Algorithmica (2001) 31: 179-207 - .
DOI: 10.1007/500453-001-0042-6 Al gori thmica

© 2001 Springer-Verlag New York Inc.

An Efficient Output-Size Sensitive Parallel Algorithm
for Hidden-Surface Removal for Terrains

N. Guptal-? and S. Sen'

Abstract. Wedescribean efficient parallel algorithm for hidden-surface removal for terrain maps. Thealgo-
rithm runsin O(log* n) stepson the CREW PRAM mode! with awork bound of O((n+k) polylog(n)) where
n and k aretheinput and output sizes, respectively. In order to achieve thework bound we use anumber of tech-
niques, among which our useof persistent datastructuresissomewhat novel inthe context of parallel a gorithms.

Key Words. Parallel agorithms, Hidden surface elimination, Output-sensitive, Data structure, Terrain.

1. Introduction

1.1. The Problem. The hidden-surface elimination problem (see [SSS] for the early
history) hasbeen afundamental problem in computer graphicsand can be stated as. given
n polyhedral facesin R® and a projection plane, we wish to determine which portions of
the faces are visible when viewed in a given direction. We are interested in an object—
space solution (independent of the display device) for this problem. That is, we are
interested in acombinatorial description of the visible scene which can then be rendered
on any display device. The image-space solutions compute the visibility information at
every pixel which makes them device dependent. It has been shown that the worst-case
output size for hidden-surface elimination can be Q (n?) for n segments, and, hence, the
worst-case optimal algorithms for these problems will have a running time of € (n?).

A dlightly different version is the hidden-line elimination problem, where we are
concerned only with the visibility of the edges (not regions). The algorithmsfor hidden-
surface removal can be easily modified for the hidden-line elimination case. There are
algorithmsfor hidden-line elimination in the literature whose running times are sensitive
to the number of intersections, I, (of the projections of the segments) in theimage plane.
However, in practice, the size of the displayed image can be far less than the number
of intersections in the image plane. By size, we mean the number of vertices and edges
of the displayed image as a (planar) graph. This would happen when a large humber
of these intersections are occluded by the visible surfaces (see Figure 1). We study a
special class of surfaces called polyhedral terrains which occur frequently in practice.
A terrainisathree-dimensional polyhedral surfacewhich canberepresented asafunction

1 Department of Computer Science and Engineering, Indian Institute of Technology, New Delhi 110016, India.
{neelima,ssen} @cse.iitd.ernet.in.
2 Present address: Hansraj College, University of Delhi, Delhi 110007, India.

Received July 29, 1998; revised October 5, 1999. Communicated by F. P. Preparata.
Online publication July 19, 2001.

180 N. Guptaand S. Sen

opaque L J_m} M __D
e
N

EEREEENE
[i

R e S

&

Fig. 1. The visible scene has only constant complexity whereas the number of intersectionsis £2(n?).

of two variables (see Figure 2). Most geographical features can be represented in this
manner. A large number of scenesin graphi csapplicationscan bemodelled efficiently and
effectively by polyhedral terrains. Theterm (upper) profile refers to the piecewise linear
function Z(y), which is the pointwise maximum in the +z direction of the projection
of edges onto the z—y plane. Other commonly used terms for upper profile are upper
envelope and silhouette. Therefore, a profile is a monotone polygon with respect to
the y-axis. In fact, monotonicity turns out to be a very useful property in making the
algorithm somewhat simpler than hidden-surfaceremoval algorithmfor general surfaces.
However, even for terrains, it is known whether the maximum size of the visible image
canbe ©(n?). Our aimisto design afast output-sensitive® parallel algorithm for terrains,
which computes a description of the output in a device-independent manner.

1.2. Sequential Algorithms. McKenna[M] and Devai [D] proposed algorithmsfor the
general problem that run in O(n?) time, and, hence, are worst-case optimal. There are
algorithms for hidden-line elimination whose running times are sensitive to the number
of intersections, |, (of the projections of the segments) in the projection plane, typically
of the order of O((n + |)logn) (for example, see [N] and [S]). This was improved to
O(nlogn + | 4 t) by Goodrich [G] wheret is the number of intersecting polygonsin
the image plane.

~.

Fig. 2. A typical terrain map.

3 We often use the shorter term output-sensitive instead of output-size sensitive.

An Efficient Output-Size Sensitive Parallel Algorithm 181

Thefirst known efficient output-sensitive algorithms were designed for the restricted
input-class consisting of iso-oriented rectanglesin R3 [GO], [Be], [AGO]. For the class
of polyhedral terrains, Reif and Sen [RS1] designed the first efficient algorithm whose
running timeis O((k + n) log? n) where k is the output size. Preparata and Vitter [PV]
presented an algorithm with the same running time and claimed that their algorithm was
simpler. The algorithm in [OKS] improved the running time to O((na(n) + k) logn)
where a(n) isthe inverse Ackerman’s function. For the case of nonintersecting objects
there are algorithms which are somewhat output sensitive—for example, the algorithm
of Overmars and Sharir [OS] takes about O(n+v/klogn) steps given an ordering of the
objects. de Berg et a. [dBHO™] and Agarwal and Matousek [AM] obtain improved
bounds without an initial ordering for nonintersecting objects. However, these are still
far away from the ideal bound of ((n + k) polylog(n)).

1.3. Parallel Algorithms. The primary objective of designing parallel agorithms is
to obtain very fast solutions to problems, keeping the total work (the processor—time
product) close to the best sequential algorithms. For example, if S(n) isthe best known
sequential time complexity for input size n, then we aim for a parallel agorithm with
P (n) processorsand T (n) running timeto minimize T (n) subject to keeping the product
P(n)-T(n) closeto O(S(n)). A parallel algorithm that actually doestotal work O (S(n))
is called awork optimal agorithm.

Relatively little work has been donein the context of parallel agorithms for hidden-
surface removal. Reif and Sen [RS1] had proposed a parallelization of their algorithm
with O(log* n) running timein amodel that is stronger than PRAM. The more challeng-
ing theoretical goal was to keep the work bound close to the output-sensitive sequential
algorithm. The resulting algorithm was quite complex and required parallel (dynamic)
updates on a shared nested data structure that were not only hard to implement but also
difficult to analyze. Here, we exploit some of their ideas but adopt a different strategy
to build the parallel data structure. Theresulting algorithm is relatively simpler and also
easier to analyze. The main reason for thisis that the underlying data structure is static
although it has to be rebuilt a (small) number of times. Our bounds are also superior
in the sense that we are able to match the bounds of [RS1] in a standard PRAM model
(processor alocation was assumed to be free in the model used by [RS1]).

Goodrich et al. [GGB] presented parallel algorithms for hidden-surface elimination.
For the general scenes, their algorithm computes al the | pairwise intersections on the
projection plane. For the case of iso-oriented rectanglesin R?, their algorithm is output-
sensitive and runs in O(log? n) time using O((n + k) logn) total parallel operations.
The crux of their method is a parallel data structure called array-of-trees introduced by
Kosargju et a. [KAG], that has some flavor of persistent data structures. In this paper
we make more direct use of persistent data structuresin our parallel algorithm.

We are not aware of any other published work in the context of provably efficient
output-sensitive parallel algorithmsfor moregeneral surfaces. Theimportance of output-
sizesengitivity for parallel algorithmscannot be overemphasized for thefollowing smple
reason. The advantage of using extra processors will be lost otherwise (for small output
size) compared with an efficient output-sensitive sequential algorithm. The rest of the
paper is organized as follows. In Section 2 we give a brief overview of our approach.
In Section 3 we describe some of the basic parallel routines used frequently in the main

182 N. Guptaand S. Sen

algorithm. Section 4 forms the crux of the paper. Since the algorithm is somewhat
involved, we give a top-down description of the algorithm and the data structures ac-
companied by analysis.

2. An Overview of Our Algorithm. Recall from the Introduction that terrainsin this
paper refer to piecewise linear surfaces which meet a vertical line in exactly one point.
Assume that the surfaceisafunction z = f (X, y), it isbeing viewed from x = oo, and
theviewing planeisthe z—y plane. We are viewing the scenein adirection perpendicul ar
to the projection plane, however, the algorithm works for the perspective projection as
well. A characteristic of these surfacesisthat the upper boundary of the projection of the
line segments on the z—y plane is monotone with respect to the y-axis. We assume that
theterrain is available as a graph G whose vertices are 3-tuples (X, y, z) of coordinates
such that z = f (X, y) and whose edges correspond to the segments of the polyhedral
surface. The terms edges and segments have therefore been used interchangeably. We
also assume that only the top part of the surface is visible, i.e., the faces closest to the
observer risefrom the ground level. A key property that allows oneto solve the visibility
problem efficiently is that the edges can be ordered from “front” to “back” using the
following observation. Project G onto the x—y plane (call it Gyy) and now the ordering
of the segments in the scene in the increasing distance from the viewer corresponds to
the ordering of the edges of G,y aong x. That is, we can define a partial order on the
edges asfollows: edgee < g if thereisaray in the viewing direction that intersects g
before g;. The projection of the edges on the x—y plane preserves this ordering.

