
sensors

Article

An Improved Otsu Threshold Segmentation Method
for Underwater Simultaneous Localization and
Mapping-Based Navigation

Xin Yuan *, José-Fernán Martínez, Martina Eckert and Lourdes López-Santidrián

Centro de Investigación en Tecnologías Software y Sistemas Multimedia para la Sostenibilidad (CITSEM),

Campus Sur, Universidad Politécnica de Madrid (UPM), Madrid 28031, Spain; jf.martinez@upm.es (J.-F.M.);

martina.eckert@upm.es (M.E.); lourdes.lopez@upm.es (L.L.-S.)

* Correspondence: xin.yuan@upm.es; Tel.: +34-91-336-5511; Fax: +34-91-336-7817

Academic Editors: Gabriel Oliver-Codina, Nuno Gracias and Antonio M. López

Received: 25 April 2016; Accepted: 19 July 2016; Published: 22 July 2016

Abstract: The main focus of this paper is on extracting features with SOund Navigation And Ranging

(SONAR) sensing for further underwater landmark-based Simultaneous Localization and Mapping

(SLAM). According to the characteristics of sonar images, in this paper, an improved Otsu threshold

segmentation method (TSM) has been developed for feature detection. In combination with a

contour detection algorithm, the foreground objects, although presenting different feature shapes,

are separated much faster and more precisely than by other segmentation methods. Tests have

been made with side-scan sonar (SSS) and forward-looking sonar (FLS) images in comparison

with other four TSMs, namely the traditional Otsu method, the local TSM, the iterative TSM and

the maximum entropy TSM. For all the sonar images presented in this work, the computational

time of the improved Otsu TSM is much lower than that of the maximum entropy TSM, which

achieves the highest segmentation precision among the four above mentioned TSMs. As a result

of the segmentations, the centroids of the main extracted regions have been computed to represent

point landmarks which can be used for navigation, e.g., with the help of an Augmented Extended

Kalman Filter (AEKF)-based SLAM algorithm. The AEKF-SLAM approach is a recursive and iterative

estimation-update process, which besides a prediction and an update stage (as in classical Extended

Kalman Filter (EKF)), includes an augmentation stage. During navigation, the robot localizes the

centroids of different segments of features in sonar images, which are detected by our improved Otsu

TSM, as point landmarks. Using them with the AEKF achieves more accurate and robust estimations

of the robot pose and the landmark positions, than with those detected by the maximum entropy TSM.

Together with the landmarks identified by the proposed segmentation algorithm, the AEKF-SLAM

has achieved reliable detection of cycles in the map and consistent map update on loop closure, which

is shown in simulated experiments.

Keywords: threshold segmentation; underwater object detection; simultaneous localization and

mapping (SLAM); augmented extended Kalman filter (AEKF)

1. Introduction

In recent years, underwater vehicles are increasingly being used in complex environments like

seas, harbors or dams, and underwater robotic mapping has received considerable attention from the

research community. Robotic mapping is the process of generating a spatial representation of a given

environment from a series of sensor measurements observed by the robot while travelling through

that environment. An accurate map is a fundamental and mandatory requirement for a robot to work

autonomously. The use of the conventional Kalman filter (KF) method is not adequate for estimating
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underwater landmark positions, as it suffers from the assumption of Gaussian noise statistics, which

often lead to failures when these assumptions do not hold. Additionally, the linearization errors

caused by the standard extended Kalman filter (EKF) can also severely degrade the performance

of the localization estimates. This paper comes up with two proposals and their combination: the

first one is an improved Otsu Threshold Segmentation Method (TSM), which provides a real time

and accurate segmentation solution for underwater feature detection and has been proved to be

faster than other TSMs. The second one is an augmented EKF (AEKF)-based underwater landmark

SLAM, which employs the landmarks detected by the improved Otsu TSM. The SLAM algorithm

jointly estimates the geometric landmark locations and the vehicle pose with the help of a stochastic

framework. Underwater SLAM is a tough variable dimension state estimation problem in which the

size of the state space is increased or decreased when features are added or removed from the map.

While the robot moves through the underwater environment, it is exploring the region without having

exact geo-referencing data, so it uses sensor measurements to perform two basic operations: one is

updating concurrently its own state estimate and refining the previously observed landmark positions

in the environment, the other is adding newly detected features into the state of the overall system.

The study of estimation-theoretic solutions for the SLAM problem within the field of robotics has

received considerable attention within the research community. Initial works by Smith et al. [1] and

Durrant-Whyte [2] established a statistical basis for representing relationships between landmarks

and manipulating geometric uncertainty. Meanwhile, Ayache and Faugeras [3] and Chatila and

Laumond [4] were working in the visual navigation of mobile robots using KF-based algorithms.

Then, Smith, Self and Cheeseman [5] proved that, when a mobile robot moves through an unknown

environment measuring relative observations of landmarks, the estimates of these landmarks are all

necessarily correlated with each other, due to the common error in the estimated robot pose. The SLAM

problem can be stated from different approaches depending on the number of landmarks, the area

of coverage, computational requirements, flexibility, etc. [6]. Recently, probabilistic approaches such

as KF, Particle Filters (PF) and Expectation Maximization (EM) have become dominant methods to

deal with the stochastic SLAM problem. These three techniques are mathematical derivations of the

recursive Bayes rule. Stochastic SLAM suffers from three main weaknesses: high computation and

storage costs, fragile data association, and inconsistent treatment of non-linearity. High computation

and storage are the price paid for maintaining correlations in the system state covariance matrix.

At present, there exist robust methods for mapping environments that are static, structured,

and of limited size. These methods deal with issues related to computational complexity, data

association and representation of the environment [7,8]. However, the implementation of SLAM in

real underwater environments still can be considered as an unsolved and challenging research topic

due to the limitations of subsea localization and perception sensors followed by error accumulation

over long-term operations. Furthermore, sonar measurements are affected by multiple sources of

perturbations such as hydrostatic effects of waves or currents, inhomogeneous pressure distribution,

marine animals, vessel traffic and the vessel propellers. Besides, one needs to deal with reflections and

poor resolution of the acoustic imaging for extracting features. Although video cameras provide highly

detailed images, they are always limited due to turbidity and low-lighting conditions [9]. Moreover,

the dynamic continuous changes of underwater natural resources is another factor that makes the

recognition of previously visited locations and identification of already detected features difficult

or even impossible. Today large scale unstructured and dynamic environments are still presenting

multiple challenges for SLAM applications.

The next section of this paper presents the related works about the state of the art of the

underwater SLAM problem, and three kinds of currently used maps in mobile robot navigation

systems are compared, being the landmark map the most suitable one to represent the undersea

environment. Section 3 describes the improved Otsu TSM, and compares its segmentation accuracies

and computational costs of a shipwreck, a branch from two side-scan sonar (SSS) images and a plastic

mannequin from a forward-looking sonar (FLS) imagery with the ones of the traditional Otsu, the local
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TSM, the iterative TSM and the maximum entropy TSM, respectively. Also, the centroids of different

detected regions have been calculated, which are used as point landmark positions in the MATLAB

simulation experiment of AEKF-based SLAM loop mapping in Section 4. Furthermore, Section 4

reviews the mathematical model of the estimation-theoretic AEKF-based underwater landmark SLAM

approach. Section 5 concludes this paper and discusses the future work of implementing the AEKF

algorithm in combination with the proposed improved Otsu TSM to solve large-scale underwater

SLAM problem.

2. Related Works

At present, underwater mapping techniques put great emphases on the integration of data

recorded from different perception and navigation sensors, generally acoustic sonars are used to create

large scale maps of the environments while optical cameras provide more detailed images of the

objects of interest. Since the costs of offshore seabed mapping are largely determined by the expense of

the vehicle exploring time, any improvement in the quality of the sonar perceived data, and especially

reduction in detection costs are of crucial interest to the marine and offshore community. In this

work, the proposed segmentation method achieves both a much lower False Positive Rate (FPR) and

computational time, also a much higher precision rate than those values of the maximum entropy TSM,

which has the highest segmentation precision among the four classic methods compared in this work.

In the SLAM context, features must be distinguishable enough to simplify the data association

process of new observations to corresponding map features. In general, features can be detected by

their characteristics, such as positions, shapes, and colors. In underwater environments, there should

be as many features as possible, which could be observed repeatedly, so as to reduce the uncertainty

caused by significant vehicle drift. Currently, there exist several feature extraction approaches. Edge,

contour and corner detectors are commonly used in computer vision, for instance the well-known

Canny edge detector [10], and the Harris corner detector [11]. Different invariant solutions, such as

Scale-Invariant Feature Transform (SIFT) [12] and Speeded Up Robust Features (SURF) [13] produce

more robust, rotation and scale invariant features.

Problems related to underwater SLAM are nowadays a hot topic in the robotics community.

