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Abstract Among the techniques used to simulate categorical variables, multiple-

point statistics is becoming very popular because it allows the user to provide an ex-

plicit conceptual model via a training image. In classic implementations, the multiple-

point statistics are inferred from the training image by storing all the observed pat-

terns of a certain size in a tree structure. This type of algorithm has the advantage

of being fast to apply, but it presents some critical limitations. In particular, a tree is

extremely RAM demanding. For three-dimensional problems with numerous facies,

large templates cannot be used. Complex structures are then difficult to simulate.

In this paper, we propose to replace the tree by a list. This structure requires much

less RAM. It has three main advantages. First, it allows for the use of larger tem-

plates. Second, the list structure being parsimonious, it can be extended to include

additional information. Here, we show how this can be used to develop a new ap-

proach for dealing with non-stationary training images. Finally, an interesting aspect

of the list is that it allows one to parallelize the part of the algorithm in which the

conditional probability density function is computed. This is especially important for

large problems that can be solved on clusters of PCs with distributed memory or on

multicore machines with shared memory.
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1 Introduction

Since the work of Strebelle (2002), multiple-point statistics has emerged as a promi-

nent field of research. Multiple-point statistics allows the integration of a complex

conceptual geological model into a stochastic framework and is therefore among the

most flexible method available. In particular, the user can provide crucial informa-

tion about the shape of the structures, their degree of connectivity, or their spatial

relations by simply defining an adequate training image. This is extremely important

when one is interested in modeling flow and transport processes in reservoirs (Journel

and Zhang 2006; Renard 2007).

While the principle of the method was proposed in the early 1990s by Guardiano

and Strivastava (1993), the first efficient implementation, called snesim, was carried

out by Strebelle (2002). In the original algorithm (Guardiano and Strivastava 1993),

a scan of the entire training image was required for every simulation node. The main

idea of Strebelle (2002) consists in storing the multiple-point statistics inferred from

the training image in a catalog. The training image is scanned with a search tem-

plate and the multiple-point statistics are stored in a dynamically allocated search

tree (Strebelle 2002). During the simulation, the catalog is used to rapidly retrieve

the information, thereby allowing the conditional probability density function to be

computed for the current pixel. In addition, in order to ensure a good reproduction of

the patterns at different scales while keeping the size of the search template small,

Strebelle (2002) used a multigrid technique. A detailed analysis of the possibili-

ties offered by snesim is given by Liu (2006). Several case studies have also shown

the power of the method in real applications (Caers et al. 2003; Liu et al. 2004;

Okabe and Blunt 2007; Ronayne et al. 2008).

In parallel, several improvements have been proposed. For example, a classic issue

in multiple-point statistics is that structures that are connected in the training image

may be disconnected in the simulation to the limited size of the search template and

due to the random path in the sequential simulation. This problem was addressed by,

for example, developing post-processing techniques (Strebelle and Remy 2005; Stien

et al. 2007) and real-time post-processing (Suzuki and Strebelle 2007; Mariethoz

et al. 2009), and by using a unilateral path (Daly and Knudby 2007) or a patched

path (Zhang et al. 2008). Daly and Caers (2010) discuss some implementation and

performance issues; for example, they suggest the use of a compact tree to reduce the

RAM requirements of snesim.

Multiple-point statistics techniques require a stationary training image; otherwise,

it is not possible to derive meaningful statistics. This may be a problem if one uses an

image derived from field observations as a training image. To overcome that limita-

tion, two techniques have been proposed. One is to split the training image in regions

that are analyzed separately and for which different probability trees are constructed

(de Vries et al. 2009). Another one is to use one or several secondary variables whose

ranges of values are stored in the search tree in order to distinguish regions and pat-

terns that should not be mixed (Chugunova and Hu 2008). Other authors have pro-

posed to maintain the use of a training image but to completely change the simulation

method. One of these approaches is the simpat method (Arpat and Caers 2007), which

analyzes the patterns in the training image and reproduces them in the simulation.
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Another technique, also based on pattern classification and simulation, is filtersim

(Zhang et al. 2006; Wu et al. 2008). Compared to the previous methods, it has the ad-

vantage of being applicable to continuous variables. A survey and a review of these

techniques can be found in Caers (2005), Hu and Chugunova (2008), or Remy et al.

(2009).

In this paper, we propose a new implementation of the original multiple-point tech-

nique. As in the work of Strebelle (2002), the simulation is based on the computation

of a conditional probability distribution derived from the training image; however,

instead of using search trees, we use a simpler structure of lists. This has three key

advantages. First, using lists allows to significantly reduce the amount of RAM re-

quired by the algorithm. This is particularly important for large three-dimensional

training images for which the size of the search tree can quickly become prohibitive,

adversely affecting the simulation of complex structures (Arpat and Caers 2007).

Second, because the memory load is significantly reduced, one can easily use many

different lists or store additional information within the lists. This is used for example

to develop a new technique to deal with non-stationarity both in the training image

and in the simulation grid. For that purpose, we use a couple of training images, in-

cluding a standard categorical field plus a continuous auxiliary variable in a manner

similar to Chugunova and Hu (2008). Third, the proposed implementation with lists

is simpler to parallelize than the implementation with a search tree. This allows us

to obtain fast simulations on single machines that have multicore processors, or on

clusters that have multiple processors with distributed memory. The originality of the

proposed parallelization approach is that instead of simultaneously simulating several

realizations or several nodes of the same realization (Vargas et al. 2008; Mariethoz et

al. 2009), we parallelize the most time-consuming step, the computation of the con-

ditional probability density function at each node. The resulting improved parallel

multiple-point algorithm using a list approach is called impala and is implemented in

ANSI C.