2.1. A Sequential Approach. In the sequentia algorithm the edges are ordered in the
increasing distance from the viewer by decomposing G,y into monotone chains of edges.

DEFINITION. A chainC = (uy, Uy, ..., Up) isaplanar straight line graph (PSLG) with
vertex set {uy, ..., Up} and edge set {(u;, Ui+1),i = 1,..., p—1}. A chainiscalled
monotone with respect to astraight linel if aline orthogonal to | intersects C in at most
one point.

The edges are processed one by one sequentially in order. The algorithm maintains
an upper profile of the edges processed so far and tests the visibility of the next edge
being processed by determining itsintersection with the current profile. Since the edges
are processed in the order of increasing distance from the viewer, the profile liesin front
of the next edge and therefore occludes the portion of the edge which liesbehind it. Thus
the portion of the projected edge lying below the profile (which is a simple monotone
polygon) is not visible and hence is discarded (see Figure 3(a), the dotted portion of the
edge is not visible). The upper profile is updated with the visible portions of the edge
(see Figure 3(b)). Clearly, the portion of an edge declared visible is visible in the final
image (i.e., it cannot be occluded by edges processed later). Some vertices and edges of
the profile may be deleted at this point which only means that they are no longer part
of the “upper boundary” of the final image but they are very much visible in the final
image and therefore are remembered. Finally, we have all the vertices and edges of the
final image which can be used by the rendering procedure to draw it on the screen.

An Efficient Output-Size Sensitive Parallel Algorithm 183

(b)

Fig. 3. Thedotted part of the segment s liesbelow the profile p and henceisnot visible, thereforeit isdiscarded.

2.2. AnOverview of the Parallel Algorithm. Inthe parallel scenario the above sequen-
tial algorithm hastwo major stumbling blocks. First, the edges are processed sequentially
and the upper profiles are computed incrementally. We overcome this problem with the
help of a separator tree and computing profiles using an approach similar to systolic
implementation of parallel prefix computation. A separator tree provides away to order
the edges in the increasing distance from the viewer in parallel and aso allows one to
process them concurrently. Second, the intersections of an edge with a profile are com-
puted sequentially. We use the divide-and-conquer approach to detect the intersections
efficiently in parallel. We order the edges using a separator tree (described later). Let
€1, &, ..., 6, bethe ordered set of input edges. Let P, denote the ith profile, i.e., the
upper profile of the edges ey, e, ..., 6. Our amisto compute P, Vi = 1,...,n. We
call them actual profiles (however we omit “actual” most of thetime and mention it only
if it isnot clear from the context).

We compute these profiles in two phases. In phase 1 we compute in parallel, for
all the nodes of the separator tree, the upper profile of the edges in the leaves of the
subtree rooted at the node (the edges in the leaves of the separator tree are sorted in the
increasing distance from the viewer). Call the resulting tree the profile computation tree
(henceforth referred to as the PCT). Notice that these profiles are not the actual profiles
we are looking for. These are only intermediate profiles which are used to compute the
actual profiles (think of the internal nodes in the prefix computation tree) in phase 2.
In phase 2 we compute the actual profiles using an approach similar to the systolic
implementation of parallel prefix computation [LF] (see Figure 4). Starting from the
root of the profile computation tree the computation proceeds toward the leaveslevel by
level. In this phase, at any node, the computation involves “merging” two profiles—an
(actual) profile inherited from its parent and an (intermediate) profile computed in the
previous phase by one of its children.

Mergingisdoneby finding theintersections of the segmentsof theintermediate profile
with the other profile and updating the other profile. However, as we will see later, our
visibility structure (i.e., the vertices of the profiles) may be shared among different nodes
at the samelevel of the PCT. We cannot afford to keep these profilestotally independent

184 N. Guptaand S. Sen

(@) (b)

Fig. 4. Anillustration of systolic implementation of parallel prefix sum computation. (a) Phase 1: computation
proceeds bottom-up. (b) Phase 2: computation proceeds top-down.

of each other because that will jeopardize our main objective of designing an output-
sensitivealgorithm. Instead of keeping avisibility structurefor each profileat afixed level
of the PCT we keep just one structure maintai ning information about all theintersections
computed so far and also provide a search structure to detect the intersections at the next
level of the PCT.

REMARK. Our algorithm follows the basic approach of Reif and Sen [RS1]; however,
our implementation of the merging phaseisconsiderably simpler. One of the (sequential)
algorithmsof Overmarset al. [OK S] also followsavery similar approach. However, they
avoid dynamic ray-shooting and implement merging in terms of various set operations
(like intersection and differences) that leads to savings of alogarithmic factor in running
time.

3. SomeBasicParallel Routines. Beforewedescribethe parallel algorithmindetails,
we briefly review some of the basic parallel routines that are used frequently in our
algorithm.

LEMMA 3.1[SV]. Two sorted listsof sizesM and N can be sorted in O(log(M + N))
timeusing (M + N)/log(M + N) processors.

DEFINITION. Supposethere are n tasks and thei th task requests x; processors such that
>, % = O(n). Thenthe processor allocation problem of sizen isto allocate agiven
set of processors among these tasks so that thei th task isalloted x; processors (for al i).

LEmMA 3.2[LF],[R]. The processor allocation problem of size n can be solved in
O(max{n/p, logn}) time with p processors on an EREW PRAM.

An Efficient Output-Size Sensitive Parallel Algorithm 185

DEFINITION. Given ahit vector of size n, the problem of compaction involves deleting
the 0's and putting the 1's in contiguous locations starting from the first location.

LEMMA 3.3 [LF], [R]. Thecompaction problemof sizen canbesolvedin O(max{n/p,
logn}) time with p processors on the EREW PRAM.

LEMMA 3.4. Given a convex polygon P of sizem and a ray r, one can detect the
intersection of r and P (or report that there are none) in O(logm) time sequentially.

We shall a so need frequent applications of the slow-down lemmawhich (in our context)
can be formally stated as follows. Let t, , denote the time to allocate p processorsto a
number of tasks whose total processor requirement is O(r). That istp, is the time to
solve the problem of processor allocation of sizer with p processors.

LEMMA 3.5. Let A bea parallel algorithm that executesin IT phases and performs a
total number of N tasks (each task is not necessarily unit time but is performed by a
single processor). Then the algorithm can be executed in time O(T1(t, n +t) + Nt/p)
using p processorsin a PRAM wheret is the time taken for each task.

PrROOF. Thisis a straightforward generalization of Brent's slow-down lemma [Br] in
the context of PRAM agorithms. Let N; be the number of tasks in phase i. Then the
tasks can be distributed equally among p processors so that no processor gets more than
[N;/p] tasks. Thus the total timeis Zi” O(Nit/p +tp N, +), giving us the required
result. O

LEMMA 3.6. Let A be a parallel algorithm that executes in IT phases. Let N; be the
number of tasksin phasei , each executesin O (t;) timewith p; processors. Lett = Zinz 1t
and N = max; {N; p;}. Then the algorithm can be executed in O(TTtp n +t 4+ Nt/p)
time with p processors.

PrOOF. Thisis afurther generalization of the above lemma. Consider phasei of the
agorithm A.Let p < Nip;. Let pf = p/p;. Dividethe N; tasksin pj groups each of size
O(N;/p)). Distribute p processors equally among these groups so that each group gets
pi processors. Execute the tasks in each group one by one. Thetimein phasei is thus
O(Niti/p +tpnip) = ONipiti /p+tpn) = O(Nt /p+1tp). However, if p > N pj,
thenthetimeinphasei isO(t;). Thusthetotal timeinphasei isO(max{Nt; / p+tp n, ti }).
The total time over all the phasesis O(max{N Y{L, ti/p + Mty n, > i; ti}) giving us
the required result. O

4. TheParallel Algorithm. We describethe algorithmin atop-down manner, treating
the important stepsin individual subsections accompanied by detailed analysis. Given a
two-dimensional surface asastraight line graph in three dimensions, we project the line
segments on the x—y plane. By the property of terrain maps, no two projected segments
will intersect. If thegraphisnot triangul ated, wetriangul ate the graph using the algorithm
of Atallah et al. [ACG] for parallel triangulation. Since it is a planar graph, the number

186

Fig.

N. Guptaand S. Sen

o ‘o

(a) (b)

5. Construction of a separator tree for a monotone subdivision: (a) Monotone subdivision S with the

separator chains visualized. (b) Separator tree for S.

of edges and facesis still O(n). Henceforth our discussions will be with respect to the
triangulated graph. The main steps of the algorithm are:

1

Order the edges of the triangulated graph as follows. The triangulated graph is
partitioned into roughly equal parts by a separator—a chain of edges monotone with
respect to the y-axis. Thisis repeated recursively on each part until each part has a
constant number of edges. Thisisdonewith the help of aseparator tree (see Figure5).

Separator chains are ordered from front to back. Each edge e belongs to a range of

separators {oj: i < j < k — 1}. Order the edges based on the smaller index of the

interval of chainsit belongsto. That is, if edges e; and e, belong to oy, 0j.11, ..., 05

and oj, 0j11, ..., o, respectively, thene; < e if i < j.