Recent works such as [14] present a probabilistic underwater SLAM using a multibeam echosounder

to generate 3D high consistency bathymetry maps of the inspected region in the form of point cloud

data. The authors come up with point-to-point and point-to-plane associations for registering the

point clouds, and they use two real world datasets to test their algorithm, one is a 2.5D bathymetric

dataset, the other is a full 3D underwater dataset. As a result, the consistency of their proposed

SLAM framework is higher than that acquired with dead reckoning. Since high-quality images could

help the data association process, a great number of research papers focus on image segmentation,

classification, registration and landmark extraction. Other papers address the issue of data association

in the context of sonar images [15,16] and some work on matching side-scan sonar images [17]. In [18],

the systematic geometrical distortions of the SSS maps are corrected and the authors achieve an

underwater maps mosaic of the surveyed scenario by using a multibeam FLS. Very few references

can be found regarding the use of Fourier based registration approaches for sonar imagery and [19]

is the first work considering this application on 2D FLS images. Phase correlation has already been

applied to register underwater optical images for building photo mosaics. This paper achieves aligning

consecutive and non-consecutive sonar frames with high accuracy and robustness by using the phase

correlation algorithm. In [20], a new method for registering 2D FLS images recorded from real mobile

platform by optimizing over four (of the six) degrees of freedom (DOF) in the 3D sonar motion is

proposed. Features and landmarks are successfully detected and effectively depicted in Gaussian

maps with improved performances compared with the currently used 2D similarity transformation.

Reference [21] describes FLS images considering the shape of objects and their topological relation by

using a graph of Gaussian probability density function. Besides, the descriptors are matched efficiently

based on similarities of the vertices of the graphs in each image. Compared with [22], which also
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employs the Otsu segmentation on multi-beam sonar images for feature detection, our presented

work is novel in applying a power-law transform before performing different threshold segmentation

methods (TSM), and it has been figured out that the best thresholding results are achieved when

y = 0.1x1.415, in this way the contrast between object and background is enlarged and the feature is

highlighted, since the gray levels of the object are increased and the background ones are decreased.

Therefore, the improved Otsu TSM has more accurate segmentation performance than the methodology

used in [22]. Besides, [22] does not consider the computational time of their method, but our proposed

segmentation approach could keep good tradeoff between segmentation precision and computational

cost. In [23], the classic Otsu thresholding and static thresholding are applied for object detection

using the sector scanning sonar. Although the Otsu segmentation method requires several scanline

measurements to be collated before obtaining the binary detection, the segmentation result of the Otsu

approach is much cleaner than that of static thresholding, but the features which are farther away

with marginal measurements and near the background noise level, cannot be detected by the classic

Otsu method. The improved Otsu TSM presented in our work could solve this problem, since it is

an adaptive thresholding method and it can find the best segmentation threshold of an image. The

computational cost of the configuration-conjunct threshold segmentation method, described in [24],

on their presented low resolution sonar image is 0.371 s, which is three times higher than that of our

improved Otsu TSM (0.117 s). Also their proposed method can only extract linear objects with neat and

obvious edges, not like the objects with different feature forms presented in our work. In this section,

on the one hand, a brief state of the art of the underwater SLAM problem is introduced and the recent

important works in the field of feature detection in sonar images are compared. On the other hand, the

basic functionalities of the three most commonly used map representations are outlined and a survey

is made of their suitability to a priori map localization i.e., computational complexity, reliability, etc.

2.1. Map Representations

Autonomous mobile robot systems rely on maps to represent the robot’s surroundings for path

planning and to determine a position with respect to the environment. At present, there are three

well-known map representations related to the SLAM problem: occupancy grid maps, topological

maps, and landmark maps. Occupancy grid SLAM works robustly in dynamic indoor environments

over a limited period of time. They are adequate for local navigation and obstacle avoidance

purposes [25], so this kind of map representation is popular for describing the environment of a

mobile robot, given known poses. However, as a SLAM map representation, occupancy grids do

not process a proper uncertainty model, since they represent uncertainty only at a local robot-centric

level, but not at a global level, they will tend to diverge in the long term operation. To adequately

capture the details in more complex environments, a high resolution of cell distribution is required,

which would mean a waste when areas with less complexity are treated. Techniques like quad trees or

octrees [26] have been applied to reduce the space consumption problem but can also lead to increasing

computational costs.

Occupancy grids maps and landmark maps are both metric maps where positions are specified

in a set of Cartesian coordinates. As for topological maps, they do not rely on metric measurements

and instead represent the working environment in terms of paths connected by landmark positions.

Topological maps are attractive due to their efficiency and compact representation, as well as their

logical organization for tasks such as fast path planning and global navigation. In our case, in undersea

environments, where location recognition is more complex, there is more risk of fail to localize [27].

Since there is no explicit physical information, topological maps are not suitable for underwater

SLAM applications.

Considering the sparse spatial distribution of marine features, and the long distances between

different landmarks, the metric landmark map would be more suitable to represent the underwater

working environment. In general, landmark maps allow achieving a viable representation for long-term

convergent SLAM in fairly small-scale exploring regions where stable landmarks are observable,
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computation is tractable and accumulated state uncertainty does not exceed conservative limits. These

landmarks not only include the artificial landmarks put out by the researchers, but also various

other seafloor features in the vicinity of the robot. The same landmark may look totally different

when observed from a different view point. In this paper, the stationary points, which are the least

complicated features, are considered to represent the underwater landmarks of a local area. In order

to achieve a feasible and convergent operation in larger underwater spaces with moving landmarks,

modifications to the basic stochastic SLAM algorithm are required.

The robot can increase the map accuracy by revisiting previously mapped regions since it can

observe and correct the changes appeared to the map [28–30]. If it explores an environment by

traversing a large cycle which is much larger than its sensing range, then identifying a return to an

already mapped area is the loop closure problem, which is also known as the cycle detection and map

revisiting problem. Being able to re-identify an observed feature is of importance to detect the cycle.

Notice that, a closed loop can improve map consistency and localization accuracy. For this reason,

it is necessary to provide the system with algorithms capable of identifying when an observation is

corresponding to a new landmark or to an already seen one. Therefore, detecting and selecting proper

features is a key issue to solve within underwater SLAM problems.

2.2. Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) or Concurrent Mapping and Localization

(CML) [31,32] combines the information provided by the robot’s odometers with the Received Signal

Strength Indication (RSSI) samples provided by the surrounding objects to currently track the robot’s

trajectory in the environment and refine the mapping of the objects in the area [33]. In SLAM, a robot

starts at an unknown place and without previous knowledge of the environment to incrementally build

a consistent landmark map using its onboard sensors, while concurrently localizes itself relative to this

map by keeping track of its relative position and re-observing those already detected landmarks [34,35].

After an observation, the local perception map needs to be associated with the global map to

refine the robot pose and to update the environmental feature positions as well. Selecting the next best

viewpoint for completing the model is a research issue by itself. The difficulty of the SLAM problem

is that, in order to obtain a qualified map, a precisely estimated robot’s trajectory is required, but

reducing the unbounded growing odometry errors it is needed to incorporate sensor measurements

with an accurate map. SLAM presents a series of tough issues, like: (1) efficient mapping of large-scale

environments; (2) correct association of sensor measurements; and (3) robust estimation of map and

robot trajectory information. In this paper, the reviewed AEKF-based SLAM method contributes to

each of these three areas.

3. An Improved Otsu TSM for Fast Feature Detection

An automatic detection and localization of underwater objects is of great importance in

Autonomous Underwater Vehicle (AUV) navigation and mapping applications. Object detection

aims at separating a foreground object from the background and generating a binary image for every

frame, which is of critical importance for the sonar image processing since the result will directly affect

the accuracy of the following feature extraction and object localization [36]. Feature extraction is an

important aspect of SLAM, in which a mobile robot with a known kinematic model, starting at an

unknown location, moving through the exploring environment where contains multiple features to

incrementally generate a consistent map. Geometric features, such as points, lines, circles and corners

are determined as a part of the SLAM process, since these features can be used as landmarks. Generally,

SLAM consists of the following parts including motion sensing, environment sensing, robot pose

estimation, feature extraction and data association. The main focus of this paper is on first extracting

features from underwater sonar images of different types, and then using them as landmarks for an

AEKF-based underwater SLAM.
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In recent years, the resolution of sonar imagery has improved significantly, such that it can

be used in a much better way for further processing and analyzed with advanced digital image

processing techniques. Noise filtering, radiometric corrections, contrast enhancement, deblurring

through constrained iterative deconvolution, and feature extraction are usually employed to correct or

to alleviate flaws in the recorded data [37]. The first step of underwater object detection is to segment

the foreground features from the background. Segmentation is the process of assigning a label to every

pixel in the image such that pixels with the same label share homogeneous characteristics, like color,

intensity, or texture, and thereby different entities visible in the sonar imagery could be separated.

A sonar image is made up of a matrix of pixels having a gray level typically on a scale from 0 to

255. The gray levels of pixels associated with foreground objects are essentially different from those

belonging to the background. Normally, in typical sonar imagery, the object is composed of two parts:

the highlighted areas (echo) and the shadow regions. The echo information is caused by the reflection

of the emitted acoustic wave on the object while the shadow zones correspond to the areas lack of

acoustic reverberation behind the object. Based on this characteristic, the threshold segmentation

methods (TSM) can be used to detect the foreground object in the sonar image. In general, the Otsu

method is one of the most successful adaptive methods for image thresholding [38].

