ANN models developed to estimate the MOR, the model MOR3 (3-6-1) with the highest
R2 and lowest RMSE and MAPE with the BP training algorithm and 50 iterations offered
the highest performance to estimate the response. Hence, the optimal network structure
established based on R2 and RMSE criteria was offered in a network with six neurons in
the hidden layer.

Table 4. Comparison of ANN models for the estimation of MOR.

Tra. ANN
It.

Training Testing Validation

Algorithm * Stru. R2 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE

trainlm
trainscgtrainbr

3-6-1
3-6-1
3-6-1

50
50
50

0.996
0.965
0.994

0.627
2.23
0.72

0.54
1.51
0.55

0.565
0.856
0.964

11.6
3.83
1.11

8.15
2.57

0.903

0.989
0.955
0.982

1.45
2.51
0.88

1.22
2.23
0.74

* “trainlm”, “trainscg”, and “trainbr” are the Levenberg–Marquardt, scaled conjugate gradient, and Bayesian
regularization algorithms, respectively.

Due to the high importance of MAPE as a statistic showing the performance of a
model to make decisions, it had low values for predicting the MOR for the training, testing,
and validation data sets (0.55, 0.903%, and 0.74%, respectively). The results show that the
ANN approach has enough precision to predict the MOR. Hence, according to Table 3, it
can be said that the proposed ANN model can predict MOR with a high precision when it
is related to the real values.

When evaluating the validity and precision of a neural network, the regression analysis
often connects the actual and predicted values (Figure 4) for MOR in testing, validation,
training, and all data sets. It should be mentioned that, if the determination coefficient
approaches 1, the prediction precision increases [43]. It emphasizes that there is an excellent
fit between the actual and estimated values. As it is observed in Figure 4, R2 values to
predict the MOR for testing, validation, training, and all data sets are 0.9639, 0.9817, 0.9937,
and 0.9903, respectively. R2 indicates that the obtained network describes at least 96% of
the actual data of MOR. These values confirm the applicability of ANNs to predict glulam’s
MOR.
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Figure 4. The regression curve of validation and test (a) and training and all (b) data sets.

Limited studies are conducted on the prediction of the bending strength of laminated
wood products connected by bio-based adhesives. However, several studies are conducted
on some strength properties of wood and wood-based products. The results obtained on
the prediction of the strength behavior of these products based on R2 have been diverse.
However, in almost all cases, it is confirmed that different ANN prediction models could
offer an acceptable estimate. Tiryaki and Hamzacebi (2014) showed that using ANN, the
strength of the thermally treated wood can be predicted with an R2 of more than 0.99 [29].
You et al. (2022) obtained a high R2 (0.98) when applying ANN to predict the mechanical
properties of bamboo-wood composite [44]. Nguyen et al. (2019) obtained a very suitable
estimate of the color change of the thermally treated wood in artificial weathering by ANN
with the R2 = 0.92 [45].

The comparison of the predicted and actual values of the test and all data sets for
MOR is presented in Figure 5, graphically. It is observed that the ANN outputs are very
close to the actual outputs of MOR. This fact increases the applicability of the designed
prediction model. These findings can also show that well-trained ANN models can be used
effectively to predict glulam’s MOR in order that the number of tests or the test cost and
time decrease.
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Figure 5. The comparison of the real and predicted values of the test (a) and all data (b) sets.

An ideal ANN model can identify and apply complex nonlinear relationships between
the inputs and outputs of any process with a high trainability [46]. Hence, it can be
said that it is very important to calculate the relationships between the variables of the
laminated products production and the properties being studied as the likely responses
through ANN, i.e., produce products with a suitable quality with a very low energy
consumption. In addition, the well-trained models can produce all intermediate values for
optimization examinations [47]. This aspect of ANNs has shown that this method can be
used successfully to optimize the production process conditions. As a result, the average
values obtained can be used to optimize the preferred ANN model and achieve an optimal
combination of the production parameters of a high quality product so that its result can be
generalized, not only to laboratory, but also to industrial production and, in practice, some
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UF resin can be replaced by bio-based adhesives, according to the variables being examined.
When replacing some UF resin with starch, Nazerian et al. (2022) showed that the ANN
application could evaluate the glue line bonding strength in glulam and recommended the
application of the modified starch [48]. Optimization of the application of the modified
plant protein together with the MUF resin in the production of the polyurethane-core-based
sandwich panels indicated that the application of the ANN optimization methods could
offer an effective estimate of the mechanical properties of bio-based composites [49]. The
comparison of different optimization and modeling methods showed that these methods
can estimate the mechanical properties of the laminated products connected by the modified
starch, even at high values of UF resin replacement [50].