Profile computation

(8 Phase 1: Computetheinter mediate profiles—to compute the profiles we take
the projection of the line segments on the z—y plane. For each node v in the
separator tree do in paralel: compute the profile of the edges in the leaves of the
subtree rooted at v. We call these profiles intermediate profiles. Note that these
are not necessarily part of the final visible scene. As mentioned earlier, we call
the resulting tree the profile computation tree (PCT). We use the term layer to
imply alevel of the PCT. Observe that the segments of the profiles may be shared
among the layers of the PCT. For example, a profile at node v of the separator
tree may share segments with a profile at the left (or the right) child | of v since
the profile at | is the profile of the subset of edges of the set whose profile is
computed at v (see Figure 6).

(b) Phase 2: Compute the actual profiles—compute the actual (visible) profiles
starting fromtheroot of the PCT, proceeding layer by layer toward theleavesusing
an approach similar to the systolicimplementation of parallel prefix computation.
This step constitutes the crux of our algorithm.

An Efficient Output-Size Sensitive Parallel Algorithm 187

shared segments
Y

Y profileatv .
= f\\] '

*profile at /

Fig. 6. istheleft child of the node v in the PCT; the profile at | isthe profile of the subset of edges of the set
whose profile is computed at v.

4.1. Constructing the Separator Tree. Let S be a planar subdivision whose regions
are monotone polygons. A separator tree is abalanced binary tree T on S as described
below. A separator o of Sis a monotone chain from —oo to +oc0. Let ry,ro, ...,y
be the regions of S, numbered such that i < j whenever region r; shares an edge with
r; and isto the left of rj. The common boundary of the regions with index < i and of
the regions with index > i is a separator of S, which we denote by o;. Each leaf of
T represents aregion of S, and each internal node represents a separator, such that the
inorder sequence of the nodes of T isgiven by rq, 01,12, 02, ..., om_1, 'm. Each edge
e of Sbelongs to arange of separators {oj: i < j < k— 1}, wherer; and ry are the
regions to the left and right of e, respectively. For space efficiency, e is stored only once
at the least common ancestor o of rj andr in T, and is called a proper edge of o;. See
Figure 5. Step 1 of the main algorithm can be implemented in O(logn) time using a
linear number of processorsin an EREW PRAM using a procedure due to Tamassia and
Vitter [TV]. Their result can be summarized as follows:

FAcT 1. Let Sbea planar triangulated subdivision with n vertices. Then the separator
tree consisting of monotone chains that decompose S can be constructed by an EREW
PRAM in O(logn) time using n processors.

4.2. Computing the Intermediate Profiles.

LEMMA 4.1. The profile of a set of m segments can be constructed in O(log? m) time
using O(ma(m)/logm) processorsin a CREW PRAM.

ProoF. Thisisdone by dividing the set of segmentsin halves, computing the profiles
recursively for each half and merging the profiles as follows. Since the profile of m/2
segments can have size at most O (ma(m)) [CS] we merge the vertices of the profiles
in O(logm) time using O (M« (m)/logm) processors (Lemma 3.1). We label (for this
proof) a vertex “visible” if it isa part of the resultant profile and “invisible” otherwise.
Find the predecessor of avertex of one profilein the other profile. This can be computed
while merging. From this we determine if the vertex is “visible” by checking if it lies
above the segment (in the other profile) whose left endpoint is its predecessor (see
Figure 7). The intersections can then be easily determined from the predecessor and
the visibility information within the required bounds (see Appendix A for details). The
points of intersections can be merged with the already merged set of vertices and the
vertices of the new profile can be compacted by discarding the “invisible” vertices. The

188 N. Guptaand S. Sen

X

¥ -
Y Y . Lp
X, |

Fig. 7. The predecessor of x; (in pz) isy; and it isvisible because it lies above y1y,. The predecessor of y,
(in p1) isx2 and it isinvisible because it lies below X2X3.

required bounds follow from Lemmas 3.1 and 3.3. The total time bound follows from
the recursive application of the procedure. O

Thusthe profilesat all the nodes of the separator tree at afixed layer can be computed
in O(log? n) time using O(na(n)/logn) processorsin a CREW PRAM or step 2(a) can
be donein O(log? n) time using O(na(n)) processorsin a CREW PRAM.

4.3. Computing the Actual Profiles. This step constitutes the crux of our algorithm.
Theactual profilesare computed layer by layer of the PCT starting from the root down to
the leaves. Given the profiles and the data structure for intersection detection at a given
layer, say L, of the PCT, the profiles at the next layer are computed by computing the
intersections of the segments of some intermediate profileswith the actual profiles at the
layer L. Sincethisisavery long section, we have organized it asfollows. In Section 4.3.1
we explain how to compute the first intersection of a segment (ray) with a profile. We
develop shared data structures based on the basic data structure of Chazelle and Guibas.
In Section 4.3.2 we explain how to compute al the intersections at the next layer of the
PCT by applying the following lemma.

LEMMA 4.2. Giventhe data structurefor intersection detection of a profile P of sizem
and alinesegment s, we can find all the ks intersections of swith P intime O (max{(T, +
to k) logm, ksT, /p}) with p processors on a CREW PRAM, where T, is the sequential
time to detect thefirst intersection of a segment with P and t,, . isthe time for processor
allocation of kg tasks using p processors.

ProOOF. See Figure 8. Find the diagonal d of the profile such that the segment spans
roughly an equal number of diagonalson either side. Thiscan be done by asimplebinary
search for the endpoints of the segment and taking themiddlediagonal of al thediagonals
spanned by the segment. We then divide the line segment into two subsegments—one
bounded by the left endpoint, say I, of s and the point of intersection, say t, of d and s
and the other bounded by the right endpoint, say r, of s and t, and apply the sequential
search (for an intersection) algorithm on both simultaneoudly (it isasif we have divided
the line in two rays in opposite directions). If an intersection is detected, say q, in
the right subsegment tr, we allocate an extra processor to the part of it between the
intersection point q and the original endpoint r of s and repeat the procedure recursively
on qr. Clearly, al the intersections will be detected in O(logm) stages. We call a
subsegment “alive’ if an intersection isdetected in it, else call it “dead.” An application

An Efficient Output-Size Sensitive Parallel Algorithm 189

Fig. 8

of compaction can be used to delete the dead subsegments at each stage. L et the number
of alive subsegmentsat theith stagebes . Then, using s processors at the next stage, the
first intersection of these subsegments can be computed in O(T)) timeand with p’ < §
processors they can be computed in O(s T, / p’) time by Brent’s slow-down lemma. The
time at stage i is therefore O(max{s T,/p, T\ }) plus the time for processor allocation
and compaction with p processors. The number of alive subsegments at stage i is at
most twice the number of intersections detected at stagei — 1,i.e.,5 < 2kj_; fori > 2,
where k; isthe number of intersections detected at theith stage, s; = 2. The time taken
at stagei istherefore O(max{T,, tpk,, ki—1 T /p}) or thetotal time over al the stagesis
O(max{(T +tpx,) logm, (T;/p) 3 ki}) = OMax{(T; +tpx,) logm, ks Ty /p}). O

REMARK. Since the total number of tasksis O(ks) the above result also follows by a
direct application of Lemma 3.5.

4.3.1. Computing the first intersection of a segment with a profile. We organize this
section as follows. In Section 4.3.1.1, we review the data structure due to Chazelle and
Guibas (CG) which is the basic data structure used in our algorithm and also explain
how to compute the first intersection of a segment with a profile given appropriate data
structures with the CG data structure. In Section 4.3.1.2 we explain how to augment the
above datastructurewith some shared datastructuresto makeit completefor intersection
detection. There we explain how to handle the shared visible portions of the profiles. In
Section 4.3.1.3 we combine the results of the above two subsections and complete the
construction of the data structure. This data structure stores the output vertices and also
provides away to search the intersections at the next layer of the PCT.

4.3.1.1. Review of the data structure of Chazelle and Guibas. To detect the first
intersection between a segment and a profile (if an intersection exists), we use the data
structure of Chazelle and Guibas [CG] to represent the profile. We review it briefly as
required for our purpose. The sequential algorithm of Reif and Sen revolved around
making this data structure dynamic. Given a simple polygon P (which is monotone in
our case), we construct abinary tree where each node represents aportion of the polygon.
The size (number of vertices) of the polygons associated with each node decreases geo-
metrically with depth so that the tree has alogarithmic depth. The polygon is partitioned
into roughly equal-sized polygons (in our case) by dropping the vertical attachments

190 N. Guptaand S. Sen

Vid b . a

~
>
AN
\\
e
~

@ (b
Fig. 9. (a) Profile P. (b) CG data structure for P.

called diagonals in the negative z-direction from all the vertices and choosing the mid-
dle one as a separator. Each node of the tree corresponds to a diagonal and the polygon
it partitions. Thisis repeated until constant-sized polygons are obtained. See Figure 9.
To detect an intersection between aline segment s and a polygon (upper profile) P the
following procedure is used: Suppose that we know a node v such that s intersects the
diagonal v (we use the same name for a node and the associated diagona without any
ambiguity). From the point of the intersection of s with the diagonal v we move aong
s in one direction, say toward the right. We would like to know the furthest diagonal
d which s can cross without intersecting (any edge of) P in between. Clearly, such a
diagonal liesin the right subtree of v. So we search for it in the right subtree of v going
down the subtree level by level. The search procedure is recursive and can be outlined
asfollows:

Search_d (v, right child r of v) if s does not intersect P between v and r, then (move
toward theright of r) Search_d (r, right child of r) else (d must be in between v and r)
Search_d (v, left child of r).