2 Using Lists for Multiple-point Statistics

2.1 Notations and Basic Multiple-point Statistics Concepts

The objective is to simulate a categorical variable (facies) on a regular grid such

that the multiple-point statistics and the simulated patterns are similar to the ones of a

training image. The simulation of a facies at a grid node proceeds as follows. A search

template is predefined in the beginning of the simulation as a set of N relative node

locations (offsets) h1, . . . , hN , where hi is a two-dimensional or three-dimensional

vector, 1 ≤ i ≤ N . For a given reference (central) node u, the search template τ at u

is the set of nodes

τ(u) = {u + h1, . . . , u + hN }, (1)

and, if s(v) denotes the facies at node v, the vector, such that

d(u) =
{

s(u + h1), . . . , s(u + hN )
}

(2)

defines the data event d at u.
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To attribute a facies at a node u in the simulation grid, the nodes v in the train-

ing image (TI) where the data event d(v) has the same components as those of d(u)

are retained. Then the occurrences of all the facies at the nodes v are counted. This

provides a conditional probability distribution function (CPDF) that can be used to

randomly draw a facies at the node u. More precisely, if there are n defined compo-

nents in d(u), in positions i1 < · · · < in, with 0 ≤ n ≤ N , then the probability to draw

the facies k at the node u is

P
(

s(u) = k | d(u)
)

=
#{v ∈ TI : s(v + hij ) = s(u + hij ),1 ≤ j ≤ n and s(v) = k}

#{v ∈ TI : s(v + hij ) = s(u + hij ),1 ≤ j ≤ n}
, (3)

for 0 ≤ k < M , where M is the number of facies. In (3), the denominator represents

the number of matching data events in the training image, and the numerator rep-

resents the number of these data events having facies k at the central node. If the

denominator is too small, the last informed node in d(u) is dropped until the number

of replicates is acceptable, (i.e., larger than a predefined threshold).

In addition, the multigrid approach (Tran 1994; Strebelle 2002) is used to capture

structures at different scales. Let us recall that the simulation grid is divided in m

multigrids (Strebelle 2002). The simulation proceeds successively with the simula-

tion of all the nodes whose coordinates are a multiple of 2m−1. The lag vectors in the

search template are then scaled by 2m−1. The process continues with the unsimulated

nodes whose coordinates are a multiple of 2m−2, and repeats itself similarly for all

the multigrid levels.

2.2 Storing Multiple-point Statistics in Lists

In this paper, instead of using the tree structure proposed by Strebelle (2002), we store

the multiple-point statistics inferred from the training image in a list. An element of

the list is a pair of vectors (d, c) where d = (s1, . . . , sN ) defines a data event and

c = (c0, . . . , cM−1) is a list of occurrences counters for each facies: ci is the number

of data events d(v) equal to d found in the training image with facies i at the reference

node v. To illustrate this point, the training image and the search template of Fig. 1

are considered. The list in Fig. 2 is obtained by scanning the training image in such a

way that the search template is always entirely inside the training image. The facies

code 0 (resp. 1) is used for white (resp. gray) nodes. Note that the training image

can be scanned with the search template in such a way that its reference node covers

all the nodes of the training image. This allows one to take into account the patterns

around the boundaries of the training image. In this case, some nodes of the search

template can be outside the training image, and a new value for lacking facies (e.g.,

−1) then has to be introduced for corresponding components of data events stored in

lists.

This type of list is a catalog that allows to compute the CPDF (3) for performing

simulations. The training image is used only to build the lists. For each multigrid
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Fig. 1 Training image of dimensions 6 × 6 and search template of size N = 4. In the training image, the

white nodes have facies code 0 and the gray nodes facies code 1. In the search template, u represents the

reference (central) node and the numbers the indices of the relative locations

Fig. 2 List for the training image and the search template of Fig. 1 (scanning in a way that the search

template is always entirely inside the training image). The elements of the list (first column) are pairs of

vectors (d, c) where d = (s1, . . . , s4) defines a data event found in the training image, and the components

of c = (c0, c1) are the number of replicates of the data event d with facies 0 and 1, respectively, at the

reference node. The reference nodes (second column) are the locations of the central nodes in the training

image where d is found; two sets of size c0 and c1 are given for the replicates having facies 0 and 1,

respectively, at the reference node

level, the corresponding list is obtained by scanning the training image with the ap-

propriate search template once. Then, the training image can be removed from the

memory.

2.3 Computing the CPDF from a List

The CPDF used for drawing a facies at a node u of the simulation grid is computed

based on the list. Equation (3) is used and a minimal number of replicates, Cmin,

is given. Assume that the simulated nodes in the data event d(u) centered at u are

u + hi1, . . . , u + hin . For 1 ≤ j ≤ n, let d(j)(u) be the data event whose defined

components are s(u + hi1), . . . , s(u + hij ), (i.e., the data event corresponding to the

first j simulated nodes in d(u)). For 1 ≤ j ≤ n and 0 ≤ k < M , let C
(j)

k be the number

of replicates of d(j)(u) found in the training image with facies k at the central node

(i.e., the number of nodes v in the training image verifying s(v + hil ) = s(u + hil ),

1 ≤ l ≤ j and s(v) = k). Then, the greatest index j such that the total number of
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replicates of d(j)(u), C(j) =
∑M−1

k=0 C
(j)

k is greater or equal to Cmin is selected and

the corresponding CPDF

P
(

s(u) = k | d(j)(u)
)

=
C

(j)
k

C(j)
, 0 ≤ k < M (4)

is used to draw the facies at the node u.

