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Geomagnetic indoor positioning is an attractive indoor positioning technology due to its infrastructure-free feature. In the
matching algorithm for geomagnetic indoor localization, the particle filter has been the most widely used. The algorithm
however often suffers filtering divergence when there is continuous variation of the indoor magnetic distribution. The
resampling step in the process of implementation would make the situation even worse, which directly lead to the loss of indoor
positioning solution. Aiming at this problem, we have proposed an improved particle filter algorithm based on initial
positioning error constraint, inspired by the Hausdorff distance measurement point set matching theory. Since the operating
range of the particle filter cannot exceed the magnitude of the initial positioning error, it avoids the adverse effect of sampling
particles with the same magnetic intensity but away from the target during the iteration process on the positioning system. The
effectiveness and reliability of the improved algorithm are verified by experiments.

1. Introduction

With the rapid development of location-based services,
indoor positioning is receiving increased attention. Indoor
positioning technology can be applied to public security,
location tracking, intelligent transportation, and so forth.
For example, a hospital can locate and monitor patients using
indoor positioning technology. Indoor positioning can solve
the problem of finding cars in large complexes and under-
ground parking lots; it can also quickly find an optimal
shopping route in large shopping malls. Indoor positioning
is currently based on technologies such as Wi-Fi, RFID,
Bluetooth, UMB, and geomagnetism. Among different
technologies for indoor positioning, the geomagnetic indoor
positioning approach has broad application prospects
because it is infrastructure-free and has geomagnetic signal
stability [1].

As early as the 1950s, the geomagnetic positioning
technology based on geomagnetic field vector matching was

applied to large-scale outdoor environment navigation,
including those of surface ships, submarines, and missiles.
In the past, the geomagnetic positioning techniques typically
used the correlation matching algorithms [2–4] or the recur-
sive filtering algorithms [5, 6]. More recent use of the geo-
magnetic positioning technology in the indoor environment
is considered an important breakthrough. The geomagnetic
field in a modern building is disturbed by the steel-
reinforced concrete, steel structure, power systems, electronic
equipment, and other artificial sources, which forms a unique
and spatially continuous geomagnetic signature [7, 8]. The
indoor magnetic field can be collected to construct a finger-
print model based on Wi-Fi fingerprint technology. In
general, the construction of geomagnetic perturbation finger-
print model can use a variety of characteristic variables,
including a single variable (total geomagnetic intensity), dou-
ble variables (H and V direction magnetic field components),
or three variables (X, Y, and Z direction magnetic field
components). The more characteristic variables are included
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for the position determination, the more improvement can
be made on the positioning accuracy [9]. The indoor posi-
tioning technology based on the magnetic field matches the
magnetic field intensity, which is obtained by the indoor
moving carrier, with the geomagnetic disturbance fingerprint
model to enable indoor positioning.

At present, the particle filter algorithm, k-nearest neigh-
bor [10], and extended Kalman filter (EKF) [11] have been
applied in indoor positioning systems based on a fingerprint
model. The particle filter developed by Monte Carlo tech-
niques has been widely used as one effective matching
algorithm, because of its advantages of broad adaptability in
nonlinear and non-Gaussian systems [12–14]. Grand and
Thrun [12] presented a real-time indoor localization method
that utilizes a single 3-axis magnetometer to estimate the
position of a handheld device. Using a particle filter, a
localization accuracy of 0.7 meters in position and 25
degrees in orientation was achieved for a simple straight-
line trajectory. Haverinen and Kemppainen [13] equipped
a robot with a single magnetic sensor that measured three
planes. They ran their robot through a corridor, had it
collect data at a set of locations to create a map of the
hallway, and used Monte Carlo localization (a particle
filter) to accurately determine its location from any start-
ing point. The maximum error was about 28 centimeters,
but the robot needed to travel 25 meters in order to local-
ize itself in general. Kim et al. [15] proposed an indoor
positioning system using smartphones. They used a particle
filter to estimate the users’ location based on geomagnetic
anomalies [15] and used the distance between the user and
the wall as a conditional constraint. The experimental results
in the corridor showed that the positioning accuracy is within
3 meters.

The use of particle filters requires the carrier to complete
a continuous recursive filter location over a period of time,
and it suffers the problem of filtering divergence [16]. The fil-
ter convergence however is affected by the distribution of
indoor geomagnetic, and a divergence would occur if it lacks
indoor geomagnetism signatures. The sparser the character-
istics of the indoor geomagnetic field, as many locations have
similar magnetic field patterns, the more likely the diver-
gence of the particle filter algorithm occurs, which eventually
leads to excessive positioning error.