3.1. Side-Scan Sonar Images

Under optimal conditions, side-scan sonars (SSS) can generate an almost photorealistic,

two-dimensional picture of the seabed. Once several swatches are joined via mosaicing, geological

and sedimentological features could be easily recognized and their interpretation would provide a

valuable qualitative insight into the topography of the seabed [39]. Due to the low grazing angle of the

SSS beam over the seabed, SSS provide far higher quality images than forward-looking sonars (FLS),

such that the feature extraction and the data association processes will behave better. The accuracy

of SLAM using SSS is more dependent on the distribution of landmarks. In general, the SSS and the

multibeam FLS provide large scale maps of the seafloor that are typically processed for detecting

obstacles and extracting features of interest on the areas of the seafloor [18].

By transmitting and receiving sound via an underwater sonar system, the seafloor terrain and

texture information can be extracted with relevant data from the acoustic reflection image of the seabed.

High image resolutions are very important for determining if an underwater target is something worth

investigating. Two SSS images are used in this work (see Figure 1). Figure 1a is of high resolution,

whereas Figure 1b is a low resolution SSS image. Actually, the DE340D SSS (Deep VisionAB company,

Linköping, Sweden), the 3500 Klein SSS (Klein Marine System, Inc., Salam, MA, USA), and the Blue

View P900-90 2D FLS (Teledyne BlueView, Bothell, WA, USA), all will be employed in our “Smart

and Networking Underwater Robots in Cooperation Meshes”-SWARMs European project, that is the

reason why we perform feature detection on these sonar images. DE340D SSS is a product of the Deep

VisionAB company(Linköping, Sweden) [40], working at the frequency of 340 kHz with optimized

resolution of 1.5 cm. The beam reaches from 15 to 200 m and the maximum operation depth is 100 m.

The size of the converted Figure 1a is 800 ˆ 800 = 640,000 pixels. Due to the impact of sediment and

fishes, many small bright spots appear in sonar images. The area size of these background spots is

usually smaller than 30 pixels, and their gray level is similar to that of certain areas of foreground object.

When using the traditional TSM to separate the foreground object, in this case a shipwreck, it can be

found that most of these spots are still retained in the segmentation results. To solve this problem,

an improved Otsu method is proposed that constrains the search range of the ideal segmentation

threshold to separate the foreground object inside the sonar imagery.

It is typical for SSS images to show a vertical white line appearing in the center, indicating the path

of the sonar. A dark vertical band on both sides represents the sonar return from the water-column area.

Notice that this band has no equal width, and is curved in some parts. The distance from the white

line to the end of the dark area is equivalent to the depth to the sea bottom below the sonar device.

The seabed is imaged on either side, corresponding to port-side and starboard-side views. Bright areas
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indicate ascending ground, while dark areas correspond to descending regions or shadows produced

by objects, vegetation or rocks. The length of a shadow can be used to calculate the height of an object.

(a) (b)

≤

 

 

 

  

Figure 1. (a) High resolution SSS image recorded with the DE340D SSS at Stockholm sea [40]; (b) Low

resolution SSS image generated by the 3500 Klein SSS (ECA Group company [41]).

3.2. The Proposed Improved Otsu TSM Algorithm

When using the traditional TSM to separate the foreground object, in this case a shipwreck,

most of the background spots are still retained in the segmentation results. To solve this problem, an

improved Otsu TSM is presented that constrains the search range of the ideal segmentation threshold

to extract the foreground object inside the image. Since the area size of the background spots, shown

in Figure 1a, is usually no bigger than 30 pixels, the parameter N30 has been defined as the number

of contours to be found with an area size smaller than 30 pixels. The procedure of the improved

Otsu approach is illustrated in Figure 2. At first, the traditional Otsu method [42] is used to calculate

the initial segmentation threshold T. Then, the Moore Neighbor contour detection algorithm [43,44] is

employed to compute N30. If N30 > 300, (64,000/30 ˆ 300 = 71.1:1), it means that there are still many small

bright spots remaining in the segmentation result, and the threshold needs to be improved. The final

segmentation threshold T* can be calculated as explained further on. If N30 ď 300, the final segmentation

threshold T* is set as the initial segmentation threshold T, and segmentation is finished. Notice that both

values, N30 and 300 should be changed depending on the characteristics of the used sonar images.

In the gray level range of one plus the initial segmentation threshold T calculated by the traditional

Otsu method to the gray level of 255, denoted as [T + 1, . . . ,255], the number of pixels at gray level i is

denoted by ni, and the total number of pixels is calculated by:

N “
255
ÿ

i“T`1

ni (1)

The gray level histogram is normalized and regarded as a probability distribution:

pi “
ni

N
, pi ě 0,

255
ÿ

i“T`1

pi “ 1 (2)

Supposing that the pixels are dichotomized into two categories C0 and C1 by a threshold T*.

The set C0 implies the background pixels with a gray level of [T + 1, . . . , T*], and C1 means those pixels

of foreground object with a gray level of [T + 1, . . . , 255]. The probabilities of gray level distributions

for the two classes are the following: w0 is the probability of the background and w1 is the probability

of the object:
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w0 “ PrpC0q “
T˚
ÿ

i“T`1

pi, w1 “ PrpC1q “
255
ÿ

i“T˚`1

pi “ 1 ´ w0 (3)

The means of the two categories C0 and C1 are:

u0 “
T˚
ÿ

i“T`1

ipi{w0, u1 “
255
ÿ

i“T˚`1

ipi{w1 (4)

The total mean of gray levels is denoted by:

uM “ w0u0 ` w1u1 (5)

The two class variances are given by:

σ2
0 “

T˚
ÿ

i“T`1

pi ´ u0q2pi{w0, σ2
1 “

255
ÿ

i“T˚`1

pi ´ u1q2pi{w1 (6)

The within-class variance is:

σ2
W “ w0σ2

0 ` w1σ2
1 (7)

The between-class variance is:

σ2
B “ w0pu0 ´ uMq2 ` w1pu1 ´ uMq2 “ w0w1pu0 ´ u1q2 (8)

The total variance of the gray levels is:

σ2
M “ σ2

W ` σ2
B (9)

 

  
 

   

 

 
 

 

 


 

  
 

 

   

      

   

 

      
    

  

 

 

30N

30 300?N  *
T [ 1,..., 255]T 

T

Figure 2. The procedure of the improved Otsu TSM.
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The final threshold T* is chosen by maximizing the between-class variance, which is equivalent to

minimizing the within-class variance, since the total variance, which is the sum of the within-class

variance σ2
W and the between-class variance σ2

B, is constant for different partitions:

6 T˚ “ arg

"

max
T`1ďiď255

!

σ2
Bpiq

)

*

“ arg

"

min
T`1ďiď255

!

σ2
Wpiq

)

*

(10)

3.3. The Power-Law Transformation

Nevertheless, the Otsu method does have its limitations in that the correct image segmentation

cannot be obtained when the gray level of objects is closely approximate to that of the background or

the proportion of objects is low. To solve this problem, the gray level for objects should be increased

and the one for the background should be decreased for enhancing the contrast and highlighting before

using the segmentation method. For this purpose, the power-law transformation has been employed,

which has the following basic form:

y “ cxr (11)

where x and y are the input and output gray levels, c and r are positive constants. With the help of this

power-law transformation, the gray level of each pixel can be easily changed. The plots of this equation

with various r values are displayed in Figure 3. Different values of c and r affect the segmentation

result directly, many experiments have been done and it has been figured out that the best thresholding

result is achieved when the value of c is 0.1 and the value of r equals 1.415.



 

Figure 3. The plots of the power-law equation with different r values.

3.4. TSM Results for Side-Scan Sonar Images

For comparison, the SSS image in Figure 1a,b have been segmented with the traditional Otsu

method, the local TSM, the iterative TSM, the maximum entropy TSM and our method, respectively.

The local TSM adapts the threshold value on every pixel to the local image characteristics, and a

different threshold is selected for each pixel in the image. As for the iterative TSM, it compares the

threshold value of each pixel with the average of the maximum and the minimum thresholds in the

image. The maximum entropy TSM employs the entropy of the foreground and background regions,

the cross-entropy between the original and binarized image, etc. [45].
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3.4.1. TSM Results for High Resolution SSS Image

The thresholding segmentation results of the above four classic segmentation methods and the

improved Otsu TSM on Figure 1a are shown in Figures 4 and 5, respectively. The output after the TSM

operation is a binary image which indicates the object with a gray level of 255 (white pixels in 8-bit

images) and the background with a gray level of 0 (black pixels in 8-bit images). Compared with other

conventional TSM, it is obvious that the improved Otsu TSM could reduce the influence of noise and

also the small bright spots in sonar images, since most of them have been divided into the background.