The replicates of the data events are counted in the list. First, all the counters

C
(j)

k are set to 0. Then each element (d, c) in the list is scanned, and all data events

d(j)(u) are compared to d : if they are compatible (i.e., dil = s(u + hil ), 1 ≤ l ≤ j ),

the counter C
(j)
k is increased by ck for 0 ≤ k < M . Note that if C(1) < Cmin, or if

no node in d(u) is informed (n = 0), the marginal PDF (i.e., the proportion of each

facies in the training image) is used.

Let us illustrate the computation of the CPDF on an example with the training

image and the search template of Fig. 1. Assume that the node u to be simulated has

a gray node on both sides (right and left) and that neither nodes below nor above u

are informed (n = 2, i1 = 2, i2 = 4, d(u) = {?,1, ?,1}). In this situation, the counters

C
(2)
0 = 1, C

(2)
1 = 4 (5)

are obtained by summing the counters of elements L1,L3,L8 of the list of Fig. 2. If

the node at the left of u (node u + h4) is ignored, the contribution of the elements L2

and L9 is added and the corresponding counters are

C
(1)
0 = 2, C

(1)
1 = 7. (6)

Thus, if Cmin is lower or equal to 5, the counters C
(2)
0 and C

(2)
1 are used to retrieve

the CPDF (1/5,4/5) for the facies code (0,1) at u.

2.4 Sorting Lists

Computing the CPDF (4) based on a list requires scanning all elements of the list,

which can be CPU-expensive. In this section, we propose to alleviate the CPU burden

by scanning only a portion of a sorted list. Let NL be the number of elements in the

list and

L =
{

L0 = (d0, c0), . . . ,LNL−1 = (dNL−1, cNL−1)
}

(7)

the list itself. Let s0 be a reference facies and, for a data event d , let Ns0
(d) be the

number of nodes having a facies equal to s0 in d . The idea is to group the elements

whose data event has the same number of times the facies s0. The list is sorted such

that all couples of elements Li = (di, ci) and Lj = (dj , cj ) verify

i ≤ j ⇐⇒ Ns0
(di) ≤ Ns0

(dj ), 0 ≤ i, j < NL. (8)

The sorted list is divided in N + 1 classes, the elements whose data event has i times

the facies s0 form the ith class,

Ks0
(i) =

{

L = (d, c) ∈ L : Ns0
(d) = i

}

, 0 ≤ i ≤ N. (9)
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Fig. 3 List sorted by classes for the facies s0 = 0 for the training image and the search template of Fig. 1

(scanning in a way that the search template is always entirely inside the training image). The elements of

the list (first column) are pairs of vectors (d, c) where d = (s1, . . . , s4) defines a data event found in the

training image, and the components of c = (c0, c1) are the number of replicates of the data event d with

facies 0 and 1, respectively, at the reference node. The class indices (second column) represent the number

of times that the facies s0 = 0 appears in d . The reference nodes (third column) are the locations of the

central nodes in the training image where d is found; two sets of size c0 and c1 are given for the replicates

having facies 0 and 1, respectively, at the reference node

The sorting criterion described by (8) only gives the positions of the classes (9) with

respect to each other. Each class can be sorted using the lexicographical order on

the data events. For locating each class, pointers to the beginning of each class are

used. More precisely, if the list (7) is sorted according to the relation (8), a vector

Is0
= (Is0

(0), . . . , Is0
(N + 1)) of length N + 2 is defined by

Is0
(i) = min

(

{

j : Ns0
(dj ) � i

}

∪ {NL}

)

(10)

for 0 ≤ i ≤ N + 1. Hence, the elements of the ith class, Ks0
(i), are the elements Lj ,

Is0
(i) ≤ j < Is0

(i + 1). The list for the training image and the search template of

Fig. 1, sorted by classes for the facies s0 = 0, is given in Fig. 3.

2.4.1 Retrieving the CPDF from the List Sorted by Classes

Assume that for a node u to be simulated, the data event d(u) has n informed nodes

u + hi1 , . . . , u + hin , and that the list is sorted by classes for the reference facies s0.

In this situation, the data events that are compatible with d(u) necessarily have at

least Ns0
(d(u)) and at most N − (n − Ns0

(d(u))) times the facies s0, where N is the

size of the search template. To compute the counters in the case where some nodes in

d(u) have to be dropped, we introduce for 1 ≤ j ≤ n the set

Ls0

(

d(j)(u)
)

=
{

Li : Is0

(

Ns0

(

d(j)(u)
))

≤ i < Is0

(

N −
(

j − Ns0

(

d(j)(u)
))

+ 1
)}

(11)
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of the elements L = (d, c) of the list whose data event d can be compatible with

d(j)(u). These sets verify

Ls0

(

d(u)
)

= Ls0

(

d(n)(u)
)

⊂ Ls0

(

d(n−1)(u)
)

⊂ · · · ⊂ Ls0

(

d(1)(u)
)

. (12)

If s(u + hij+1
) = s0 (resp. s(u + hij+1

) �= s0), the set Ls0
(d(j)(u)) is obtained by

appending one class (maybe empty) of elements of the list to Ls0
(d(j+1)(u)) at the

beginning (resp. at the end).

For computing the counters C
(j)

k , 0 ≤ k < M in (4), we need to scan the elements

of the list in Ls0
(d(j)(u)) only. The range of the list that is scanned is enlarged follow-

ing (12) until the minimal number of replicates is reached; the corresponding CPDF

is then chosen. More specifically, retrieving the CPDF and drawing the facies at u is

done in the following way:

(1) The elements of the list in Ls0
(d(u)) are scanned and the corresponding counters

C
(j)

k , 0 ≤ k < M , 1 ≤ j ≤ n are computed. At this step, the final values of C
(n)
k

are obtained, while for C
(j)

k , 1 ≤ j < n, the final values are not reached yet.