Inthe end either we conclude that thereisno intersection (of s with P on theright side of
v) or a constant-sized polygon is obtained in which s intersects P. The intersection can
then be obtained in constant time. The intersections toward the left of v can be obtained
similarly.

The above procedure requires O(log| P|) phases, where | P| isthe number of vertices
in P and in each phase it involves checking whether a ray intersects P between two
diagonals. For this we compute the lower convex chain of all the vertices of the poly-
gon between the two diagonals. Clearly, a ray intersects the polygon between the two
diagonalsif and only if it intersects this convex chain. Whether aray intersects a convex
chain can be determined by a ssmple binary search and hence it takes O(log| P|) time
(Lemma 3.4). The original data structure of CG was somewhat more complex based on
dual transforms. The above procedureisaong the lines of Preparataand Vitter [PV] and
takes O(log?| P|) time. To facilitate the above search procedure Chazelle and Guibas
augment the above data structure with additional pointers that Reif and Sen referred to
as shooting pointers. A shooting pointer is added between a node v and its descendant
w if thediagonal v isin the boundary of the polygon associated with w, see Figure 9(b)

An Efficient Output-Size Sensitive Parallel Algorithm 191

where the shooting pointers are shown as dotted arcs. The following properties can be
easily verified for amonotone polygon:

PROPERTY 4.1. There can be at most two shooting pointers between a node v and its
descendants at afixed level.

PrROPERTY 4.2. There can be at most one shooting pointer between a node w and its
ancestors.

We refer to this structure of Chazelle and Guibas as the CG data structure in future. By
an edge of CG we imply either atree edge or a shooting pointer unless explicitly stated
otherwise. We augment each edge ab of the CG data structure with the lower convex
chain of the vertices of the profile between a and b. We call the resulting structure an
augmented CG and refer to it as ACG hereafter.

LEMMA 4.3. For a profile with m vertices, we can construct the CG data structure in
O(max{logm, t, m + mlogm/ p}) time using p processors on the CREW PRAM.

ProoF. A profile (which is monotonic) can be divided recursively into halves, quar-
ters, etc. Hence constructing the underlying CG tree is easy. Shooting pointers can be
determined as follows. a node v has a shooting pointer to every node in the rightmost
(respectively leftmost) branch of its left (respectively right) subtree. Hence at a fixed
level there are at most two nodes to which v has a shooting pointer. Moreover, any node
has at most one shooting pointer to its ancestors (mentioned above). Thus the CG data
structure can be constructed in O(log? m) time using O(m/logm) processors or in the
required time using p processors from Lemma 3.5. O

We defer the discussions on computing the convex chains for awhile.

4.3.1.2. Representing shared visible portions. As mentioned earlier, we compute
the actual profiles using an approach similar to the systolic implementation of the par-
allel prefix computation. The main operation at every node being the “merging” of two
profiles—one actual profileinherited from its parent and the other an intermediate profile
precomputed in phase 1 of profile computation by one of its children. A crucia factor
here is the sharing of common visible segments between the profiles being computed
at different nodes of the same layer of the PCT. If we keep one ACG structure for each
profile this redundancy may multiply, leading to a very inefficient algorithm since we
have to build the data structure repeatedly on the same parts of the profile again and
again. The total number of computations during the course of the algorithm may turn
out to be several times larger than the output size, thus jeopardizing our initial objective
of designing an output sensitive algorithm. We tackle this problem as follows.

In phase 2 of the profile computation, at afixed layer of the PCT, instead of keeping
an ACG dtructure for every profile, we keep asingle ACG structure for all the profiles.
In other words, we keep all the intersections found up to a certain layer of the PCT in
one ACG, which provides a search structure to detect the intersections at the next layer.
That is, we construct CG on all theintersectionsfound up to acertain layer, say L, of the

192 N. Guptaand S. Sen

jp— o]) - < Comvey chain corresponsdine 1o 1,
RERIEEN) - i

o . \ == Convev chain correspomling 1o 0,
tartiic — -

- - - e Wit coreesnonding >
et 1 777J Convery hain corresponding 1o P,

Fig. 10

PCT using the procedure outlined in Lemma4.3. To find the intersection(s) of asegment
s with a profile P, we store the lower convex chain of the vertices of P, between d;
and d; for every edge d;d, of CG. Since al the profiles computed up to afixed layer of
the PCT participate in detecting the intersections at the next layer, we must therefore
keep a lower convex chain corresponding to each profile computed so far with every
edge of CG, so that the proper chain is searched for intersection at the next layer (see
Figure 10).

Convex chains are computed using divide-and-conquer. To compute the convex chain
of theset V; (dy, dy) of theverticesof P, between d; and d,, divide V; (dy, d,) into halves,
compute the convex chains recursively for each half and merge them as follows: let C;
and C; be the convex chains of the halves. Define a lower common tangent between
them as the common tangent of C,; and C, such that both C,; and C, lie above it. We
omit “lower” in the following description. Let pg be the common tangent between C;
and C,. Then the convex chain of V; (dy, dy) is obtained by deleting the parts of C; and
C, lying above pq and concatenating the remaining parts together with pqg.

To construct the convex chain for P, we first construct a binary tree, denoted by
BT (P,), which provides askel eton to compute the convex chain recursively using divide-
and-conquer. BT (P,) isthusabinary tree on V; (dy, dy). We want to compute BT (P,) for
each P,. Here again we confront the problem of storing the common visible vertices that

An Efficient Output-Size Sensitive Parallel Algorithm 193

may be shared among the profiles. We cannot afford to keep multiple copies of avertex.
Here, we use a shared data structure along the lines of a persistent binary tree structure
[DSST] to store BT(P;) for all P. We denote this structure by PBT (d3, d2). Each node
of PBT(d1, d2) islabelled with an interval (called the time stamp) [a, b] if it belongsto
BT(R) forali € [a, b] suchthat P has been computed.

We start by labelling al the vertices between d; and d,. To compute PBT (d1, dy) for
all the edges d;d, of ACG, we must label al the vertices computed up to layer L of the
PCT. At afixed layer of the PCT, avertex islabelled with aninterval [a, b] if it belongs
to B, which has been computed for al i € [a, b]. As mentioned earlier, the segments
may be shared between the intermediate profiles among the layers of the PCT (step 2(a),
Figure 6), therefore a vertex may be detected repeatedly as we go down the PCT. Thus,
we may have to update the labels of the vertices as we go down the PCT.

Below we explain how to label the vertices at afixed layer of the PCT and how to
update them if required, as we go down the PCT.

4.3.1.2.A. Labelling the vertices. We label avertex with aninterval [i, j] if it was
detected intheith profile P and deleted in P 1. If the vertex has not been deleted, then
j isavery big number, say M (> n?). When a vertex is created (detected for the first
time) in P, itislabelled [i, M]. We update the labels of the vertices as we go down the
PCT asfollows: Suppose a some node u of the PCT we compute P; from P;. Let x be
avertex (created earlier) with label [I,r]:

1. If x is detected again in P; (clearly, x isnot avertex in P; for thiscase) and | < I,
then update the label to [, r].
2. If xisavertex of P and it isdeleted by Pj, and j < r + 1, then update the |abel to

Let mj; denote the intermediate profile which is merged with P, to compute P;. In
Figure 11 there may be a segment s belonging to =, 7js, and ;.

EXAMPLE 1. Let v beanintersection of s with Py4. It islabelled

(@) [28, M] at layer 12, assuming it has not been created earlier,

(b) updated to [26, M] at layer 12 if it is not deleted by Ps or to [26, 29] if it is deleted
by P50, and

(c) further updated to [25, M] or to [25, 29] respectively at layer | 4.

ExAMPLE 2. Let w beavertex with label [I,r] (I < 24andr > 27) in Py whichis
deleted dueto s. Itslabel is updated to

@ [l,27 atl?,
(b) further updated to [I, 25] at 12, and
(c) thento[l, 24] at 1.

Thus, at afixed layer of the PCT, the label [i, j] of avertex just means that the vertex
is visible in al the profiles between and including P, and P; and not visible in other
profiles only at that layer of the PCT. Nothing can be said about a profile that has not
been computed so far (see Example 3 below). Notice that these are precisely the profiles
which are required for detecting the intersections at the next layer.

194 N. Guptaand S. Sen

averiimber cof PO

(@)

(b)

Fig. 11. (a) The PCT. (b) Segment s is shared among the profiles =i, 7js, and i .

EXAMPLE 3. In Figure 11 a vertex with label [16, 27] at layer |2 is visible in Py,
Pyo, and P4 but not in Pyg. For other profiles (specifically those between P4 and Pog
and those before Pyg) we cannot say anything. Similarly, a vertex with label [26, 29]
at 13 isvisible in Py and Pyg but not in Py, and Psy. We cannot say anything for Pas
and Psyg.