In addition, the segmentation results of the presented method are more precise.

(a) (b)

(c) (d)

Figure 4. (a) Traditional Otsu TSM, Th = 0.3216; (b) Local TSM, Th = 0.1628; (c) Iterative TSM,

Th = 0.4238; (d) Maximum entropy TSM, Th = 0.6627.

Edges exist between objects in contact, between objects and background and between different

fields. As a crucial characteristic of an image, an edge indicates the position of its outline. Consequently,

edge detection is the first necessary step in detecting objects and its result directly domains the ability

of system recognition and classification [46]. In this paper, the Canny edge detector is used as a feature

extraction tool. The main stages of the Canny edge detection algorithm (Algorithm 1) [47] are described

as follows, and the result is illustrated in Figure 5a:

Algorithm 1: Canny edge detection

1. Smooth the image with a Gaussian filter, h = fspecial (‘gaussian’, [3 3], 0.5);

2. Calculate the gradient’s amplitude and orientation with the finite-difference for the first partial derivative;

3. Non-Maxima Suppression;

4. Detect and link the edge with double threshold method, y = edge (b, ‘canny’, 0.33), the high

threshold for Figure 1a is 0.33, and the 0.4 times high threshold is used for the low threshold.
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The initial segmentation threshold T computed by the traditional Otsu method is 0.3216, and

the parameter N30 returned from the above Canny edge algorithm equals 752, which is bigger than

300. Therefore, our improved Otsu TSM has been applied, and the segmentation result is shown in

Figure 5b, with the final threshold T* of 0.6784. In order to detect the centroids of each segmented

region, we need to do the following morphological operations (Algorithm 2) with Figure 5b.

Algorithm 2: Morphological operations for detecting feature centroids

1. Remove all connected components that have fewer than 30 pixels in Figure 5b;

2. Bridge previously unconnnected pixels;

3. Perform dilation using the structuring element ones (3) with the size of a 3 ˆ 3 square;

4. Fill the holes in the image;

5. Compute the area size, the centroid and the bounding box of different contiguous regions;

6. Concatenate structure array which contains all centroids into a single matrix.

(a) (b)

(c) (d)

Figure 5. (a) Canny edge detection after applying the traditional Otsu method, bw = edge (b, ‘canny’,

0.33), N30 = 752 > 300; (b) Improved Otsu TSM,T = 0.3216, T* = 0.6784; (c) Result of the improved

Otsu TSM after morphological operations marking the centroids of the obtained regions; (d) Result

of the maximum entropy TSM after the same morphological operations marking the centroids of the

acquired areas.

In Figure 5c, the red stars ‘*’mark the centroids for each contiguous region or connected component

in this image. We set the top left corner as the coordinates origin, where the horizontal direction

corresponds to the x-axis, and the vertical direction to the y-axis. The centroid coordinates of all

connnected regions within the foreground shipwreck are (535, 603) and (542.3, 653.9), which will

be used as point landmarks in the further test of AEKF-based SLAM loop mapping. So the central

centroid of this ship is (538.7, 628.5), which is calculated as the average of the above two centroid

positions. The same morphological operations for marking the feature centroids is performed on the
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segmentation result of the maximum entropy TSM, shown in Figure 5d. The confusion matrix of real

ship centroids and the ones detected by the improved Otsu TSM is shown in the following Table 1.

Table 1. The confusion matrix of real and detected ship centroids using the improved Otsu TSM.

Detected

Ship Centroids Non-Ship Centroids

Real
Ship Centroids 2 0

Non-Ship Centroids 4 21

Thus, the false positive rate (FPR) of ship centroids detected by the improved Otsu TSM is:

FPR “
FP

FP ` TN
“

4

4 ` 21
“ 0.16 (12)

Among several classic segmentation methods compared above, the maximum entropy TSM

achieves the best segmentation performances. To compare it here with the proposed method, the

following Table 2 shows also the confusion matrix of real ship centroids and the ones detected by the

maximum entropy TSM.

Table 2. The confusion matrix of real and detected ship centroids using the maximum entropy TSM.

Detected

Ship Centroids Non-Ship Centroids

Real
Ship Centroids 2 0

Non-Ship Centroids 8 20

In this case, the FPR of ship centroids detected by the maximum entropy TSM is:

FPR “
FP

FP ` TN
“

8

8 ` 20
“ 0.29 (13)

which is higher than the FPR of the proposed improved Otsu TSM. As a further performance indicator,

the detection precision, also called positive predictive value (PPV), has been calculated for both

segmentation methods. For the improved Otsu TSM it is:

PPV “
TP

TP ` FP
“

2

2 ` 4
“ 0.33 (14)

while the maximum entropy TSM only leads to a lower value:

PPV “
TP

TP ` FP
“

2

2 ` 8
“ 0.2 (15)

Indeed, both precision rates are not really high because the proportion of the foreground ship

feature is small, and the centroids in some parts of the background, where their gray levels are

similar to that of the ship, are also detected. So, we consider even more important that the improved

Otsu TSM shows a better performance and therefore seems to be more robust. The computational

cost of the improved Otsu TSM has also been compared with the above mentioned four conventional

segmentation approaches, executed on Figure 1a, results are shown in Table 3.

In general, the improved Otsu TSM achieves a more accurate and faster segmentation on the SSS

image shown in Figure 1a. Although the computational time of the improved Otsu TSM is 4.9 times

higher than that of the classic Otsu method, it is only half of that of the maximum entropy TSM,
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which achieves the highest segmentation precision among the four classic segmentation methods

compared above.

Table 3. Computational costs of different segmentation methods on Figure 1a.

Segmentation Method Computational Time [s]

Traditional Otsu TSM 0.178226
Local TSM 0.913942

Iterative TSM 0.289513
Maximum entropy TSM 1.562499

Improved Otsu TSM 0.868372

3.4.2. TSM Results for Low Resolution SSS Image

To further compare the performance of the proposed segmentation algorithm with lower

resolution images, the same process has been realized over the image shown in Figure 1b. The size of

the image is 417 ˆ 228 = 95,076 pixels.Since the background spots, whose gray levels are similar to

those of some parts of the object (a branch) in the foreground, usually have an area size not bigger

than 15 pixels, the parameter N15 has been defined as the number of contours to be found with an area

size smaller than 15 pixels. If N15 > 100, (95076/15 ˆ 100 = 63.4:1),this assigned threshold of 63.4 is

lower than that of 71.1 for Figure 1a, since the proportion of background spots in this low resolution

SSS image is higher than that in Figure 1a.

(a) (b)

(c) (d)

Figure 6. (a) Traditional Otsu TSM, Th = 0.1137; (b) Local TSM, Th = 0.0941; (c) Iterative TSM,

Th = 0.2609; (d) Maximum entropy TSM, Th = 0.3176.

Also, the lower resolution of the image in Figure 1b and the rough texture of the seabed leads

to many small bright spots remaining in the segmentation result, and the threshold needs to be

improved. Figure 6 shows the results of several classic segmentation methods and Figure 7b the

result of our improved Otsu TSM. The initial segmentation threshold T calculated by the traditional

Otsu method is 0.1137. In Figure 7a, the parameter N15 computed by the Canny contour detection

algorithm is 419, which is bigger than 100. As a result, the proposed improved Otsu TSM has been

applied, and the segmentation result is shown in Figure 7b, with the final threshold T* of 0.3529.

The morphological operations for marking the centroids of every segmented region within the branch

are similar to that of the ship. Only in step 1, the parameter is set to 15 to remove all connected
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components that have fewer than 15 pixels. The red stars ‘*’, shown in Figure 7c,d, imply the centroids

for every contiguous region or connected component in the segmentation results of our improved

Otsu TSM and the maximum entropy TSM, separately. The centroid coordinate of the branch detected

by our method is (187.3, 115.6), which will be used as a landmark point in the further simulation test

of an AEKF-based SLAM loop mapping. The confusion matrices of the real centroids and the ones

detected by the improved Otsu TSM on the one hand and the maximum entropy TSM on the other

hand are shown in the following Tables 4 and 5, separately.

(a) (b) 

(c) (d) 

  
 

  
 

Figure 7. (a) Canny contour detection after applying the traditional Otsu method, bw=edge (b, ‘canny’,

0.1255), N15 = 419 > 100; (b) Improved Otsu TSM, T = 0.1137, T* = 0.3529; (c) Result of the improved

Otsu TSM after morphological operations marking the centroids of the obtained regions; (d) Result

of the maximum entropy TSM after the same morphological operations marking the centroids of the

acquired areas.

Table 4. The confusion matrix of real and detected branch centroids using the improved Otsu TSM.

Detected

Branch Centroids Non-Branch Centroids

Real
Branch Centroids 1 0

Non-Branch Centroids 1 13

Table 5. The confusion matrix of real and detected branch centroids using the maximum entropy TSM.