(2) If the criterion of the minimal number of replicates is satisfied for the coun-

ters C
(n)
k , (i.e., C(n) =

∑M−1
k=0 C

(n)
k � Cmin), the CPDF P(. | d(n)(u))

(= P(. | d(u))) is computed and used for drawing the facies at u. Otherwise,

the last node in the data event is dropped until this criterion is satisfied. The

index j is set to n − 1 and the following steps are then implemented:

(a) If j = 0, the marginal PDF is used for drawing the facies at u. Otherwise,

the elements of the list in Ls0
(d(j)(u)) \ Ls0

(d(j+1)(u)) are scanned and the

counters C
(l)
k , 0 ≤ k < M , 1 ≤ l ≤ j are updated. At this step, the final values

of C
(j)
k are obtained, while for C

(l)
k , 1 ≤ l < j , the final values are not reached

yet.

(b) If the criterion of the minimal number of replicates is satisfied for the coun-

ters C
(j)
k (i.e., C(j) =

∑M−1
k=0 C

(j)
k � Cmin), the CPDF P(. | d(j)(u)) is com-

puted and used for drawing the facies at u. Otherwise, the index j is de-

creased by 1, j = j − 1, and the process continues in Step (a).

Also note that the vector Is0
, associated to the sort of the list, is used for determining

the part of the list to be scanned in the steps above. Sorting lists by classes requires

a reference facies s0. Any facies s0 could be chosen. Practically, the dominant fa-

cies in the training image is used as reference facies s0, because in most of cases

it results in classes of relatively homogeneous sizes, thereby maximizing CPU effi-

ciency.

3 RAM Usage

In this section, the RAM usage is compared for implementations of a multiple-point

algorithm based on search trees and lists.
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3.1 Estimation of RAM Requirements

Let us recall the structure of the search tree for estimating its RAM requirements. In a

situation with a search template of size N and M facies, the search tree has a depth of

N and is made up of cells divided into M subcells. Each subcell can store a counter

and can have a child cell (in the next level of the tree); the tree is an M-ary tree. If

the levels in the tree are numbered from 1 to N + 1 and the subcells in a cell from

0 to M − 1, the counter in a subcell is defined as follows. Let {i(1), i(2), . . . , i(k)}

be a path in the tree where i(j) is the identification number of a subcell in a cell of

level j . The counter in the last sub-cell of the path is the number of data events found

in the training image with facies i(j) at node v + hj of the search template τ(v) for

1 ≤ j ≤ k−1, and with facies k at the reference node v. Figure 4 shows the search tree

corresponding to the training image and the search template of Fig. 1, scanning with

the search template always entirely inside the training image. The statistics stored in

the list shown in Figs. 2 and 3 correspond to the leaves of the search tree of Fig. 4;

an important point to emphasize is that the list makes it possible to reconstruct the

search tree with precision.

The size of the search tree and the list depends on the size N of the search template,

the number M of facies and the entropy of the training image. Moreover, the size of

the search tree can also depend on the numbering of the nodes in the search template.

The previous descriptions make it possible to compute the ratio between the size of

the search tree and the size of the list. Let stree be the size in octets of a tree cell,

slist the size in octets of an element of the list and r = stree/slist their ratio. Let Ktree

and Klist be the number of cells in the tree and the number of elements in the list,

respectively. Then, the number

R =
Ktree

Klist

· r (13)

Fig. 4 Search tree for the training image and the search template of Fig. 1 (scanning in a way that the

search template is always entirely inside the training image). The corresponding reference nodes (location

in the training image) are given below the leaves of the tree
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denotes the gain factor in terms of RAM usage for the list in comparison with the

tree. In the lowest possible entropy case, there is only one data event in the training

image and we have

Ktree = N + 1 (degenerated tree), Klist = 1 and R = (N + 1) · r. (14)

In the highest possible entropy case, all possible data events appear in the training

image and we have

Ktree = 1 +M +M2 +· · ·+MN =
MN+1 − 1

M − 1
(full M-ary tree), Klist = MN

(15)

and

R =
1 − M−(N+1)

1 − M−1
· r. (16)

The degenerated tree corresponds to the worst case in terms of memory usage,

whereas the full M-ary tree is the most favorable case. The gain factor is always

within the interval given by these two extreme values of R

R ∈

[

1 − M−(N+1)

1 − M−1
· r, (N + 1) · r

]

. (17)

An estimation for r is calculated as follows. A tree cell is divided in M subcells

which each contain a counter and the address of its child cell, whereas an element of

the list contains a data event made up of N facies codes and M counters. Assume that

a counter is coded in a long integer of size 8, an address is of size 8, and a facies code

is stored in a character of size one (the sizes are in octets, if nothing is mentioned).

Then, stree = (8 + 8) · M = 16 · M , slist = N + 8 · M and

r =
16 · M

N + 8 · M
. (18)

For the example in Fig. 1, N = 4, M = 2, r = 1.6 and R = 3.84 ∈ [3.1,8]. For a

three-dimensional application (Sect. 3.2) with a search template of size N = 124

(5 × 5 × 5 box around the reference node) and M = 4 facies, we have r = 0.410256

and R ∈ [0.5470,51.2821]. Note that the extreme cases are never reached in practice.

3.2 RAM Limitation

We show that the RAM limit (i.e., the total amount of available RAM on a given

machine) for storing multiple-point statistics is reached faster with the search tree

approach than with the list based approach. Consider a three-dimensional training

image and a search template that contains the N closest nodes to the reference node

and let the size N be increased. For each search template, the corresponding search

tree and list are built and their respective sizes in gigabytes (GB) are calculated.