4.3.1.2.B. Building the data structure for intersection detection. At afixed layer of
the PCT we do the following:

1. Construct CG on the intersections computed so far.

2. For every edge d;d, of CG compute
(a) PBT(dl, dz), and
(b) the convex chains.

3. Compute the intersections for the next layer and label them. Also, update the labels
of the old vertices.

Notice that although computing the intersections should be the first step at any layer it
can aso be thought of asthe last step at the previous layer. We are doing so just for ease
of presentation. In this section we mainly discuss step 2. The details follow.

1. Constructing the CG. For m vertices, we can construct the CG data structure in
O(max{logm, tp m + mlogm/ p}) time using p processors on a CREW PRAM by
the method of Lemma4.3.

An Efficient Output-Size Sensitive Parallel Algorithm 195

2. (@) For an edge d;d, of CG compute PBT (d,, d»). We compute BT (P)) for all the
profiles P, computed so far, i.e.,, PBT(d;, do) using divide-and-conquer on the set
V (dz, dy) of all the vertices between d; and d,. Let thediagonal d divide V (dy, dy) in
halves, compute PBT (d;, d) and PBT (d, d,) recursively and mergethem asexplained
below. Thus PBT (d;, d;) can be computed in O(logk’) stageswherek’ isthe number
of vertices between d; and d,. Invariant: The root nodes of PBT (a, b) are labelled
withdigoint and consecutiveintervalsof theform[iq, io], [io+1, i3], ..., [ir—1+1, i¢]
for all pairs of diagonals a, b at al stages. These intervals correspond to the profile
stamps, i.e., aninterval [a, b] correspondtoal theprofilesP,, i € [a, b]. Thisisobvi-
oudly trueat stage 1 wherewehavek’ persistent trees, each withasingleroot node (and
consisting of just asingleton vertex) with aninterval 1abel. PBT (d;, d) and PBT(d, d>)
are merged as follows: Let the root nodes of PBT(d;, d) and PBT(d, dy) each bela
belled withintervalsof theform iy, i2], [i2+1,i3], ..., [ir—1+1,i;]. Let[l1, r;] and
[12, ro] bethe union of intervalslabelling theroots of PBT (d;, d) and PBT(d, dy), re-
spectively. Introduce two hypothetical left endpointsry+21andr,+1(incasery = ro,
only one such point is introduced) and merge the left endpoints of all the intervals
together withr,+1andro+1. Letiy, iy, ..., i, bethemerged sequence. Creates— 1
nodes vy, vy, ..., vs—1 With labels[if, i5 — 1], [i5, i5— 1], ..., [i{_4, is — 1], respec-
tively. Let the left (right) child of anode v, be the root of PBT(d;, d) (PBT(d, d,))
containing thelabel [i/, i/ ; — 1] of v,. However, if such anode (whoselabel contains
the label of v;) does not exist in PBT(d;, d) (PBT(d, dy)), then the left (right) child
of vy isnil. This can happen with the nodes in the left end or the right end of the se-
quencewvy, v, ..., vs_1. Forexample, if iy, i5, i areleft endpointsin say PBT(dy, d),
then the nodes vy, v, have their right children nil. The hypothetical points have been
introduced to take care of the label of the last node(s) (see Appendix B for details).

CLAIM 4.1. Letv, bearootnodeof P = PBT(dy, dp) withlabel [a, b] = [if, i/, —
1]. Then the binary tree rooted at v;, denoted by T, , represents BT (P) for all
i €[a,b].

PROOF. We prove our claim by proving the following: Leti € [a, b].

(a) A vertex (of profiles) which is stored at a leaf of T,, has alabel that includesi
(i.e,avertexinT, isasoin BT (R)).

(b) A vertex (of profiles) whoselabel includesi belongsto T, ,i.e., avertexin BT (R)
isdsoinT, .

Part (a) follows by induction by observing that the label of v, includesi impliesthat
the labels of the left and the right subtrees of v, aso include i. We prove (b) by
contradiction. It is easy to see that if x; isanode crested at stage j and whose |abel
containsi but x; does not belong to T,, , then there there exists a node x;1 created
at stage j + 1 satisfying the same. Thus, if x is a vertex whose label includesi and
x does not belong to T, , then by induction there exists aroot node v of PBT(dy, dy)
satisfying the same. This contradicts the fact that the root nodes of PBT (d,, d,) are
labelled by digoint intervals. O

CLAIM 4.2. The number of nodes created at stagei is O(k').

196 N. Guptaand S. Sen
Recall that k' is the number of vertices between d; and d,.

ProoOF. Consider PBT(d1, dy) as a binary tree where each node u is split into at
most N; + N; + 1 nodeswhere N, and N, are the number of nodes the left and the
right children (respectively) of u are split into. Let this number denote the size of u.
At theleaf level or at stage 1 we have k' nodes, each of constant size, where k’ isthe
total number of vertices between d; and d. At stagei we have k’/2' nodes, each of
size O(2'~1 — 1). Therefore total number of nodes at stagei is O(K'). O

It follows that the total size of PBT(dy, dy) is O(K' logk’).

LEMMA 4.4. PBT(dy, d) can be computed in O(max{log?K’, k' log?K'/p + tpx
logk'}) timewith p processorson a CREW PRAM, wherek’ isthe number of vertices
between d; and d,.

ProoF. Consider PBT(d;, dy) as abinary tree as explained in the above proof. Let
N; and N, bethe sizesof theleft and theright children of the nodeu at stagei . Lower
limits of theintervalslabelling the N, + N; nodes can bemerged in O(log(N, + N;))
timeusing O(N, + N;) processors. Nj = N, = O(2~1 — 1) for all thek’/2' nodes.
Thusat stagei , we havek’/2' merging tasks, each of which performsmergingin O(i)
time using O(2') processors. Thus by Lemma 3.6 the total time of the construction
of PBT(dy, dy) is O(max{log®K’, k' log? k' /p + tp.w 10gK'}) using p processors. [

(b) Computingtheconvex chains. Every nodeof PBT (d;, d;) storesaconvex chain
of some vertices (that correspond to the leaves of the subtree rooted at the node) be-
tween d; and d,. We store this chain in a binary tree and we use the terms “root
of the tree” the “tree” and the “convex chain” it represents interchangeably. Each
node of the tree represents a lower convex hull* of a set of vertices in three parts:
two parts are stored in the left and the right subtrees and the third part is an edge
connecting the first two parts. We call this edge the “connector.” Each node of the
tree is labelled with [p1, po] if it represents the part of the chain between p; and
p2, i.e., the lower convex hull of the vertices whose y-coordinates are in the interval
[y(p1), Y(p2)] and aso store in it the connector pqg between the convex subchains
stored in its left and right subtrees (see Figure 12). These are used for the binary
search on the convex chains. This structureis similar to the dynamic convex-hull data
structure of Overmars-Leeuwen [OL].
For anode u of PBT(dy, dy) let

S, denote the convex chain at u, i.e., the convex chain of the vertices which are at
the leaves of the subtree rooted at u,

I, and r, betheleft and the right children of u in PBT(dy, dy),

PuQu be the common tangent between §, and S, and

Ly, Ry bethe partsof S, to theleft of p, and theright of g, respectively. That is,
Ly, Ry aretheleft and the right subtrees of theroot of S,.

4 A lower convex hull is the part of C extending from the point with the minimum y-coordinate to the point
with the maximum y-coordinate in counterclockwise direction.

An Efficient Output-Size Sensitive Parallel Algorithm 197

L .
) .p teonnector oopLopy
/ \‘\w‘ ;hl s LS 1 [‘
. -

/

i i \
REE A]/\ x L p, P, [woneator oop, b for some

S, bonnector Top

[, LU B \\I\. polTor some
' /

« y ' “\\‘
/'/ T ‘ /o \
S

Fig. 12. Ly: part of the convex chain at u toward the | eft of the common tangent stored at u.

Let u be a node created at stage | of PBT(d;, dy). Recall that PBT(dy, d,) is con-
structed bottom-up, therefore stage| representsthe distancefrom theleaves. Given S,
for all the nodes v created at stages < | compute S, asfollows: If I, (or r) isnil, then
S isthesameas §, (or §,, respectively), then stop, elsewecompute §, inthree parts:

(8 Compute the common tangent p, 0y between S, and S,.
(b) Compute L.
(c) Compute R,.

We store the common tangent and the pointersto L, and R, in S§,, and apointer to §,
in u. To save space one can store §, in u itself. However, storing it separately makes
the analysis easier. The common tangent can be computed by a binary search on §,
and §,,. We show how to compute L ;. R, can be computed analogoudly. Initialy L,
is empty. To compute L, split §, on py asfollows: Let v =1,

If Pv = Pu

then Paste (append) L, to L and stop (Pasteis explained later)

else

if the common tangent at v isto theleft of p, (i.e., L, contains the common tangent
a S)then

° Paste L, to Ly.
. SPLIT_1(Ry, pu)-
e else SPLIT_1(L,, pu)-

198 N. Guptaand S. Sen

SPLIT_1(root,p) is arecursive procedure as given below:
SPLIT_1(root,p)

If root has label [a, p] for some a (for R, we may be looking for alabel [p, b] for
some b), then Pasteroot to L, and stop, elseif p € right childr of theroot, then

. Paste the left child | of rootto L.
e SPLIT_A(r, p).
e else SPLIT_1(l, p).