In response to this challenge, this paperproposes the use of
point set matching in the Hausdorff distance measurement
method to improve the particle filter algorithm as well as the
method of positioning error constraints. In the new particle
filter algorithm, the initial positioning error is used as the
distance constraint, only allowing particles that meet the con-
straints to iterate, and resampling. Coupled with the conver-
gence characteristics of the resampling step, we can suppress
the effect of persistent divergence. The main contributions of
this work include (1) the development of a geomagnetic data
acquisition platform, (2) an improved particle filter algorithm
to prevent filter divergence, and (3) the design of an offline test
system to estimate the location of mobile robots carrying
magnetic sensors.

The paper is organized as follows. The classical particle
filter algorithm is described in Section 2.1. Section 2.2 briefly

outlines the improved algorithm based on the Hausdorff
distance. In Section 3, the data acquisition robot is first briefly
described, then the data collection is presented, and finally
the analysis of the positioning results is provided. The
conclusion is given in Section 4.

2. An Improved Particle Filtering Algorithm

2.1. Classical Particle Filter Algorithm. The particle filter algo-
rithm is an optimal Bayesian estimation method based on
Monte Carlo’s idea [17]. It is often used to estimate the posi-
tion of a target moving along the corridor from an unknown
location. The particle filter uses Monte Carlo localization
(MCL) method to approximate the posterior probability
distribution p xt ∣zt when it is too complex to directly

sampled, but the prior probability density p xt∣x
i
t−1 can be

sampled and the measurement density p zt∣x
i
t can be evalu-

ated, where xt represents the target positioning, x
i
t represents

the particle positioning, and zt is the observation. The entire
particle filtering process consists of three steps, namely, fore-
casting, updating, and resampling.

The particle filter algorithm follows the general frame-
work of a sequential importance sampling (SIS) algorithm,
and it adds the sampling importance resampling (SIR) to
solve the sample impoverishment caused by the iterative
process. It first generates a set of samples with N particles
from the prior probability density and then generates the
weight wi according to the measurement density p zt∣x

i
t

of each particle. The weights are normalized to make their
sum equal to one before the resampling. The basic idea of
resampling is to remove particles with small weight and
concentrate on particles with large weight. Due to easy
implementation, the particle filter widely uses such resam-
pling algorithm. The two-dimensional motion model is
given by

xit = xit−1 +Hl, 1

where l ∼U 0, L , U 0, L which obeys a uniform distribu-
tion; L is the moving distance; and

H =
sin θ 0

0 cos θ
2

In (2), θ is the moving direction. We can roughly
choose the size of L according to the length of the per-
son’s step. The measurement density p zt∣x

i
t is based on

the single variable Gaussian probability density function,
which is given by

p zt∣x
i
t =

1

σr 2π
exp −

zt − f xit
2

2σ2r
, 3

where σr is the covariance of the observation zt . The function

f xit returns the magnetic field intensity of the position xit in
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the fingerprint model. Finally, the position x̂t of the target is
estimated based on the weight w of the sample particles,
which is given by

x̂t = 〠
N

i=1

wi
tx

i
t , 4

and the positioning error is given by

err = xt − x̂t
2 5

For geomagnetic indoor positioning based on the particle
filter, the particle weight is determined by (3) according to
the magnetic field intensity of the target and particle in which
the closer the geomagnetic intensity, the greater the weight.
After removing the particles with the small weights, the
estimated position is then calculated by (4). When the differ-
ence in the weight of the particle is not large, the deviation of
the distance between the particle position xit and the target
position is large [16]. If the particle position is far from the
target position, the error between the estimated position
and the target position is large. In other words, the estimated
position is obtained by weighted sum of the individual parti-
cle positions. The greater the value of the Euclidean distance
dh between the target and particles with large weight, the
greater the value of x̂t . Finally, it will cause greater position-
ing error as shown by (5). We have further explained it in
Section 3.2 by an example.

2.2. An Improved Algorithm Based on Hausdorff Distance.
Increasing the characteristic elements of the geomagnetic
matching can effectively solve the divergence problem in
the particle filter algorithm, but it will also greatly increase
the complexity of the original algorithm and the time
required for positioning. Inspired by the Hausdorff dis-
tance matching, an improved particle filter algorithm
based on the Hausdorff distance is proposed and described
in the following.

We know that the magnetic field at any point is
stable in the static environment and it is unique within
a certain range. If the particle filter starts within a rea-
sonable range, the deviation of estimated position will
be reduced. The Hausdorff distance can then be applied
to determine this reasonable range for the particle filter.
The Hausdorff distance is the maximum value of the dis-
tance between the two sets of points in space which is
defined as follows [4]:

dH A, B =max dh A, B , dh B, A , 6

where dh represents the maximum distance between ai and bi
in the two point sets of dh A, B =maxa∈A minb∈B a − b
and dh B, A =minb∈B maxa∈A b − a , • is a distance
norm, A = a1, a2,… , ap and B = b1, b2,… , bq represent

two finite sets of points. The Hausdorff distance represents
the degree of matching between A and B.