Figure 5(a) shows the results for a three-dimensional training image of dimensions

100 × 100 × 60 with 4 facies and representing a boolean model of fluvial deposit.
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Fig. 5 (a) RAM usage for a three-dimensional training image having 600,000 nodes and 4 facies.

(b) RAM usage for a three-dimensional training image having 14,128,385 nodes and 6 facies. (c) Gain

factor with the list in comparison with the search tree (ratio: size of tree over size of list)

Figure 5(b) shows the results for a three-dimensional training image of dimensions

101 × 101 × 1385 with 6 facies and representing an alluvial plain simulated with

a pseudo-genetic technique (Rivoirard et al. 2008). The gain factor R for these two

cases is drawn in Fig. 5(c).

These experimental values show that the list-based approach quickly results in the

reduction of RAM requirements by a factor of 10 or more. Moreover, the search tem-

plates size can be significantly limited by the RAM capacity when using the search

tree approach. Indeed, in the case shown in Fig. 5(b), the RAM required by the tree

reaches 2 GB with already 30 nodes. However, such a limited number of nodes is

often insufficient to characterize complex three-dimensional structures.

4 CPU Performance for Serial Implementations

In this section, serial implementations of a multiple-point algorithm using lists sorted

lexicographically, and lists sorted by classes (based on the dominant facies) and

search trees, are compared in terms of CPU performance. Two three-dimensional

training images are used in the following tests. The number of multigrids is set to 3,

and the same search template is used for each multigrid. Several symmetric search

templates of increasing sizes (N = 6, 18, 26, 32, 44, 56, 80, . . .) are considered,

and for each one, a single realization is generated. Each method leads to the same

simulated images, provided that the path and the random numbers used in the sim-

ulations are identical. In Fig. 6(a), the real time spent for each method is shown as

a function of the search template size for a three-dimensional training image with

dimensions of 100 × 100 × 60 and with 4 facies (same image as that one used

for Fig. 5(a). Figure 6(b) shows the times for a three-dimensional training image

with dimensions of 101 × 101 × 536 and with 6 facies (part of the image used for

Fig. 5(b)).

The algorithm based on trees is often faster than the algorithm using lists, provided

that the RAM capacity is not exceeded. This is because in a search tree, statistics for
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Fig. 6 Real time for the algorithm using lists sorted lexicographically, lists sorted by classes and

trees with (a) a three-dimensional training image having 600,000 nodes and 4 facies (3 multigrids),

(b) a three-dimensional training image having 5,467,736 nodes and 6 facies (3 multigrids), and (c) a gain

factor using lists in comparison with search trees (ratio: time using trees over times using lists), and using

lists sorted lexicographically in comparison with lists sorted by classes

data event partially informed are stored in the levels above the leaves, whereas if these

statistics are needed, they have to be computed based on the list. For large training

images, however, the simulations become unmanageable due to the size of the search

trees. This situation is already met for a search template of size N = 80 in Fig. 6(b),

which is why the times for the algorithm using search trees are not given for larger

values of N . Figure 6(c) shows that for large search templates, the classical approach

using search trees is approximately two times faster than the algorithm based on

lists. This trend is reversed for small search templates, which is probably due to the

recursion process used for retrieving statistics from the tree. This figure also shows

that the algorithm using lists sorted by classes is more efficient than the one using

the lexicographical sort: This is clear for small search templates and remains true for

large ones (excepted for two cases) with a gain of approximately 10% of the CPU

time.

It is important to emphasize that the use of lists makes it possible to parallelize the

algorithm easily, thus allowing one to catch up with the tree version when it comes to

CPU time. This is discussed in the next section.

5 Parallelization

Using lists instead of trees allows a straightforward parallelization of the algorithm.

The parallelization is based on Message Passing Interface (MPI) technology (Don-

garra et al. 1998; Gropp et al. 1998). In the next sections, p denotes the number of

processors that are used: they are numbered from 0 to p − 1. Note that an OpenMP

version of the code was also developed. It shows similar performances but is dedi-

cated to smaller machines with shared memory.
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Table 1 Parallelization for the list storage L = {L(0), . . . ,L(NL −1)} using p processors; NL = q ·p+r

is the Euclidean division of NL by p

Process Elements of the partial list

0 L(0) L(p) . . . L((q − 1) · p) L(q · p)

1 L(1) L(p + 1) . . . L((q − 1) · p + 1) L(q · p + 1)

.

.

.

r − 1 L(r − 1) L(p + r − 1) . . . L((q − 1) · p + r − 1) L(q · p + r − 1)

r L(r) L(p + r) . . . L((q − 1) · p + r)

r + 1 L(r + 1) L(p + r + 1) . . . L((q − 1) · p + r + 1)

.

.

.

p − 1 L(p − 1) L(p + p − 1) . . . L((q − 1) · p + p − 1)

5.1 Distributing Lists

Each list is distributed over all p processors. It is divided into p parts of balanced

size and each one of these p partial lists is stored in the memory space dedicated to

a single processor. More precisely, if NL is the number of elements in the list and

NL = q · p + r is the Euclidean division of NL by p, there are r partial lists with

q + 1 elements and p − r partial lists with q elements. Let

L =
{

L(0), . . . ,L(NL − 1)
}

(19)

be the entire list, sorted by classes, as explained in Sect. 2.4. Then the partial lists

stored in the memory attached to the different processors are given in Table 1, and

each processor computes the vector I containing the indices of the beginning of each

class, associated to its partial list (10). In this situation, two consecutive elements

of the entire list are stored on two consecutive processors according to their iden-

tification number, assuming that the processor 0 follows the processor p − 1. The

computational load is well balanced between all processors, provided that each class

of elements in the entire list is distributed over all available processors.