Figure 6 shows the interactive effect of the factors being studied on the MOR at any
of the three levels of the independent variable x1 (MR), x2 (WR), and x3 (AC). At the
same time, it shows the deviation of the estimated values from the actual values for all
three interactive effects x1x2, x1x3, and x2x3. It is observed that there is a rather perfect
consistency and overlap between the estimated and experimental values. To show it, the
error percentage of the estimated and experimental values is given in Figure 7. It can be
seen that the error percentage ranges from 1.06 to 1.4%, which is very low, showing the
perfect agreement between the estimated and experimental values.
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Figure 6. The comparison of the interactive real and estimated effects of (left) ANN MR × WR,
(center) MR × AC, and (right) WR × AC on the bending strength.
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The interactive effects of the independent variables on the MOR are given as a 3D
plot in Figure 8a–c. It is evident from Figure 8a, where AC is at the middle level (15%),
that the suitable level of MR is partly above 2:1 and the suitable level of WR is 10%. There
is no positive effect on MOR, as the starch content increases even as the F to U molar
ratio increases or decreases. Based on the ANOVA table, it is also observed, due to the
non-significance of the direct effect x1 (MR) and the low F-value of the interactive effect
of x1x2, that the effect of MR is low, according to the slope variations in the 3D plot at all
levels in the interaction with WR.
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The interactive effect of MR and AC on MOR is given in Figure 8b. As the alkali
concentration increases by a little less than 20% when the F to U molar ratio is minimum,
the MOR value is maximum, and as the F to U molar ratio increases, MOR decreases
gradually. Based on the ANOVA table (Table 3), the F-value (6.34) indicating the effect of
each variable shows a low effect, though significant, compared to other variables. Therefore,
the intensity of the changes in MOR is affected more slowly interactively due to the change
in each or both variables.

The interactive effect of WR and AC on MOR is shown in Figure 8c. When the bending
strength is maximum and MR is at the middle level (2:1), WR (x2) is minimum, and AC
(x3) is at the middle level. As WR becomes minimum, a continuity is observed in the MOR
decrease. However, as AC decreases or increases beyond the middle level (15%), MOR
decreases. This decrease is maximum when the alkali concentration is minimum. Based on
the F-value in the ANOVA table, it is observed that the effect of this interaction is minimum
(5.32) among all affecting variables.

Based on the ANOVA table, the F-value of every variable indicates that the direct
effect of the factors has been high on the MOR. In Figure 9, the direct effect of all three
independent variables on MOR and the fluctuations of the output estimated by ANN
compared to the experimental value are shown. It is observed that the estimated values of
MOR resulting from the effect of the independent variables overlap with the experimental
values at all used levels of every variable, and it is also confirmed by the statistics R2 and
RMSE. At the same time and under the effect of the variables, MOR was affected by the
variables differently. As MR increases from 1.5 to 2, MOR increases. However, as it increases
more and reaches 2.5, MOR decreases. As the UF resin to MS weight ratio increases to 80%,
the increase in MOR is slow. However, applying the minimum starch (10%), the intensity
of the increase in MOR has increased and becomes maximum. It is observed that, as the
treatment concentration increases from 10% to 15%, the strength increases, and when it
increases beyond it to 20%, the bending strength decreases again.
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Figure 9. The direct real and estimated effect of the variables on the bending strength.

In the bending test, due to the difference in the deformation direction of the layers
under pressure compared to the layers under tension, the shear stress can result in the failure
of the samples. It was observed that the samples with the highest or lowest formaldehyde
and also with the highest starch to UF weight ratio have a failure at the larger area in the
intraphase or interphase region of the adhesive due to the dominance of the shear stress
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over the bending stress. However, as the F to U molar ratio approaches the middle level
(2) and as the ratio of starch approaches 20%, there is a failure under the tensile stress so
that it begins from the wood and moves along the wood layer fibers. Starch oxidation
can decrease the adhesive viscosity due to the failure of the inter- and intra-molecular
connections [51] and result in the excessive penetration of the adhesive into the internal
layers of the wood that prevents the formation of a uniform film of resin on the bonding
line and results in stress concentration regions. Despite the effect of oxidation on granules,
the structure of which has changed and have decreased the starch viscosity, the system’s
viscosity is still more than the pure resin. Furthermore, during the treatment, the structure
of many granules changes depending on the oxidizing agent and the treatment temperature,
while many other granules remain unchanged. Due to the gelatinization viscosity of the
unchanged starch granules, an evident increase occurs in the viscosity of the adhesive
system (especially when applying less oxidation through using less concentrated alkali) [52]
and wood penetrability decreases, and a cohesive failure occurs in the loading. Due to
the application of the alkaline oxidation treatment to modify the natural starch and acidic
treatment to produce the starch adhesive, the polymer chain containing new and more
bulky groups is exposed to make connections with the extra formaldehyde in the UF resin
so that a cross-linked network structure is formed due to it and the adhesive viscosity also
increases. In other words, while starch is treated in the oxidation process to produce the
adhesive, the molecular weight of the starch decreases effectively, and the gelatinization
viscosity is decreased effectively [53].