Detected

Branch Centroids Non-Branch Centroids

Real
Branch Centroids 1 0

Non-Branch Centroids 7 11

Therefore, the FPR of branch centroids detected by the improved Otsu TSM is:

FPR “
FP

FP ` TN
“

1

1 ` 13
“ 0.07 (16)

and the precision of branch centroids detected by the improved Otsu TSM is:
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PPV “
TP

TP ` FP
“

1

1 ` 1
“ 0.5 (17)

As a result, the FPR of branch centroids detected by the maximum entropy TSM is:

FPR “
FP

FP ` TN
“

7

7 ` 11
“ 0.39 (18)

which is 5.5 times bigger than the FPR of the proposed improved Otsu TSM. The precision of branch

centroids detected by the maximum entropy TSM is:

PPV “
TP

TP ` FP
“

1

1 ` 8
“ 0.11 (19)

which is much lower than the precision of the improved Otsu TSM. As in the previous image, both

precision values are low, since the ratio of the foreground branch feature is small, and the centroids of

certain parts of the background, where their gray levels are close to those of the branch are also detected,

but the difference between precision values is even bigger, 4.5 times higher for the improved Otsu TSM

in this image, 1.65 times higher in the formerly presented high resolution image. This proves that the

proposed improved Otsu TSM is very valuable, above all for standard sonar images. The computational

cost of the proposed improved Otsu TSM is compared with the above four classic segmentation

approaches on Figure 1b and is shown in Table 6.

Table 6. Computational costs of different segmentation methods on Figure 1b.

Segmentation Method Computational Time [s]

Traditional Otsu TSM 0.120458
Local TSM 0.261021

Iterative TSM 0.227290
Maximum entropy TSM 0.378283

Improved Otsu TSM 0.241164

In conclusion, the testing of different SSS images with different resolutions shows that

our proposed improved Otsu TSM keeps a good tradeoff between segmentation precision and

computational cost. The computational time of the improved Otsu TSM on this low resolution

SSS image, shown in Figure 1b, is only two times higher than that of the traditional Otsu TSM. As for

the former high resolution SSS image, shown in Figure 1a, it is nearly five times higher. Therefore, the

improved Otsu TSM performs even better for lower resolution images both in segmentation precision

and processing time and seems to be more robust. In comparison, the configuration-conjunct TSM

proposed in [24], which is only suitable for detecting simple linear objects with neat and obvious edges,

needs a computing time of 0.371 s on a low resolution sonar image of size 140 ˆ 228 = 31,920 pixels.

Executed on that same image, our improved Otsu TSM only spends 0.117 s segmenting the object

(a pipe), this means that the configuration-conjunct TSM consumes three times more processor time

than our improved Otsu TSM. As a result, the improved Otsu TSM provides a much faster segmentation

than other state of the art approaches for detecting underwater objects of different shapes.

3.5. TSM Results for Forward-Looking Sonar Image

Usually, a preliminary mission of AUV is data collection, generally accomplished by means of

SSS or multibeam echosounder, another key issue is to ensure the safety of the AUV. For the purpose

of avoiding obstacles, the AUV could be equipped with a forward-looking sonar (FLS) to sense the

working environment at a certain distance in the direction of navigation. The FLS platform emits

a short acoustic pulse in forward direction on a horizontal sector of around 120˝, and on a vertical

sector from 15˝ to 20˝. The original FLS imagery used here (see Figure 8) is provided by Desistek
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Robotik Elektronik Yazilim company (Ankara, Turkey) [48]. It is recorded with the Blue View P900-90

2D Imaging Sonar, which has a 90˝ horizontal field of view, and works at a frequency of 900 kHz.

Its update rates are up to 15 Hz, the scanning range is 100 m, and its resolution is 2.51 cm.

 

Figure 8. The original FLS image comes from [48], and there is a plastic mannequin in the down center.

The size of the converted FLS imagery is 1920 ˆ 932 = 1,789,440 pixels, the area size of the

background spots is usually fewer than 40 pixels, with gray levels similar to those of certain areas

of the foreground objects. In this case, N40 is defined as the number of contours which area size is

smaller than 40 pixels, and it is computed by the Canny contour detection algorithm. If N40 > 600,

(1,789,440/40 ˆ 600 = 74.6:1), this assigned threshold 74.6 is higher than that of 71.1 for the former high

resolution SSS image of the ship, that is because the black background proportion in this presented

FLS image is higher than that in that SSS image. This means that there are many small bright spots still

left in the segmentation result.

The initial FLS image in Figure 8 has been segmented with the traditional Otsu method, the local

TSM, the iterative TSM, the maximum entropy TSM and our method, respectively. The results of

these segmentations are shown in Figures 9 and 10.The initial segmentation threshold T obtained via

the traditional Otsu method is 0.1176. In Figure 10a, the parameter N40 calculated from the above

Canny edge detection algorithm is 1341, which is bigger than 600. Thus, our improved Otsu TSM

has been applied, and the segmentation result is shown in Figure 10b, with the final threshold T* of

0.5412. The morphological operations for computing the centroids of every segmented region within

the body are similar to that of the ship. Only in step 1, the parameter is set to 40, in order to remove all

connected components that have fewer than 40 pixels. Besides, in step 3, it applies dilation two times.

(a) (b)

(c) (d)

Figure 9. (a) Traditional Otsu TSM, Th = 0.1176; (b) Local TSM, Th = 0.0941; (c) Iterative TSM,

Th = 0.2990; (d) Maximum entropy TSM, Th = 0.4118.
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(a) (b)

(c) (d)

  
 

Figure 10. (a) Canny edge detection after employing the traditional Otsu method, bw = edge (b, ‘canny’,

0.13), N40 = 1341 > 600; (b) Improved Otsu TSM, T = 0.1176, T* = 0.5412; (c) Result of the improved

Otsu TSM after morphological operations marking the centroids of the acquired areas; (d) Result of

the maximum entropy TSM after the same morphological operations marking the centroids of the

obtained regions.

The red stars ‘*’, shown in Figure 10c, stand for the centroids for each contiguous region or

connected component in this image. The centroid coordinates of every connected region within the

foreground object are (949.8, 662.9), (966.9, 660.6), (1021.2, 615.7), (1024.1, 703) and (1065.5, 811.3), and

will be used as landmark points in the further simulation test of an AEKF-based SLAM loop mapping.

So, the center centroid of the body is (1005.5, 690.7), which is calculated as the average of the above

five centroids. The same morphological operations for marking the feature centroids is employed on

the segmentation result of the maximum entropy TSM, shown in Figure 10d. The confusion matrices

of the real body centroids and the ones detected by the improved Otsu TSM on the one hand and the

maximum entropy TSM on the other hand are shown in the following Tables 7 and 8, respectively.

Table 7. The confusion matrix of real and detected body centroids using the improved Otsu TSM.

Detected

Body Centroids Non-Body Centroids

Real
Body Centroids 5 0

Non-Body Centroids 11 26

Table 8. The confusion matrix of real and detected body centroids using the maximum entropy TSM.

Detected

Body Centroids Non-Body Centroids

Real
Body Centroids 2 3

Non-Body Centroids 44 40

As for the former SSS images, we calculate the FPR and PPV indicators:

FPR “
FP

FP ` TN
“

11

11 ` 26
“ 0.297 (20)
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PPV “
TP

TP ` FP
“

5

5 ` 11
“ 0.3125 (21)

In this case, the FPR and the precision value are:

FPR “
FP

FP ` TN
“

44

44 ` 40
“ 0.524 (22)

PPV “
TP

TP ` FP
“

2

2 ` 44
“ 0.043 (23)

As can be seen, also for the FLS images, similar performance is achieved with the improved

Otsu TSM. The FPR value is 1.8 times lower and the precision is seven times higher, even better than for

the SSS images, which means that, the lower the image quality is, the better the detection performance

for important features. Besides, three real body centroids are not detected at all by the maximum

entropy TSM. In general, in all SSS and FLS images presented in this work, the proposed improved

Otsu TSM has much lower FPR and much higher precision rate on the detected feature centroids than

those values of the maximum entropy TSM.

Finally, again the computational cost of the proposed improved Otsu TSM is compared with the

above indicated four conventional segmentation methods on executed Figure 8 and the results are

shown in Table 9. It is higher than for the traditional Otsu TSM, the local TSM and the iterative TSM,

but nearly one third of the time needed by the maximum entropy TSM, Instead, much better detection

rates are achieved.

Table 9. Computational costs of different segmentation methods on Figure 8.

Segmentation Method Computational Time [s]

Traditional Otsu TSM 0.244472
Local TSM 0.941853

Iterative TSM 0.428126
Maximum entropy TSM 3.903889

Improved Otsu TSM 1.452562

In general, the improved Otsu TSM constrains the search range of the ideal segmentation threshold,

and combined with the contour detection algorithm, the foreground object of interest, a ship, a branch

and a body have been separated more accurately, in sonar images of very different resolutions and

qualities, with a low computational time. Compared with the maximum entropy TSM, which has

the highest segmentation accuracy among the four conventional segmentation approaches compared

above, our improved Otsu TSM just needs half of the processing time for segmenting the ship in

the high resolution SSS image. Regarding the branch in the low resolution SSS image, our method

consumes two thirds of the time, and for the body in the presented FLS image, it only spends one

third of the computational time used by the maximum entropy TSM. As a result, the improved Otsu

TSM achieves precise threshold segmentation performances for underwater feature detection at a

fast computational speed. Since the computational time of the improved Otsu TSM is very short, it

achieves real time results which can be used afterwards for underwater SLAM. The centroids that have

been calculated for the different objects will be used as landmark points in the following AEKF-SLAM

loop map simulation. Moreover, compared to the traditional Otsu method, the presented approach

could retain more complete information and details of objects after segmentation, also the holes and

gaps in objects are reduced.