“root” above isthe root of atree representing some convex subchain of S,.

Notice that in the above procedure we are pasting roots of some trees (subtrees of
S,) representing the convex subchains of S, to L. Also notice that we paste at most
one convex subchain (or subtree) from each level of S, except possibly at thelast level,
i.e., the last two subchains may come fromthe samelevel of S,. Let Ty, To, ..., T,
m = O(height of S,), be the trees pasted to L, in this order. Let ht(T;) denote the
height of T, Vi. Then,

ht(Ti) < ht(Ti-1) — 1.
Paste T; to L, asfollows (see Figure 12):

(@ Ifi <m— 1, create anode n; with right child nil and left child T;, label n; with
[pi, pu] where[pi, c] isthelabel of theroot of T; (for some ¢). n; isthe root of
the tree representing L.

(b) If2<i <m-—1, maken; theright child of n;_;. Let [a, bi] and [a;, b,] bethe
labelsof T; _1 andthelabel of n;, respectively, then storetheconnector b;azinn;_;.

(c) Ifi = m, make T, (theonewithlabel [a, p,] for somea) theright child of npm_;.
Let [ay, b1] and [ay, by] be the label of Tr,_1 and the label of Ty, respectively,
then store the connector bias in np_1.

To paste to Ry, interchange |eft and right in the above steps.
CLAaM 4.3. The height of the tree rooted at ny isht(Ty) + 1.

ProOF. By inductiononecan show that theheight of thetreerooted at n; isht (T;)+1.
See Appendix C for details. O

Also, the height of S, isclearly O(height of S, + 1).

Thus, L, can be computed in O(m) = O(l) time sequentialy. Recall that u isa
node of PBT(d3, d;) created at stagel. Similarly, R, (and hence S,) can be computed
in O(l) time sequentially.

REMARK. We had observed earlier that aray intersects aprofile P, between diago-
nalsd; and d, if and only if it intersects the lower convex chain of the vertices of P,
between d; and d,. Notice that d; and d, were the vertices of P, so that the convex
chain extends from d; to d,. However, now d; and d, are not necessarily the vertices
of P,. Therefore we introduce the following points for the purpose of computing the
convex chains (see Figure 10): Let p; (gi) be the leftmost (rightmost) point of P,

An Efficient Output-Size Sensitive Parallel Algorithm 199

between d; and d,. Let g (&) be the left (right) edge incident on p; (). Find out
the intersection of g (&) with d; (d;) and introduce these points with the same label
as that of p; (g;). Thisis easy to do. Follow the left (right) splines of the roots of
PBT (d;, d) and introduce these points as the left (right) children of the last nodes.
Thetotal number of the vertices become at most thrice. In Figure 10, x; (respectively
X2) isan intersection of the rightmost (respectively leftmost) edge of P; (respectively
P;) between d; and d, with the right diagonal d, (respectively left diagonal d;).
Similarly, x3 and X4 are the intersections of the leftmost and the rightmost edges,
respectively, of P; with d; and d,, respectively. Hence we have the following lemma:

LEMMA 4.5. Letubeanodecreated at stagel of PBT(dy, dy), thengiven §, and S,
S canbecomputedin O(l) time sequentially. Also, the height of the tree representing
S isO).

Since the convex chains S, (for the nodes v created earlier) that are used for the
construction of S, are not destroyed at any step of the computation of S, then §, can
be computed independently for all nodesu created at stagel of PBT (dy, dy) inparallel.

4.3.1.3. Puttingthepiecestogether. Supposewehavecomputed al theintersections
up to layer L of the PCT—the number of intersections computed so far is O(K). Let t,,
be the time to solve the processor allocation problem of sizer with p processors. Then
the ACG at afixed layer of the PCT is constructed as follows:

1. ComputeCG: O(max{logk, tp k+k logk/p}) timeusing p processorsby Lemmad4.3.
For each edge d;d, of CG:
(@) Compute PBT(dy, dp): O(max{log?K’, tp« logk’ + K’ log?Kk'/p}) time with p
processors, wherek’ isthetotal number of verticesbetweend; andd, (Lemmad4.4).
(b) Computethe convex chains: consider stagei of PBT(d;, dp). Let n; bethetotal
number of nodes created at stage i of PBT(d;, dy). Then for each u created at
stagei, S, canbecomputedin O(i) = O(logk’) time sequentially (Lemma4.5).
Since the size of PBT(d;, d;) is O(k’' logk’), by Lemma 3.5 the convex chains
at all the nodes of PBT(ds, dy) can be computed in O(max{log®k’, tok logk’ +
k' log?k’/p}) timeusing p processorsin a CREW PRAM. Theterm ty « follows
from the term t, v, for phasei in the proof of Lemma 3.5. Also, the maximum
height of any of the trees representing these convex chains is O(logk’) from
Lemma4.5.
2. Compute the convex chains for all the edges of CG by proceeding level by level
from the leaf up to the root using the following observation:
Let a, b, ¢ be the nodes of CG as shown in Figure 13.

PBT(a, b) = Merge(PBT (b, ¢), PBT(a, ¢)),

where Merge(PBT (b, ¢), PBT(a, ¢)) is:

Split the intervals labelling the roots of PBT (b, ¢) and PBT (a, ¢) and create new
nodes for PBT (a, b) with the newly created intervals as their labels (as explained
earlierinthebeginning of Section4.3.1.2.B). Supposewe have computed PBT (d;, dy)
(together with the convex chains) for all nodesd, at levels> j (levelscloser toleaves)

200

N. Guptaand S. Sen

Fig. 13

of CG. Let c beanode at level j of ACG and let a, b, ¢ be as shown in Figure 13.
Then, by inductive hypothesis, we have PBT (b, ¢) and PBT (a, c). We denote them
by P! and P? and the convex chain by S, for all the nodes u belonging to P! or
P2. We denote PBT (a, b) by P. We merge P* and P2 and compute the new convex
chains asfollows:

(@) Split-up the intervals labelling the roots of P! and P? and create new nodes for
P with the newly created intervals as their labels (as explained earlier).

(b) For each newly created node u above, compute the common tangent between S,
and §, (I, € PLr, € P?).

(c) For each newly created node u, compute the convex chain §, from §, and S, (as
explained earlier).

Timeto merge P! and P?
Lets, s, s bethe sizes of the left and right subtrees of ¢ and the tree rooted at c,
respectively. Thens = s = O(k/2l) ands = O(k/2i1).

(@ P!and P2eachhave O(k/2)) roots. Recall that thetotal number of nodes created
at any stage of PBT(dy, dy) is O(k’) where k' is the number of vertices between
dy and d,. Hence step (a) above can be done in O(logk) time using k/21-1
processors.

(b) The number of roots of P is O(k/21~1). The common tangents can therefore be
computed with k /2! processorsin O (log k) time by abinary search on the convex
chains associated with P* and P2.

(c) Computing the convex chains also takes O(j) = O(logk) time with k/21 1
processors by Lemma4.5.

Therefore P along with the convex chains can be computed in O(logk) time with
k/21-1 processors. Thetotal number of nodesat level j of CGis2! and the number of
edges incident on each node is two (one tree edge and one superpointer). Therefore
by Lemma 3.6, we can compute ACG, i.e.,, PBT(d;, dy) together with the convex
chainsfor all edges d;d, of CG, in O(max{log®k, t, x logk +klog? k/ p}) time using
p processors. Hence we have the following lemma:

LEMMA 4.6. At a fixed layer of the PCT, the ACG structure can be constructed in
O(max{log®k, tpx logk + k log?k/ p}) time using p processors on a CREW PRAM.

An Efficient Output-Size Sensitive Parallel Algorithm 201

To search whether a ray intersects a profile and detect the first intersection in case it
does, proceed level by level of ACG starting from the root, according to the recursive
search procedure laid down earlier in Section 4.3.1. At each level, it involves searching
whether aray intersects a convex chain between two diagonals, say d; and d,. To search
the convex chain corresponding to a profile P, a binary search is done on §, where u
is the root of PBT(dy, dy) labelled with an interval containing i. This can be done in
O(logk) sequential time at each level of ACG, i.e., atotal of O(log? k) sequential time.
Thus, detecting whether asegment intersectsa profile and computing itsfirst intersection
if it does, takes O(log? k) sequential time. From Lemma 4.2, all ks intersections of a
segment s with a profile can be detected in O(max{log®k + tp k) logk, kslog?k/ p})
time with p processors.