As the solid substance and viscosity increase on average, the solid structures of the
modified adhesive tend to get bigger through polycondensation and hence, the molecular
weight of the resin system increases. Meanwhile, due to the formation of more hydrox-
ymethyl in the modified starch, the formation of a hydrogen bond is more possible with
the UF resin. However, the curing time decreases, which is the criterion of resin activity.
As the modified starch increases more, or a more intense treatment of starch is applied,
the effect becomes inverse and the curing and complete copolymerization in the modified
starch are limited due to the thermoplastic nature of starch [8]. The chemical treatment
of starch promotes grafting in the starch chain due to the weak mobility of starch macro-
molecules [54]. During this process, the molecular weight of starch decreases and active
sites will be more exposed. Hence, the formation of a starch macromolecular colloid be-
comes more likely with resin molecules [55]. The copolymer content also increases as the
grafting parameter increases, which consequently improves the compatibility between
starch and the polymer [55]. As a result, the bonding strength improves which improves the
resistance to the horizontal shear stress created during the bending of the layers. However,
the results show that, as the treatment intensity increases, the grafting parameter decreases
due to homopolymerization that has overcome the graft-copolymerization [56]. As the
oxidation intensity increases, the active structure of starch is destroyed and hence, the
grafting parameter decreases [55] and the strength decreases.

Generally, the starch molecules in gel and paste forms are related to retrogradation.
The chemical treatment of starch decreases the molecular weight of starch and the steric
hinderance, providing a good opportunity for grafting between starch molecules and resin.
Hence, the quality of adhesives increases when the gelatinization of starch molecules is
hindered in the system [55]. However, when the treatment conditions become harder, the
active structure of starch is destroyed. The starch chain becomes smaller and is gelated
easily. Hence, the treatment prevents retrogradation to some extent.

In addition, based on the SEM images, it is evident that, during the oxidation, the
spherical shape of starch can disappear completely and the surface structure becomes
rough or bar-shaped when it is added to urea and the OS-U adhesive is formed, showing
the polycondensation reaction between urea and the modified starch [42]. However, at the
same time when using higher contents of the oxidized starch, especially together with a
stronger alkaline treatment, due to much more frequent failures of starch polymers and
the opening of hemiacetal loops of glucose monomers of amylose and amylopectin chains
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of starch at the same time, viscosity declines strongly again so that it can be less than
the resin viscosity, which is less than that of starch. However, when the oxidized starch
treated with a 15% alkali concentration is applied at the middle level, the adhesive has a
higher viscosity, and the more uniform distribution of the adhesive improves on the layer.
Moreover, based on the SEM micrograph analysis, it became clear that the application of the
starch adhesive can result in a more uniform distribution of the adhesive on the substrate
so that a more identical compressed structure is created inside the board [7]. Consequently,
under the effect of these two factors on one hand and the compatibility between the UF
resin and starch on the other hand, a better connection is made between the substrate and
the adhesive.

When applying the modified starch, carbonyl and carboxyl groups react with amino
groups (−NH2) of resin in the presence of a catalyst, such as ammonium chloride, that
develops a stronger cohesion together with the branched structure of amylopectin so that it
was observed that the failure of the samples containing a suitable level of starch occurred
mainly in the wood layers, not on the glue line. In addition, the chemical reaction between
the active aldehyde and carboxyl groups of the starch molecules and the hydroxyl groups
in wood can improve the bonding strength more, which is very effective for bearing the
horizontal shear force in the bending test and the stress can be transferred from the surface
under pressure to the surface under tension. It seems that under optimal ideal conditions,
where the adhesive molecule is limited to the surface layers to some extent and the gel
nail can form after hardening and more penetration of resin is prevented, rupture occurs
completely in the wood region.