4. The Estimation-Theoretic AEKF-SLAM Approach

The mathematical framework employed in the study of the AEKF-based underwater landmark

SLAM is reviewed in this section. This framework is identical in all respects to that applied in

Smith et al. [5] and uses the same notation as that adopted in Leonard and Durrant-Whyte [49].
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Since features may look totally different from different directions, this paper uses the least complicated

features, which are stationary point landmarks. This simplification not only reduces challenges with

feature identification and interpretation, it also increases the focus on the AEKF-SLAM algorithm itself.

4.1. Extended Kalman Filter

In the SLAM problem, KF or EKF is employed to produce estimates of the robot pose and landmark

positions. If the SLAM problem is linear and Gaussian, then the conventional KF is guaranteed to

converge. However, real-world SLAM applications are usually nonlinear or even discontinuous (as in

the presented underwater scenario), a standard approach when dealing with nonlinear system is to

first linearize the system around the current state and then use an EKF. Although the linearization

errors caused by the standard EKF lowers the performance of the localization estimate, EKF still tends

to provide satisfactory results in general. Therefore, EKF is often regarded as the “gold standard” of

comparison for online SLAM algorithms due to its conceptual simplicity, high convergence, relatively

low computational cost and capacity to handle uncertainty. The nonlinear discontinuous system is

assumed to have the following form:

State function f p¨q : Xk “ f pXk´1q `f  ( )k k k 

  

 



 



 

 P

f  







 







   



X    

P     

(24)

Observation function hp¨q : Zk “ hpXkq ` vk (25)

wheref  ( )k k k 

  

 



 



 

 P

f  







 







   



X    

P     

is the process noise and complies with standard normal distributionf  ( )k k k 

  

 



 
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
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
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 


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


   



X    

P     

„ Np0, Qkq, its

covariance matrix is defined as Qk; vk is the observation noise and it also obeys standard Gaussian

distribution vk „ Np0, Rkq, its covariance matrix is denoted as Rk.

1. Time Update

‚ Predictor step:

X̂´
k “ f pX̂´

k´1q (26)

P´
k “ FkPk´1FT

k ` Qk (27)

where X̂´
k is the system’s current state vector, and P´

k is its covariance matrix. Fk and Hk are

the Jacobian matrices of partial derivatives of f p¨q and hp¨q with respect to X.

Fk “
B f pXq

BX

ˇ

ˇ

ˇ

ˇ

X“X̂´
k´1

, Hk “
BhpXq

BX

ˇ

ˇ

ˇ

ˇ

X“X̂´
k

(28)

The nonlinear functions f and h are linearized by using a Taylor series expansion, where

terms of second and higher order are omitted.

2. Measurement Update

‚ Calculate the Kalman gain Kk, Kk “ P´
k HT

k pHkP´
k HT

k ` Rkq
´1

.

‚ Corrector step:

First, update the expected value X̂k, X̂k “ X̂´
k ` KkrZk ´ hpX̂´

k qs.

Then, update the error covariance matrix Pk, Pk “ P´
k ´ Kk HkP´

k “ pI ´ Kk HkqP´
k .

4.2. The Estimation Process of the AEKF-SLAM

As can be found in [50], the root mean square (RMS) error in AEKF-SLAM just before loop closure

is much smaller than the one in the EKF-SLAM. Also, the AEKF-SLAM can compensate the odometric

error of the robot more exactly and generate a more precise feature map than the EKF-SLAM. As for

FastSLAM [51], which uses Rao-Blackwellised method for particle filtering (RBPF), it is better than
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EKF-SLAM at solving the data association problem for detecting loop closures, and it is suitable for

non-linear motions. Nevertheless, the biased noises arising from unequal wheel diameters and wheel

misalignment skew the robot’s odometric trajectory to one side and conventional SLAM methods,

such as EKF/Fast SLAM cannot guarantee good performance in this situation, since they assume

zero mean noise when correcting odometric error. Particle filters work best in grid constrained areas,

such as corridors, and in the representation of occupancy grid maps, not in landmark maps like those

considered in this work. Another challenge in the particle filtering SLAM is to reduce the number of

particles while maintaining the estimation accuracy. For indoor environments and aerial structures

(such as roads or buildings), particle filters are well suited. However, in sonar applications there are

usually no such constraints. Therefore, the AEKF method is chosen to solve the SLAM problem in

this paper.

The AEKF-based SLAM approach is a recursive and iterative estimation-update process, which

besides a prediction and an update stage (as in classical EKF), includes an augmentation stage.

The prediction stage is to reckon the current state of the robot with its on-board navigation sensors.

The observation stage is to measure the features by the imaging sensor and to obtain the relative

positions to the robot. Then, the relative positions of detected landmarks are transformed into the

robot’s coordinates system. The next matching involves a data association process, where landmarks

from the predicted and observed maps are matched together and their differences are used to update

the landmark positions and refine the estimated robot pose. The measurements from the sonar image

include three kinds of information: new features, associated features and unrelated information.

After data association, new features will augment the state vector, associated features can improve the

precise degree of the state, and offensive features are discarded directly. The whole procedure of the

AEKF-SLAM algorithm is depicted in Figure 11.

 

X P

X


 

Figure 11. The flow chart of SLAM procedure based on an AEKF. Modified after [27].

In the prediction stage, the command signal uk and the robot motion model are utilized to estimate

the robot pose. Then, in the update stage, the innovation vk is computed as the difference between the

new observation from an exteroceptive sensor and the predicted measurement, and its error covariance
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is used to calculate the Kalman gain Wk. When a landmark is detected for the first time, it is added to

the system state vector through the state augmentation stage.

Figure 12 illustrates the architecture of the AEKF-SLAM system. Let X̂k and P̂k be the estimated

state vector and covariance. Then the filter recursively updates the mean X̂`
k and covariance P̂`

k of the

state by combining the predicted mean X̂´
k and covariance P̂´

k with the new observation zk. Here Qk

and Rk are the covariance matrices of procession noise errors and observation errors, respectively.

  

( )f 
( )h 

kH

kW


ˆ
kz  kz

kv

kR

ˆ
kx


ˆ
kP


kQ

1
ˆ
kx



1
ˆ
kP



ku

ˆ
kx


ˆ
kP




 


 

 


 

   
   

 
 
 

 
  



Figure 12. The architecture of the AEKF-SLAM system, as described in [50].

The pseudo code of the AEKF-based SLAM algorithm (Algorithm 3) for underwater landmark

map is outlined as follows, where zf is the vector of landmarks that are already detected and stored in

the map; zn is the vector of measurements which are unseen and new landmarks.

Algorithm 3: Underwater landmark map building based on AEKF-SLAM

1. For k “ 1 to N

2. rX´
k , P´

k s “ PredictpXk´1, Pk´1q;

3. zk “ Get Observations pq;

4. rz f , zns “ Data AssociationpX´
k , P´

k , zk, Rkq;

5. rX`
k , P`

k s “ Update MappX´
k , P´

k , z f , Rkq;

6. rX`
k , P`

k s “ Augment MappX´
k , P´

k , zn, Rkq;

7. End f or

We assume that the actual 3D space geometry is orthogonal to the horizontal plane in which

the robot moves, so that the world can be adequately represented by a 2D model. The fundamental

equations for the landmark map SLAM based on the AEKF are presented in the following. Detailed

descriptions can be found in [50].

4.2.1. Prediction Stage

The AEKF-based SLAM map is defined by an extended state vector X̂a, which is composed of the

current robot poseX̂v and all observed environmental landmark positions X̂m [52]. Here Pvm stands

for the cross covariance between the robot state and the map landmarks:
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X̂a “

«

X̂v

X̂m

ff

, Pa “

«

Pv Pvm

PT
vm Pm

ff

(29)

The robot state X̂v is represented by its position and heading angle vectors in Cartesian coordinates

as X̂v “ rx̂v, ŷv, ϕ̂vsT , and its covariance matrix is Pv. Supposing the position of the n-th landmark is

denoted as xmn “ px̂n, ŷnqT , and the environmental landmarks are described as X̂m “ rx̂1, ŷ1, ..., x̂n, ŷnsT ,

and its covariance matrix is Pm. Note that the initial condition of the state estimate is usually given as

X̂a “ X̂v “ 0 and Pa = Pv = 0, which means that no landmarks have been observed yet and the initial

robot pose defines the base coordinate origin.