4.3.2. Detecting intersections at the next layer of the PCT. At the next layer of the
PCT severa (actual) profiles are being computed in parallel. Suppose at a node u of
the PCT, we compute P; by merging P, (i < j, P inherited from the parent of u)
with an intermediate profile 7;; precomputed (by the left child of u) in phase 1. For
each segment s of 7;; we compute the intersection of s with P;. Some of the vertices
of P, may be deleted as they lie below s and hence do not contribute to P;. Some new
intersections may also be detected. Suppose we have sufficient processors initially to
assign two processors to each segment of all the intermediate profiles. More processors
are allocated to segments as more intersections are detected as explained in Lemma4.2.
However, now we divide a segment into two subsegments by taking the middle diagonal
of the entire set of diagonals (intersections computed so far) spanned by s rather than
taking the middle diagonal of the set of vertices of just one profile P, with which its
intersection is to be computed. So the total number of stagesislogk. The total number
of segments (whose intersections are required to be computed) is O(na(n)) and the
total number of intersections is O (k). All the intersections of al the segments can be
computed in O(logk) stages. As in the proof of Lemma 4.2, at each phase we have
a number of subsegments—some alive and some dead. Dead subsegments are deleted
by an application of compaction. The first intersections can be computed in O(log? k)
sequential time and the total number of aive subsegments over all the O(logk) stages
is O(k + na(n)). Thus by Lemma 3.5 (or as done in the proof of Lemma 4.2) al the
intersectionsof al the segmentscan be computedin O(max{log3 K, tp.k+nam) 100K+ (k+
na(n)) log? k/ p}) time. Finally the processor allocation problem of sizer can be done
in O(r logr /p) time using p processors on a CREW PRAM. The term tp, k4nam) l0gk
is thus subsumed in (k + na(n)) log? k/ p. Hence al the intersections at the next layer
of the PCT can be computed in O(max{log®n, (k + na(n)) log?n/p}) time using p
processors, or all intersections can be detected in O (max{log* n, (k+ na(n)) log® n/p})
time over all layers of the PCT using p processors. The new intersections computed at
afixed layer of the PCT can be sorted and merged with the already existing verticesin
the required bounds. Update the |abels of the repeated vertices and discard the oneswith
the old labels using compaction.

Detecting the deleted vertices and updating their labels: Observe that at a fixed
layer of the PCT avertex is deleted (and also detected) at most at one node of the PCT,
i.e., no two processors attempt to update the label of a vertex at the same time. Label
each new intersection point with its segment and the profile. Sort these points on y-

202 N. Guptaand S. Sen

Fig. 14

coordinates and then use a stable sorting algorithm to sort them by their segments. To
each consecutive pair of points I, I, (11 totheleft of 1,) belonging to the same segment
assign one processor. Let d;, dy, . . ., d bethediagonals between I; and |,. Let d bethe
least common ancestor of d; and d; in CG. Then there exists a path from d to d; and a
path from d to d; in CG of length O(log k) consisting only of these diagonals (possibly
including shooting pointers)—see Figure 14. Let |, lie between the diagonals v4 and v
and let I, lie between vg and vg. Then d; = v7, dr = vg, and d = v, and the required
paths are v1, v7 and vy, vs, vg). The vertices of P lying between 11 and |, are the union
of the vertices of P lying between these diagonals. The vertices of B lying between
dj’ and dj’ 41 are obtained by following the tree rooted at a root node of PBT (d/, dj/ +1)
labelled with aninterval containing i . Hence the label of adeleted vertex can be updated
in O(log? k) time. See Appendix D for details. This completes our description of al the
algorithmic steps and we summarize Algorithm Par hidsur f below.

Algorithm Parhidsurf

1. Given atwo-dimensional surface as astraight line graph in three dimen-
sions, project the line segments on the x—y plane and triangulate the

graph.
Time = O(logn), processors = O(n) using any efficient algorithm like
that in [ACG].

2. Order the edges of the (planar) triangulated graph in the increasing dis-
tance from the viewer using the method of [TV]. The ordered set of edges
is stored in a separator tree.

Time = (logn), processors = O(n).

3. For al the nodes of the separator tree do in parallel
Compute the upper profile of the edgesin theleaves of the subtree rooted
at the node (the edges in the leaves of the separator tree are sorted in the
increasing distance from the viewer).

Time = O(log? n), processors = O(na(n)) using Lemma4.1.

An Efficient Output-Size Sensitive Parallel Algorithm 203

4. For each layer L of the PCT do
(a8) Computethe CG structure on all the k intersections computed so far.
Time = O(max{logk, t,x + klogk/p}) using p processors by

Lemma4.3.

(b) Foreachlevel | of CG build ashared datastructure ACG for detecting
intersections of aline segment with a monotone polygon:

(i) For al edgesd;d, of CG with d, at level | (for all profiles com-
puted so far represented by a common shared data structure) do
in paralléel
e Compute PBT(d;, dy) (Section 4.3.1.2.B, step 2(a)).

e Compute all the convex chains (Section 4.3.1.2.B, step 2(b)).
(ii) Decrement]l.
Time= O(max{log?kK, t, « logk +k log?k/ p}) timeusing p proces-
sors by Lemma4.6.
(c) Detect the intersections for the next layer, i.e.,, L + 1 of the PCT as
follows:
For all the nodes u at layer L + 1 of the PCT do in parallel
Suppose at node u the profile P; is computed by merging the
intermediate profile rr;; with B. For all the segments s of ;; do
in parallel
Compute al theintersections of s with P, asexplained in
Section 4.3.2 or in the proof of Lemma4.2. To search the
convex chain corresponding toaprofile P, abinary search
isdone onthelabels of theroots of the PCT corresponding
to theinterval containing i. The binary tree rooted at that
node gives us the corresponding convex chain.
Time = O(max{log®n, (k + na(n)) log? n/ p}) using p Processors.
(d) Increment L.
All the intersections can be detected in O(max{log*n, (k +
na(n)) log® n/ p}) time over al layers of the PCT using p processors.

Therefore we arrive at the main result of this paper.

THEOREM 4.1. The hidden-line elimination problem for terrains can be solved in
O(max{log* n, (k + na(n)) log®n/p}) time using p CREW processors where n and
k are the input and the output sizes, respectively.

REMARK. For p = na(n)/logn, the work bound is O((k + ne(n)) log® n) which is
within an O(logn) factor of the sequential bound of Reif and Sen [RS2].

5. Concluding Remarksand Open Problems. We presented an output-size sensitive
parallel algorithm for hidden-line elimination for terrain maps. The algorithm provides
a solution in a device-independent manner. Our algorithm achieves a work bound of
O((k + na(n)) log® n which is only about an O(logn) factor away from the sequential
running time of Reif and Sen [RS2] and an O(log? n) factor away from that of Overmars

204 N. Guptaand S. Sen

et al. Our agorithm runs in O(max{log*n, klog®n/p}) time for k > na(n) using
p = na(n)/logn processorsin a CREW PRAM.

Our agorithm can be simplified by using an idea of Overmars et a. [OKS]. By
“clipping” the intermediate profiles with respect to the actual profilesin the downward
phase of our computation, we can avoid the sharing of datastructures. Thiscanleadto an
improvement in the running time by alogarithmic factor since we may be able to modify
the basic algorithm in away that eliminates the ray-shooting data structure. However,
we feel that our approach of using a persistence data structure in a parallel setting is of
independent interest and has potential applications to more general scenes.

A natura direction for further work is to generalize the algorithm for any arbitrary
three-dimensional scene. However, we will need efficient algorithmsfor partitioning the
scene into digoint parts such that an ordering of edges is feasible. Moreover, such a
partitioning scheme will also have to output-size sensitive.

Appendix A. Computethe Intersections of Profiles. Let Xg, Xo, ..., X and yi, Y,
..., Ys bethe vertices of profiles p; and ps, respectively. Let z3, 25, ..., Zzn(M =71 +S)
be the merged sequence. If for somei, z and z . ; are vertices of the same profile, say
p2, and their visibilities are same, then the segment z z,; does not intersect the other
profile. If their visibilities are different, then let x, be the predecessor of both z; and z ;4
in py, then the segment z z; , ; intersects the segment X, %, ;1 of p;.

Next, consider the subsequence Xi, Vj, Xi+1, ¥j+1, Xi+2 Of Z1, 2, ..., Zy, for some i
and j (see Figure 15). Let Vis(z) denote the visibility of z.

Casel. If Vis(y;) = Vis(y;+1) = visible, then y;y; 1 does not intersect p;.
Case 2. If Mis(yj) = Vis(yj+1) = invisible, then
(@) if Vis(xi+1) = invisible, then y;y; 41 intersects both X; X +1 and X; 41X 2,
(b) if Vis(xj41) = visible, then y; y; 11 does not intersect p;.
Case 3. If Vis(yj) # Mis(yj+1), then
(@) if Vis(xi+1) = invisible, then yjyj 1 intersects X +1Xi 12,
(b) if Vis(xi+1) = visible, then y; ;1 intersects X; X +1.

Appendix B. Merge PBT(d;, d) and PBT(d4, dz): Introducing Hypothetical Points
ri+landro+1. Letrmin=min{rq, ra} andrma = max{rq, ro}. Letiy, is, ..., i be
the merged sequence of left endpoints not includingr, + 1andr, + 1.