Note that every list required by the simulation (one per multigrid and zone) is built

by scanning a training image. This step is carried out ahead of the distribution above,

and can also be parallelized. Parallelization of the lists’ construction is accomplished

by first dividing the training image in p regions. Then each processor builds the list

corresponding to one region; finally, all of these temporary lists are grouped together

into one list. Construction of the lists is not a heavy task.

5.2 Simulation with Distributed Lists

For computing the CPDF (3), each processor retrieves the required occurrences coun-

ters by scanning its local list. The information retrieved by all processors is then

merged using a parallel computing communication, and the CPDF is computed.

Therefore, the simulation of each successive node is parallelized.
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More precisely, the main steps of the parallelized algorithm are the following. The

simulation grid is stored and updated at each simulated node on all processors. In

order to simulate the facies at one node u, each processor retrieves the data event

centered at u and retrieves from its local list the occurrences counters relative to the

data event, as described in Sect. 2.4. In particular, the scan of the partial list is en-

larged until the sum of the local occurrences counters reaches the criterion of the

minimal number of replicates (or until the partial list is entirely scanned). This guar-

antees that the criterion of minimal number of replicates is met with only one parallel

communication. The CPDF is computed based on the gathered information and is

used for drawing a facies at u. Only one of the processors (typically processor 0) ac-

tually draws the facies value. This processor sends the simulated value to the others,

and the simulation proceeds to the next node. Therefore, two parallel communications

are required for each simulated node.

5.3 Performance Measurements: CPU Time and Speed-up

The performance of a parallel algorithm in terms of CPU time is experimentally eval-

uated using following measurements. A simulation with the same input parameters

is launched on p = 1,2,4,6,8, . . . processors. For each test, the CPU time spent on

each processor is retrieved. Let Tp(i) be the time spent by processor i, 0 ≤ i ≤ p − 1.

5.3.1 Load Balancing

The times Tp(i), 0 ≤ i ≤ p − 1, allow to evaluate how the computational load is

balanced. If large discrepancies appear in the workload of the different processors,

it means that the load balancing is not optimal and that the parallelization is poor.

Conversely, if all processors spend similar CPU time, it means that the load balancing

is optimal.

5.3.2 CPU Time Max

We observe how the CPU time max Tp = max0≤i≤p−1 Tp(i) decreases as a function

of p.

5.3.3 Speed-up and Efficiency

The speed-up and the efficiency are respectively the ratios

Sp =
T1

Tp

and Ep =
Sp

p
. (20)

They can be compared to the ideal curves Sp = p and Ep = 1; that is, to the situation

where the time is divided by p when the number of used processors is multiplied

by p. Note that the efficiency gives a normalized rate.
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5.4 Numerical Tests

Three sets of tests are considered for evaluating the simulation part of the proposed

algorithm, using the sort of the list by classes according to the dominant facies. The

main parameters of these tests are given in Table 2 and the sizes of the lists for each

multigrid are given in Table 3. Note that for test 2, 20 zones in the simulation grid are

used for rotations, and that twenty lists are then used for each multigrid. Moreover,

an auxiliary variable is considered for this test and the extended lists are then used

(Sect. 6).

The evaluation of load balancing, maximum CPU time and speed-up, and effi-

ciency curves for the three sets of tests are given in Figs. 7 and 8. Figures 7(a), 7(c),

and 7(e) show that the computational load is well balanced, while Figs. 7(b), 7(d),

and 7(f) show that the maximum CPU time is strongly decreasing. This results in

good speed-up (and efficiency) curves, especially for small numbers of processors

(Fig. 8). Table 3 and Fig. 8 show that the speed-up curves are closer to the ideal curve

for the largest examples. This is typical when using parallel codes: the number of

processors that allow for a significant decrease in CPU time depends on the com-

putational burden of the problem to be solved. For small problems, the time spent

on communications between processors quickly exceeds the time used for the actual

computations.

Table 2 Main parameters of the tests for evaluating parallel performances

Main parameters Test 1 Test 2 Test 3

Dim. of TI 100 × 100 × 60 1501 × 551 200 × 160 × 200

Dim. of sim. grid 100 × 100 × 60 1500 × 900 120 × 96 × 120

Number of facies 4 3 4

Number of aux. variables 0 1 0

Number of zones 1 20 1

Number of multigrids 3 3 3

Template sizes (by multig.) 202, 122, 56 120, 96, 56 170, 146, 92

Number of realizations 1 10 1

Table 3 Approximative number of elements in each entire list for the tests of evaluation of the paralleliza-

tion (Table 2)

Test 1 Test 2 Test 3

Coarse multigrid 474,000 720,000 6,252,000

Middle multigrid 265,000 489,000 5,113,000

Fine multigrid 91,000 170,000 2,122,000
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Fig. 7 Load balancing (LB) and CPU time max. (CPU) for tests of Table 2: (a) LB for test 1; (b) CPU for

test 1; (c) LB for test 2; (d) CPU for test 2; (e) LB for test 3; (f) CPU for test 3

6 Extending the List to Account for Non-stationarity

6.1 Non-stationary Training Images

The multiple-point simulation method described above is valid for stationary training

images because spatial patterns (pixels configurations) according to a search template

are stored in the list regardless of their location in the training image. In this section,
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Fig. 8 Performance for tests of Table 2: (a) speed-up curves and (b) efficiency curves

a method for performing simulations with nonstationary training images using lists

is presented.