An estimate of the robot pose change X̂δ “ rx̂δ, ŷδ, ϕ̂δsT with covariance Pδ is commonly obtained

using wheel encoder odometry and a robot kinematic model. Therefore, the prediction state of the

system is given by:

X̂´
a “ f pX̂a, X̂δq “

«

gpX̂v, X̂δq

X̂m

ff

“

»

—

—

—

–

x̂v ` x̂δcosϕ̂v ´ ŷδsinϕ̂v

ŷv ` x̂δsinϕ̂v ` ŷδcosϕ̂v

ϕ̂v ` ϕ̂δ

X̂m

fi

ffi

ffi

ffi

fl

(30)

and its prediction covariance matrix is:

P´
a “ JPa JT ` QPδQT (31)

where the Jacobian matrices J and Q are:

J “
B f

BXa

ˇ

ˇ

ˇ

ˇ

pX̂a ,X̂δq
“

«

Jv 0vm

0T
vm Im

ff

pX̂a ,X̂δq

, Q “
B f

BXδ

ˇ

ˇ

ˇ

ˇ

pX̂a ,X̂δq
“

«

Qv

0T
vm

ff

pX̂a ,X̂δq

(32)

where Jv and Qv are the Jacobian matrices of partial derivatives of the nonlinear model function g with

respect to the robot state Xv and the robot pose change Xδ:

Jv “

Bg
BXv

ˇ

ˇ

ˇ

pX̂v ,X̂δq
“

»

—

–

1 0 ´x̂δsinϕ̂v ´ ŷδcosϕ̂v

0 1 x̂δcosϕ̂v ´ ŷδsinϕ̂v

0 0 1

fi

ffi

fl
, Qv “

Bg
BXδ

ˇ

ˇ

ˇ

pX̂v ,X̂δq
“

»

—

–

cosϕ̂v ´sinϕ̂v 0

sinϕ̂v cosϕ̂v 0

0 0 1

fi

ffi

fl
(33)

Since these Jacobians only affect the robot portion of the covariance matrix Pv and its

cross-correlations Pvm, the prediction covariance matrix P´
a can be implemented more efficiently as:

6 P´
a “

«

JvPv JT
v ` QvPδQT

v JvPvm

pJvPvmqT Pm

ff

(34)

4.2.2. Update Stage

Suppose that a feature already stored in the map as an estimate xmi
“ px̂i, ŷiq

T is observed by a

range-bearing sonar with the measurement z:

z “

«

r

θ

ff

, R “

«

σ2
r σ2

rθ

σ2
rθ σ2

θ

ff

(35)

where (r,θ) denotes the distance and the orientation of the detected landmark with respect to the robot,

and R is the observation covariance.

Next, transform the sensed position value from the global coordinates to the robot coordinates

using the following transformation. With this correlation to the robot pose estimate, different map
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landmarks can be associated with each other, and these correlations increase monotonically until their

relative to each other positions become perfectly known:

ẑi “ hipX̂´
a q “

»

–

b

px̂i ´ x̂vq2 ` pŷi ´ ŷvq2

arctanp
ŷi´ŷv
x̂i´x̂v

q ´ ϕ̂v

fi

fl (36)

If the observation z is associated with the estimated map landmark px̂i, ŷiq
T correctly, then the

SLAM results are updated:

X̂`
a “ X̂´

a ` Wivi (37)

P`
a “ P´

a ´ WiSiW
T
i (38)

The update process starts with computing the measurements residual vi, also called innovation:

vi “ z ´ hipX̂´
a q (39)

which is the difference between the actual observed and predicted measurements. Its covariance

matrix Si is:

Si “ HP´
a HT ` R (40)

and the Kalman gain Wi:

Wi “ P´
a HTS´1

i (41)

where H represents the Jacobian matrix which linearizes the nonlinear measurements function h

around the best estimation of the state X̂´
a .

4.2.3. State Augmentation

As the environment is explored, newly detected landmarks must be added to the stored map.

Here, a method for initializing new features is provided. First, the state vector and covariance matrix

are augmented with the new observation znew and its covariance matrix Rnew, which are measured

relative to the robot:

X̂aug “

«

X̂a

znew

ff

, Paug “

»

—

–

Pv Pvm 0

PT
vm Pm 0

0 0 Rnew

fi

ffi

fl
(42)

The extension state can be initialized to the correct values by a linearized transformation fi, which

is defined as follows: the transformation function gi is applied to convert the polar observation znew

to a global Cartesian feature position. It is composed of the current robot pose X̂v and the new

observation znew:

X̂`
a “ fipX̂augq “

«

X̂a

gipX̂v, znewq

ff

“

»

—

–

X̂a

xv ` rcospθ ` ϕ̂vq

yv ` rsinpθ ` ϕ̂vq

fi

ffi

fl
(43)

P`
a “ ∇ fxaug Paug∇ f T

xaug
(44)

where the sparse Jacobian matrix ∇ fxaug is given by:

∇ fxaug “
B fi

BXaug

ˇ

ˇ

ˇ

ˇ

X̂aug

“

»

—

–

Iv 0 0

0 Im 0

GXv 0 Gznew

fi

ffi

fl
(45)

and the Jacobian matrices GXv and GZnew are:
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GXv “
Bgi
BXv

ˇ

ˇ

ˇ

pX̂v ,znewq
“

«

1 0 ´rsinpθ ` ϕ̂vq

0 1 rcospθ ` ϕ̂vq

ff

, GZnew “
Bgi

BZnew

ˇ

ˇ

ˇ

pX̂v ,znewq
“

«

cospθ ` ϕ̂vq ´rsinpθ ` ϕ̂vq

sinpθ ` ϕ̂vq rcospθ ` ϕ̂vq

ff

(46)

The matrix multiplication of P`
a requires Opn3q computation complexity where n is the number

of landmarks on the map. Due to the sparseness of the Jacobian matrix, a much more efficient

transformation can be implemented. It only affects the block diagonal matrix of the newly observed

landmark and off diagonal cross-correlations to the rest of the map:

6 P`
a “

»

—

–

Pv Pvm PvGT
Xv

PT
vm Pm PT

vmGT
Xv

GXv Pv GXv Pvm GXv PvGT
Xv

` Gznew RnewGT
znew

fi

ffi

fl
(47)

4.3. AEKF-SLAM Loop Map Simulation

The following MATLAB simulation experiment is carried out for an AEKF-based SLAM loop

mapping, which is performed in the context of a generic mobile robot observing the surrounding

point landmarks (including not only the calculated centroids of the shipwreck, branch and plastic

mannequin, but also those centroids of certain parts of the background detected by the formerly

presented improved Otsu TSM in Section 3) with a range-bearing sensor in a two-dimensional area.

The values of different parameters could be changed according to the number of detected landmarks

and their positions in the environment, the actual speed of the robot, and the maximum observation

distance of the selected sonar sensor.

The simulation environment for the AEKF-SLAM loop map, where the landmarks are detected

by the improved Otsu TSM is defined as an area of 200 m ˆ200 m, containing 17 robot waypoints

connected as a circle and 54 landmarks distributed near the robot path, as shown in Figure 13. Since

the environment is an area of 200 m ˆ 200 m (from ´100 m to 100 m), we set the centroid coordinates

of the ship as (53.5, 60.3), (54.23, 65.39), the body centroids as (´94.98, ´66.29), (´96.69, ´66.06),

(´102.12, ´61.57), (´102.41, ´70.3), (´106.55, ´81.13) and the branch centroid as (18.7, ´11.6). Besides,

those centroids of certain parts of the background detected by the improved Otsu TSM are also

included. The velocity of the robot has been fixed to 3 m/s, its deviation to 0.3 m/s, and the steering

angle error to 3π/180 rad. The range and bearing of observation variance is 0.1 m/s and π/180 rad,

respectively. The sampling time is 0.0125 s and the robot measures an observation each 0.1 s, which

means that the robot gets an image each 0.3 m. The maximum observation distance is 30 m.

Figure 13 demonstrates the 2D landmark map obtained by the AEKF-based SLAM algorithm,

where the landmarks are detected by the improved Otsu TSM. The positions of sensor scans for the

point landmarks are clearly visible, and few of these sightings are rejected based on statistical outlier

rejection techniques [53], since they are out of the observation range of the robot. The rest are believed

to represent a landmark and are added into the map. The true landmarks are shown as blue stars

‘*’, green dots ‘¨’ are the robot waypoints which are used for calculating the steering angle, and the

red crosses ‘+’ are the estimated landmark positions. The ellipses around each red cross illustrate the

uncertainty covariances for the landmark coordinate estimations. The estimated robot path is depicted

as the solid black line, leaded by a cyan triangle. Around this cyan triangle we can see a red ellipse,

which stands for the covariance of the AEKF estimate projected to the robot pose. The larger it is, the

more uncertain the current robot pose is. The perceptions are drawn as cyan lines, in Figure 13a, the

robot is observing the centroids of some parts of the body. After navigation, the robot has identified

the centroid positions of different portions of the ship, branch and body, which are connected by the

black line in Figure 13b.