It is proved that the strength properties of wood composites decrease as the crys-
tallinity index of resins increases. This index decreases using the UF resins known as a
crystalline substance during the curing [7] because the UF resin structure changes from mi-
crocrystalline to amorphous when it is cured in wood [57]. Due to the significant decrease
in the crystallinity index of the oxidized starch adhesive when applying the UF resin [7],
it can be expected that the adhesive strength increases at lower levels of the used starch
adhesive. As a criterion to describe the quality of the chemical bond in wood products,
the differential scanning calorimetry (DSC) analysis has proved that the glass-transition
temperature decreases due to adding starch to the UF resin because more UF in the ad-
hesive has increased the melting point of the adhesive due to more cross-linkages being
created by UF compared to the modified starch [10]. In addition, when applying a stronger
treatment of oxidation, instead of the formation of (−CH2−O−CH2−) ether bridges that
are more likely to occur in the more moderate conditions of oxidation treatment, (−CH2−)
methylene bridges form at high pressure temperature [58] that can increase the bonding
strength. However, it seems that it is not unlimited, and the effect of oxidation is that the
stronger treatment is reversed due to the destruction of the glycoside bond and opening of
hemiacetal loop of starch.

3.4. GA-ANN Optimization

The problem of the optimization of the strength properties of wood composites must
be defined as mathematical model equations or the fitness function. These equations are
given as the dependent functions of measured value and construction parameters. Due
to the complexity of the models, more accurate mathematical models include linear and
nonlinear components. However, in practice, second-order polynomials are enough to
develop a mathematical model to describe the production and construction process. For this
purpose, based on the independent variables x1, x2, and x3, the multi-objective functions
and nonlinear constraint functions were used respectively to determine the actual effect (in
a definite interval) and estimated effect (in indefinite interval) of each independent variable
as a direct, interactive, and quadratic form on each source, including f(x1,x2), f(x1x3), and
f(x2x3) using the genetic algorithm (Table 5). The minimization of the objective function
value of equations illustrated in Table 5 was exposed to the used limits using the nonlinear
constraint function. Meanwhile, the optimal limits of using the independent variables used
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were 1.6215:1 for MR, 17.67% for WR, and 10.6% for AC, which are the best combination of
parameters used, leading the minimum values of the objective functions to the nonlinear
constraint functions.

Table 5. The multi-objective and nonlinear constraints functions of the interactive effects of x1x2,
x1x3, and x2x3 used to optimize the response being studied using the GA approach.

Source
Normalized

Multi-Objective Function (Based
on Actual Values)

Nonlinear Constraint Function
(Based on Estimated Values)

f(x1,x2)
f(x1,x3)
f(x2,x3)

124 + 0.3333x1 + 3.267x2 − 5x12 −
0.8333x1x2 +4.667x22

129 + 0.3333x1 + 6.233x3 + 2265x12 −
0.8333x1x3 −10.9x32

127 + 3.267x2 + 6.233x3 + 8.856x22 −
0.75x2x3 − 13.98x32

1.25 + 0.3084x1 + 3.458x2 − 3.789x12

+ 2.786x1x2 + 4.682x22

1.26 + 0.2001x1 + 6.2x3 + 1.602x12 −
3.145x1x3 − 10.33x32

1.26 + 3.448x2 + 6.298x3 + 7.839x22 −
0.5722x2x3 − 12.56x32

Optimal coded and actual values of inputs with response for every source (function)

Source Input (x1, MR) Input (x2, WR) Input (x3, AC) Opt. response
value

f(x1,x2)
f(x1,x3)
f(x2,x3)

−0.754
(1.6215:1)

−0.233
(17.67%)

−0.988
(10.6%)

120.249
112.806
106.727

4. Conclusions

The present study has predicted the effect of the application of the starch modified
at different concentrations of NaOCl in the UF resin synthesis with different F to U molar
ratios as the inputs on the bending strength of glulam as the outputs using the ANN and
has optimized it using the ANN-GA. The results showed that:

• UF resins were successfully modified by adding OS prepared by NaOCl oxidation.
FTIR and XRD analyses detected both aldehyde and carboxyl groups in the OS. The
OS was cross-linked with UF resin by forming the ester groups.

• The ANN-GA model with three neurons in the input layer and six neurons in a hidden
layer showed the best performance of optimization with R2 = 0.9937, RMSE = 0.72,
and MAPE = 0.55.

• The proposed optimal network predicted a MOR value of more than 126 MPa, vali-
dated by experiments.

• Based on the optimization equations of the genetic algorithm, the difference between
the optimal values given by the multi-objective functions based on the actual response
and the values given by the nonlinear constraint function based on the estimated
response (outputs) was minimum.

• According to the statistics and the coefficients of the optimization equations, the
concentration of the chemical solution treating the starch has been the main factor
affecting the changes in the response level.
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