Our approach is inspired from the work of Chugunova and Hu (2008) which con-

sists in using continuous auxiliary variable(s) for describing nonstationarity. For a

nonstationary training image (TI) (containing facies, which constitutes the primary

variable), one or several auxiliary map(s) is (are) associated, and each one contains

an auxiliary variable describing some form of nonstationarity within the TI. Each of

these auxiliary variables must be exhaustively known on the simulation domain for

guiding the simulation. One or several auxiliary maps associated to the simulation

grid (SG) are also required. Note that the method described in the next sections can

be easily integrated in a parallel implementation, following the steps presented in

Sect. 5.

6.2 Storing an Auxiliary Variable in Lists

In the presence of an auxiliary variable, a vector m is appended to each element

of the list. An element of the list is then a triplet of vectors (d, c,m) where d =

(s1, . . . , sN ) defines a data event, c = (c0, . . . , cM−1) is a list of occurrence counters

for each facies and m = (m0, . . . ,mM−1) is a list of mean values for the auxiliary

variable associated to the occurrences of the different facies at the central node. More

precisely, ci is the number of data events d(v) equal to d found in the training image

with facies i at the reference node v, and mi is the mean of the auxiliary variable at

these nodes v.

6.3 Simulation Accounting for an Auxiliary Variable

Before starting the simulation and building the list, the auxiliary variable t is nor-

malized in the interval [0,1], via the linear transformation [a, b] → [0,1], t 
→

(t − a)/(b − a), where a and b are the minimum and the maximum of the auxil-

iary variable t (v), v in TIaux ∪ SGaux, respectively. To simulate a facies at a node u
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Fig. 9 Selection and penalization with an auxiliary variable; t (u) denotes the value of the auxiliary vari-

able at u in the simulation grid, δu is the tolerance error on the auxiliary variable, Ck is the number of

replicates of the data event d(u) found in the training image, for which the value of the auxiliary variable

at the central node is in [t (u) − δu, t (u) + δu], Mk is the mean of the values of the auxiliary variable at

the central node of these replicates, and ω is a positive power controlling the penalization

of the grid SG, knowing the data event d(u) and the auxiliary variable t (u) (which is

known because SGaux is exhaustively informed), we proceed as follows. A tolerance

error δu ∈ [0,1] is fixed. For each facies k, we retain the set Ek of elements in the list

that are compatible with the data event d(u) and that satisfy

∣

∣mk − t (u)
∣

∣ ≤ δu. (21)

Then, we compute the sum Ck of the occurrences counter ck of the elements of Ek

and the resulting mean Mk for the auxiliary variable

Ck =
∑

e∈Ek

c
(e)
k and Mk =

1

Ck

∑

e∈Ek

c
(e)
k · m

(e)
k , (22)

where the exponent (e) denotes the corresponding element in the list. The resulting

means are used to penalize the counters. For each facies k, the penalized counter γk

is defined as

γk =

(

1 −

(

|Mk − t (u)|

δu

)ω−1)

· Ck, (23)

where ω is a weight (positive real parameter) controlling the penalization (Fig. 9).

Then, the conditional PDF knowing the data event d(u) and the auxiliary variable

t (u), used to draw the facies at the node u, is given by

P
(

s(u) = k | d(u), t (u)
)

=
γk

γ
, 0 ≤ k < M, (24)

where γ =
∑M−1

k=0 γk .

In summary, the presence of an auxiliary variable adds a step of selection (21)

and a step of penalization (23) to the process of retrieving the conditional PDF. The

method requires two parameters, δu and ω, which could depend on location u, while

also making it possible to guide the simulation according to the auxiliary variable, as

shown in Fig. 9. Note that in practice, the criterion of minimal number of replicates
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is applied on the sum Ck of the counters before the penalization and that the CPDF

is retrieved in the same manner as in the previous situation, namely with a station-

ary training image (Sect. 2.4). If all nodes in the data event must be dropped (i.e.,

C(1) =
∑M−1

k=0 C
(1)
k < Cmin), all the elements of the list are scanned and the counters

for each facies are retrieved using only (21) as a criterion for matching elements. If

the minimal number of replicates is still not reached, the counters are computed con-

sidering all elements of the list, and the penalization is then done. In this last case,

the marginal PDF, conditioned to the auxiliary variable, is used

P
(

s(u) = k | t (u)
)

=
γ

(marg)

k

γ (marg)
, 0 ≤ k < M, (25)

where

γ
(marg)

k =

(

1 −

∣

∣

∣
M

(marg)

k − t (u)

∣

∣

∣

min(δu,ω−1)
)

· C
(marg)

k (26)

and

γ (marg) =

M−1
∑

k=0

γ
(marg)

k , (27)

with C
(marg)

k being the number of nodes in the training image with the facies k and

M
(marg)

k being the mean of the auxiliary variable at these nodes. For this case only,

the power ω−1 is replaced by min(δu,ω−1) to account for the parameter δu.

Note that this method can easily be generalized to apply to cases with several

auxiliary variables. In the presence of n auxiliary variables, n conditions (one per

auxiliary variable) of type (21) are considered, and the factor of penalization in (23)

is replaced by a product of n factors (one per auxiliary variable). Both parameters δu

(tolerance error) and ω (weight) can be different for each auxiliary variable.