Case 1: ij” < I'min < iJ-”Jrl for some j < t. Then create nodes with the following
|abels:; [ii’, iy - 1], [ig,_ig -1,..., [ij”, Fminls [Fmin + 1, ij”+1 -1, [ij”H, ij”+2 —
, . 17 =1L i rmad -

Case 2: rmin > i{. Then create nodes with the following labels: [if, i5 — 1], [i5,i5 —
1, ... [i{" 4, i{ =11, i}, rmin] @and one more node with label [rmin + 1, rmax] if
I'min ?é I'max-

It is easy to see from above that the introduction of hypothetical pointsry +1andr, + 1
takes care of both the conditions above.

An Efficient Output-Size Sensitive Parallel Algorithm 205

\ .
v ; Case - | (N

\ . (]m' BTN - f\
v ~
N . / - ~

N
S -
N -

\ R
! LoCase - 200 7
N { Vs .
N ey

[N

Yy

Case - Ay
L Case - 2y

v

it

Fig. 15. Let yj yj +1 be one of the segments of profile p. Case 1: both y; and y; ;1 are visible and the segment
Y ¥j+1 does not intersect the profile p;. Case 2: both y; and yj, 1 areinvisible. (a) xj 41 isinvisible and the
segment yj yj +1 intersects both the segments x; X; 11 and ;1% 2 of the profile py. (b) i 11 isvisible and the
segment y; yj +1 does not intersect the profile p;. Case 3: yj isvisibleand yj ;1 isinvisible. () xj 1 isinvisible
and the segment y; yj 1 intersects the segment X; 11 2 of the profile p;. (b) x; 41 isvisible and the segment
Yj ¥j+1 intersects the segment x; X ;.1 of the profile p;.

Appendix C

CLAIM. The height of the treerooted at n; = ht(T;) + 1.

Proor. Letht(n;) denotetheheight of thetreerooted at n;. Sinceht (T,) < ht (T_1)—
1, max{ht (T, ht (Tm—1)} = ht(Tm—1). Thus ht(np_1) = ht(Tyn_1) + 1. Theclaimis
thustruefori = m— 1. Supposeitistruefor ali > j, then

ht(nj) = max{ht(T)), ht(nj;1)} + 1 = max{ht(Tj), ht(Tj+1) + 1} + 1 = ht(T)) + 1.

Hence proved. O

Appendix D. Computing the Vertices of a Profile Lying Below a Subsegment. To
each consecutive pair of points bel onging to the same segment, assign one processor. For
the pair 14, 1,, each labeled with (s, P,), where | isto the left of |, do abinary search
onthetreeedgesof CG. Let d; betheleftmost diagonal to theright of 1, and let d, bethe
rightmost diagonal to theleft of I,. Let d be the least common ancestor of d; and do. Let
d = vy, v, ..., v; = dy beapath of tree edgesin CG from d to dy. Let v, vy, ..., vy

206 N. Guptaand S. Sen

be the nodes in order on this path to the right of 1;. These are the diagonals between
d; and d. Then there existsapathd = vy, v, ..., v, = di in CG (possibly including
superpointers). Similarly, there exists a path d = wj, w5, ..., w; = dy in CG of the
diagonals between d and d». For all v{ and for al wy,, PT (v, v/, ,) and PT (wp,, wy,, 1)
contain al the vertices of P between v/, v/, and between wy,, wy,, ,, respectively. Let

PT(d, dj) be under consideration. Let v be the root of PT (d;, d3) with label [a, b]
containing i. By following a path from v down to a leaf one gets to a vertex of P,
between |1 and |,. If it liesabove s, then no point of P, isdeleted by the subsegment 141,
of s, hence stop, else continue asfollows. Let N by be the number of vertices between d;
and d; whoselabels contain [a, b]. Thisis precisely the number of verticesof P; between
d; and dj. This number can be computed while building PT (dj, d3) and stored at the
root v. Thus with np, ;) processors (or one processor for each deleted vertex), labels of
all the deleted vertices between d; and d;, can be updated in O (logk) time. Notice that a
vertex may be counted more than once. However, since avertex is deleted at most at one
node of the PCT at a fixed layer, the total processor requirement is O (k). Thus all the
vertices of the profile P, lying below the subsegment 141, of s are deleted in O(log? k)
time (O(logk) time for each pair vjv/,, and wy,wy,,, Which are O(logk) in number)
with one processor for each deleted vertex.

References

[ACG] M.J. Attalah, R. Cole, and M. T. Goodrich. Cascading divide-and-conquer: atechniquefor design-
ing parallel agorithms. Proceedings of the 28th |EEE Symposium on Foundations of Computer
Science, pages 151160, 1987.
[AGO] M. Attalah, M. Goodrich, and M. Overmaars. An input-size/output-size trade-off in the time-
complexity of rectilinear hidden-surface removal. Proceedings of ICALP, 1990.
[AM] P K.Agarwal and J. Matousek. Ray shooting and parametric search. S AM Journal on Computing,
22(4):794-806, 1993.
[Be] M. Bern. Hidden surface removal for rectangles. Proceedings of the 4th ACM Symposium on
Computational Geometry, pages 183-192, 1988.
[Br] R.P Brent. The parallel evaluation of general arithmetic expressions. Journal of the ACM, 201~
208, 1974.
[CG] B. Chazelleand L. Guibas. Visibility and intersection problems in plane geometry. Proceedings
of the ACM Symposium on Computational Geometry, pages 135-146, 1985.
[CS] R.Coleand M. Sharir. Visibility problemsfor polyhedral terrains. Tech. Report No. 92, Courant
Ingtitute of Mathematical Sciences, 1986.
[D] F. Devai.Quadratic boundsfor hidden-lineelimination. Proceedings of the2nd Annual Symposium
on Computational Geometry, pages 269-275, 1986.
[dBHO"] M. de Berg, D. Halperin, M. Overmars, J. Snoeyink, and M. van Kreveld. Efficient ray shooting
and hidden surface removal. Algorithmica, 12:30-53, 1994.
[DSST] J. R. Driscall, N. Sarnak, D. D. Sleator, and R. E. Tarzan. Make the data-structures persistent.
Journal of Computer and System Sciences, 38:86-124, 1989.
[G] M. T.Goodrich. A polygonal approach to hidden-line elimination. GVGIP: Graphical Modelsand
Image Processing, 54(1):1-12, 1992.
[GGB] M. Ghouse, M. Goodrich, and J. Bright. Generalized sweep methods for parallel computational
geometry. Proceedings of the 2nd ACM Symposium on Parallel Algorithms and Architectures,
pages 280-289, 1990.
[GO] R.Gutingand T. Ottmann. New algorithmsfor special casesof thehidden-lineelimination problem.
Proceedings of STACS, pages 161-171, 1985.

An Efficient Output-Size Sensitive Parallel Algorithm 207

[KAG]
[LF]
(M]

[N]
[OKS]

[OL]
(OS]
[PV]
[R]
[RS1]
[Rs2]
[
[SsS]
[Sv]

[TV]

R. Kosargju, M. Attalah, and M. Goodrich. Parallel algorithms for evaluating sequences of set-
manipulation operations. Proceedings of the Aegean Workshop on Computing, pages 1-10. LNCS
319. Springer-Verlag, Berlin, 1988.

R. Ladner and M. Fischer. Parallel prefix computation. Journal of the ACM, 27(4):831-838, 1980.
M. McKenna. Worst-case optimal hidden-surface removal. ACM Transactions on Graphics, 19—
28, 1987.

O. Nurmi. A fast line-sweep algorithm for hidden-line elimination. BIT, 25:466-472, 1985.

M. Overmars, M. Kartz, and M. Sharir. Efficient hidden surface removal for objects with small
union size. Computational Geometry: Theory and Application, 2:223-234, 1992.

M. H. Overmars and J. van Leeuwen. Maintenance of configuration in the plane. Journal of
Computer and System Sciences, 23:166—204, 1981.

M. Overmars and M. Sharir. Output-sensitive hidden-surface removal. Proceedings of the 30th
|EEE Symposium on Foundations of Computer Science, pages 598-603, 1989.

F. Preparataand J. Vitter. A simplified technique for hidden-line elimination in terrains. Proceed-
ings of STACS, 1992.

J. H. Reif. Synthesis of Parallel Algorithms. Morgan Kaufmann, San Mateo, California, 1993.

J. H. Reif and S. Sen. An efficient output-sensitive hidden-surfaceremoval algorithm and itsparal -
|elization. Proceedingsof the 4th Annual Symposiumon Computational Geometry, pages 193-200,
1988.

J.H. Reif and S. Sen. Anefficient output-sensitive hidden-surfaceremoval agorithmfor polyhedral
terrains. Mathematical Computing Modelling, 21(5):89-104.

A. Schmitt. Time and space bounds for hidden-line and hidden-surface elimination algorithms.
Proceedings of EUROGRAPHICS, pages 43-56, 1981.

R. F. Sproull, I. E. Sutherland, and R. A. Schumacker. A characterization of ten hidden-surface
algorithms. Computing Surveys, 6(1):1-25, 1974.

Y. Shiloach and U. Vishkin. Finding the maximum, merging and sorting in aparallel computation
model. Journal of Algorithms, 2(1):88-102, 1981.

R. Tamassiaand J. S. Vitter. Optimal parallel algorithms for transitive closure and point location
in planar structures. Proceedings of the ACM Symposiumon Parallel Algorithmand Architectures,
pages 399408, 1989.