The landmark point positions of the ship, branch and body estimated by the AEKF and the real

ones detected by the improved Otsu TSM are shown in Table 10.
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Figure 13. (a) The robot is observing the centroids of certain parts of the body before loop closure;

(b) The final AEKF-SLAM loop map where the landmarks are detected by the improved Otsu TSM.

Table 10. The landmark point positions of the ship, branch and body estimated by the AEKF and the

true ones detected by the improved Otsu TSM.

Ship [m] Branch [m] Body [m]

True
(53.5,
60.3)

(54.23,
65.39)

(18.73,
´11.56)

(´94.98,
´66.29)

(´96.69,
´66.06)

(´102.12,
´61.57)

(´102.41,
´70.3)

(´106.55,
´81.13)

Estimated
(53.66,
60.23)

(54.31,
65.32)

(18.8,
´11.49)

(´94.99,
´66.35)

(´96.67,
´66.12)

(´102.2,
´61.59)

(´102.4,
´70.34)

(´106.4,
´81.44)

Therefore, the standard deviation between landmark point positions of different features estimated

by the AEKF and the true ones detected by the improved Otsu TSM is:
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σ1 “ 0.124 (48)

For comparison, the AEKF-SLAM loop map where 77 landmarks are detected by the maximum

entropy TSM is shown in Figure 14.

 

 
(a)

 
(b)

Figure 14. (a) The robot is observing the centroids of certain parts of the body before loop closure;

(b) The final AEKF-SLAM loop map where the landmarks are detected by the maximum entropy TSM.

The observations of the body parts are shown in Figure 14a, while Figure 14b shows, as before, the

corresponding final estimated robot path after navigation. Table 11 contains the data for the landmark

point positions of the ship, branch and body estimated by the AEKF and the real ones detected by the

maximum entropy TSM.
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Table 11. The landmark point positions of the ship, branch and body estimated by the AEKF and the

true ones detected by the maximum entropy TSM.

Ship [m] Branch [m] Body [m]

True (53.61, 60.18) (54.22, 65.4) (18.75, ´11.55) (´99.23, ´67.7) (´97.59, ´72.08)
Estimated (54.24, 59.12) (54.96, 64.35) (18.62, ´11.69) (´100.1, ´65.82) (´98.58, ´70.23)

As a result, the standard deviation between landmark point positions of different features

estimated by the AEKF and the real ones detected by the maximum entropy TSM is:

σ2 “ 1.37 (49)

which is much larger than that of the improved Otsu TSM. Thus, the AEKF achieves more

accuracy and estimates the robot pose more robustly due to the landmark positions obtained by our

improved Otsu TSM, than those detected by the maximum entropy TSM. Although the maximum

entropy TSM achieves the highest segmentation precision over the other three classic segmentation

methods compared above, it has much lower precision than our improved Otsu TSM, and it also

needs much more computation time. Moreover, it can be found that since the position of the first

observed landmark point is known with high accuracy, the uncertainty in the estimated robot pose

will decrease significantly when the robot completes the loop and revisits this landmark. Thus, in

turn, the uncertainties of previously detected landmarks are reduced. Also, the AEKF-based SLAM

algorithm achieves reliable detection of cycles in the map and consistent map update on loop closure.

5. Conclusions and Future Work

5.1. Conclusions

In this work, first a detailed state of the art of approaches for the underwater SLAM problem

has been presented, the three most commonly used map representations are also compared, and

in our case, the landmark map is chosen to represent the underwater exploring region. Besides,

the improved iterative Otsu TSM constrains the search range of the ideal segmentation threshold.

Combined with the Canny contour detection algorithm, the foreground objects of interest (a shipwreck

from a high resolution SSS image, a branch from a low resolution SSS image and a plastic mannequin

from a FLS image) have been separated more accurately than with other conventional TSMs like the

traditional Otsu method, the local TSM, the iterative TSM and the maximum entropy TSM. Compared

with the traditional Otsu method, the presented method could keep more complete information and

details of objects after segmentation, also the holes and gaps in objects are reduced. What’s more, the

computational cost of our proposed improved Otsu TSM is much lower compared to the maximum

entropy TSM, which has the highest segmentation accuracy of the four classic methods. Moreover,

the improved Otsu TSM has much lower FPR and much higher precision rate on the detected feature

centroids than those values of the maximum entropy TSM in all SSS and FLS images presented in

this work. In conclusion, the improved Otsu TSM achieves much more precise and fast segmentation

performances than other methods for detecting underwater objects of different shapes.

Afterwards, in order to verify the proposed segmentation method, the simulation of an AEKF

solution for the underwater SLAM navigation is performed using both, the centroids of every part

of the ship, the branch and the body, plus those centroids of certain parts of the background as

landmark points. After navigation, the robot has localized the centroids of different segments of the

ship, branch and body as point landmarks. Here, the AEKF has achieved more accuracy and more

robust estimations of the robot pose and the landmark positions, using the centroids detected by our

improved Otsu TSM than with those detected by the maximum entropy TSM. Also, the AEKF-SLAM

has achieved reliable detection of cycles in the map and consistent map update on loop closure.

Furthermore, the MATLAB simulation experiment for AEKF-SLAM loop mapping has shown excellent
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performance in map management in terms of landmark addition and removal to avoid the long-term

accumulation of clutter in the map.

5.2. Future Work

In the next step, with the aim of the “Smart and Networking Underwater Robots in Cooperation

Meshes”-SWARMs project, our proposed improved Otsu segmentation method will be tested and

validated with the help of the AEKF to the underwater SLAM problem in subsea scenarios in the

Atlantic Ocean, the Black Sea and Norwegian coastline with extreme sea water conditions in terms of

sea low temperatures (1–3 ˝C), high currents (<1 m/s), low visibility (<1 m), high pressures (<15 atm),

and 1000–2000 m2 of working area. As for further improvements of the current study, the future

work includes:

‚ Employing other forms of target objects for the detection and tracking purpose, devising

parametric feature models for describing general objects, and more complex scenarios with

multiple distinct features will also be included. Besides, more complicated vehicle model such as

six DOF kinematic model will be investigated. Therefore, as the robot navigates, we can perform

the proposed feature detection algorithm on the acquired images exactly when the 3D object is

detected by the sonar.

‚ Developing a computationally tractable version of the SLAM map building algorithm which

maintains the properties of being consistent and non-divergent. Hierarchical SLAM or

sub-mapping methods build local maps of limited size, which bound the covariances and thus

the linearization errors. Then, by linking the local maps through a global map or a hierarchy of

global maps, AEKF-based SLAM application in large environments is possible.

‚ Considering the application of unscented KF (UKF) in the field of underwater robotic navigation.

As an alternative estimation technique, UKF does not need calculating the derivatives, and it also

handles a very effective tradeoff between computational load and estimation accuracy in the case

of strongly nonlinear and discontinuous systems [54]. Besides, considering FastSLAM, which

uses the Rao-Blackwellised method for particle filtering (RBPF), as future work, since it is very

suitable for non-linear motions. It also has better performance than EKF-SLAM at solving the

data association problem for detecting loop closures. Afterwards, we will evaluate the estimation

performances of these two methods to the SLAM problem with that of the AEKF considered in

this work.

‚ Incorporating data streams observed from the acoustic and visual sensors to generate a 3D

representation of the underwater environment, i.e., the seabed, working environment or

artifacts [55]. In our case, we will use the depth logger based on pressure for navigation and the

DE340D SSS as perception sensor to get horizontal positions of features of interest, therefore by

integrating with the vertical positioning data obtained through pressure sensor, a subsea 3D map

will be created.

‚ Considering map simplification and transform based algorithms for fusion of two different

resolution maps. One is a large scale medium resolution map generated using a SSS (in SWARMs

T4.1 Large scale 3D mapping), the other is a local 3D high resolution map created by fusion

of FLS images and visual information. The sonar system used to obtain the large scale map

achieves a very high area coverage rate but has a modest resolution, as it could detect objects but

is insufficient to identify their precise nature. To achieve combining both systems for maximizing

the operational effectiveness, the large scale medium resolution map will be used to trigger

detailed investigations of regions of interest using the local 3D high resolution maps.
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Abbreviations

The following abbreviations are used in this manuscript:

SONAR SOund Navigation And Ranging
SLAM Simultaneous Localization and Mapping
TSM Threshold Segmentation Method
SSS Side-Scan Sonar
FLS Forward-Looking Sonar
AEKF Augmented Extended Kalman Filter
KF Kalman Filter
EKF Extended Kalman Filter
PF Particle Filter
EM Expectation Maximization
SIFT Scale-Invariant Feature Transform
SURF Speeded Up Robust Features
DOF Degree of Freedom
CML Concurrent Mapping and Localization
RSSI Received Signal Strength Indication
AUV Autonomous Underwater Vehicle
FRR False Positive Rate
PPV Positive Predictive Value
RMS Root Mean Square
RBPF Rao-Blackwellised Particle Filtering
UKF Unscented Kalman Filter
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