7 Case Studies

7.1 Three-dimensional Application with Two Auxiliary Variables

We consider a nonstationary training image (Fig. 10) representing a turbidite reservoir

(Strebelle 2002). Two auxiliary variables are used t describe the nonstationarity of this

image: the x-coordinate and the z-coordinate of the nodes. The first one describes a

change in the type of structures present in the training image, whereas the second one

corresponds to a variation of proportion. A simulation grid of the same dimensions

as those in Strebelle (2002) is considered. The same auxiliary variable maps for the

training image and the simulation grid are used. One of the resulting realizations is

displayed in Fig. 11. Three levels of multigrid are used with a search template with

sizes N = 514, 304, 56 for coarse, middle, and fine multigrid, respectively. Both

auxiliary variables are controlled with the parameters δu = 0.25, 1.00, 1.00 and ω =

1.00, 3.00, 3.00 for coarse, middle, and fine multigrid, respectively. No post- or syn-

processing method was applied.
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Fig. 10 Three-dimensional

training image of dimensions

70 × 183 × 20, with 6 facies

representing turbidite reservoir

(Strebelle 2002)

(three-dimensional view and one

xy slice)

Fig. 11 One realization of

dimensions 70 × 183 × 20

obtained with a multiple–point

statistics simulation algorithm

based on lists, using the training

image in Fig. 10 and 2 auxiliary

variables (x and z coordinates)

Fig. 12 Reference images of

dimensions 1501 × 501:

(a) two-dimensional training

image with 3 facies (Lena River

delta, Landsat 7 image,

USGS/EROS and NASA Landsat

Project); and (b) auxiliary

variable (distance to the coast,

bounded between −100 and

700)

7.2 Two-dimensional Application with One Auxiliary Variable and Rotations

The two-dimensional training image shown in Fig. 12(a) is used. The image repre-

sents a part of the Lena River delta and contains 3 facies: value 0 for the sea and

rivers, value 1 for land, and value 2 for lakes. Although both rivers and lakes are

water bodies, they are represented by different facies because they are structurally

different. The non-stationarity of this training image is described by one auxiliary

variable, that is, the distance to the coast (Fig. 12(b)). The distance is negative for

nodes in the sea and positive for inland nodes, and it is bounded between −100 and

700 (unit: one pixel).
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Fig. 13 Input maps for the

simulation, dimensions

1500 × 900: (a) auxiliary

variable (distance to the coast,

bounded between −100 and

700); (b) zone maps (20 zones

for rotations); and

(c) conditioning hard data (value

−1 for uninformed nodes)

In addition to the nonstationarity expressed by the distance to the coast, we pro-

pose to integrate the nonstationarity provided by rotations. This is done using zones

of simulation. In each zone, the angle (azimuth) of rotation to be applied to the

training image is given. Thus, two maps are required for the simulation grid: an

auxiliary variable map (distance to the coast, Fig. 13(a)) and a zone map for ro-

tations (Fig. 13(b)). Moreover, the nodes in the simulation grid that are in the sea

and whose distance to the coast is at least 100 (unit: one pixel) are considered as

conditioning hard data (Fig. 13(c)). One realization obtained with the proposed al-

gorithm is shown in Fig. 14. Three levels of multigrid are used with search tem-

plates with sizes of N = 120, 96, 56 for coarse, middle, and fine multigrid, re-

spectively. The parameters controlling the auxiliary variable were set to δu = 1.00

and ω = 2.00 for each multigrid. No post- or syn-processing method was ap-

plied.
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Fig. 14 One realization of

dimensions 1500 × 900

obtained with a multiple-point

statistics simulation algorithm

based on lists, using the training

image shown in Fig. 12(a), one

auxiliary variable (Fig. 12(a) for

the training image and Fig. 13(a)

for the simulation grid), 20

zones for rotation (Fig. 13(b))

and some conditioning hard data

(Fig. 13(c))

8 Conclusions

The proposed new algorithm for performing multiple-point statistics simulations

overcomes some of the limitations of previous implementations and enlarges the

spectrum of possible applications amenable to the method. The resulting parallel

code, impala, is implemented in ANSI C. In simple cases using a stationary train-

ing image, the results obtained by snesim (Strebelle 2002) and impala are almost

identical. The few differences that emerge can be attributed to the way of scanning

the border of the training image and to the way of dealing with conditioning data.

However, they are insignificant when comparing the resulting simulations. The main

differences compared to other methods are, first, the use of lists instead of search

trees to store the statistics inferred from the training image and, second, the paral-

lelization of the algorithm. Using lists allows one to significantly reduce the amount

of memory (RAM) required by the algorithm and to parallelize the code straightfor-

wardly.

The reduction of memory usage has profound implications for the applications

of multiple-point statistics: first, it allows one to deal with realistic applications on

large three-dimensional grids with a high number of categories. Second, it allows one

to deal with non-stationary training image. Indeed, the memory is a limiting factor

in such a situation, as the conclusions of de Vries et al. (2009) suggest. The lists

can be extended to include information on secondary variables. Third, it allows one

to deal with nonstationarity through rotations and/or homothetic transformations. In

such a situation, the simulation grid is generally divided up into zones and a unique

transformation is considered for each zone. A different list is then required for each

simulation zone (and each multigrid level). Since the memory load required by a list

is low, numerous zones can be considered.

In addition to these advantages, the simple structure of a list makes it possible to

obtain a parallel code straightforwardly. Indeed, in a parallel environment, the lists

are split into as many sub-lists as the number of available processors. This offers a

direct and simple way to parallelize the computation of the CPDF, while also making

the proposed method particularly efficient on multicore computers. This paralleliza-

tion method is potentially more scalable on very large machines than were previous

approaches, which mainly considered the parallelization of the simulation of simul-

taneous non-interacting pixels (sufficiently distant so that the simulation of one pixel

should not influence the simulation of the other).
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Finally, because the core of the proposed methodology remains based on the clas-

sical multiple-point statistics framework proposed by Strebelle (2002), all the usual

extensions of the method (post- or syn-processing, affinities, rotations, simulation by

zones, etc.) can be applied straightforwardly.
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