In general, in the geomagnetic feature matching based
on classical particle filtering, we can control the weight of
the particles that participate in calculating the estimated
position in (4) when their weight becomes large. However,
dh is difficult to control, once its value becomes too large.
This will cause filtering divergence. Since dH is the maxi-
mum distance between each particle and the target, it
can be controlled. As a result, if this maximum value
can be controlled within a reasonable range, we can avoid
the problem that dh becomes large. In order to avoid the
effect of human factors, we use the positioning system to
estimate the initial position of the target. The constraint
to be applied is the initial positioning error between the
estimated initial position and the true position of the target
in the measurement environment. Let the initial positioning
error as dH ; the following initial positioning error constraint
can be established:

dh < dH 7

The position x̂t of the target estimated based on the
weight w of the sample particles in (4) must satisfy the con-
dition in (7). Using the improved particle filter algorithm,
the divergence problem can be avoided because we have
removed those particles that had a larger weight but were
far from the target. As a result, the positioning results of
the positioning system can converge more quickly. The
implementation steps of the improved algorithm is given in
Algorithm 1 and the flowchart of the implementation process
is given in Figure 1.

Step 1. Initialization:

t= 0, draw particles xi0 uniformly with wi = 1/N
Step 2. Calculate the positioning error:

t= 1, the initial positioning error is treated as the dH
Step 3. Particle iteration:

For time steps t= 1, 2, …
For particle numbers i= 1: N

IF dh < dH
The particle state is shifted: xit ∼ p xt ∣x

i
t−1

Get mobile vector online observations: zt
Weight update: wi

t = p zt ∣x
i
t

END IF
END FOR

Step 4.

Make CDF of wi
t and

For particle numbers i= 1: N
Draw ui =U 0, 1

Resample xit = CDF ui
END FOR
Step 5. Output the weighted position:

x̂t = 〠
N

i=1

wi
tx

i
t

Algorithm 1
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3. Experiments and Analysis

3.1. Data Collection System Development: A Geomagnetic
Data Acquisition Robot. The construction of a geomagnetic
fingerprint model is a prerequisite for geomagnetic indoor
positioning technology. In order to quickly and effectively
establish a fingerprint model, a data acquisition robot has
been developed by Urban Surveying and Mapping Insti-
tute which includes data acquisition module and control
module as shown in Figure 2 [18]. The robot is loaded
with a HMC5983 three-axis magnetic sensor placed at a

height of 1.3 meters above the floor. The placement of
sensor at such a height is to separate the magnetic sensor
to avoid interference by the robot itself. The robot is
controlled by the control module. Data through the USB
cable real-time are imported to the computer, through
openMAT software to save geomagnetic data and record,
while the magnitude was calculated. Finally, we use the
MATLAB-based software to conduct position determina-
tion in the computer. Since the magnetic sensor itself will
produce a relatively stable interference field when ener-
gized [19], we must correct the HMC5983 magnetic sensor

Initialization

Calculate the positioning
error

Particles
obey the
conditions

Yes

No
Discard the

particles

Weight calculating
and normalization

�e number
of e�ective
particles is
su�cient

No

Yes

Resampling Output the weighted position

Figure 1: Flowchart of improved particle filter algorithm.
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USB data cable
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Drive
motor
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Figure 2: Geomagnetic data acquisition robot platform. (a) Front view. (b) Bottom view.
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in the data acquisition module to ensure the authenticity
of the data before collecting data. The rotation of the mag-
netic sensor around the z-axis of its own coordinate sys-
tem will generate the corresponding circle based on the
magnitude of the x-axis and the y-axis magnetic field.
However, due to the presence of an interference field,
the location of the center of the circle will move a short
distance. The interference can be eliminated by adding a
fixed value to the output value of the magnetic sensor,
as shown in Figure 3.

The method to correct the value xsf , ysf of the
HMC5983 magnetic sensor and the x-axis and y-axis mag-
netic field offset xof f , yof f is given as follows:

xsf =max 1,
ymax − ymin

xmax − xmin

,

ysf =max 1,
xmax − xmin

ymax − ymin

,

xof f =
xmax − xmin

2 − xmax

xsf ,

yof f =
ymax − ymin

2 − ymax

ysf ,

xυ = hxxsf + xof f ,

yυ = hyysf + yof f ,

8

68 m1.8 m

Figure 4: Floor map of the Institute of Surveying and Mapping.
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where xmax, xmin and ymax, ymin are the maximum and
minimum values, respectively; hx, hy is the original mag-

netic field value on the x-axis and y-axis; and xυ, yυ is the
compensation of the x-axis and y-axis direction of the
magnetic field value.

3.2. Experimental Data Collection and Fingerprint Model
Construction. The experimental data acquisition was
conducted in the 2nd floor of the Institute of Surveying and
Mapping at Beijing University of Civil Engineering and
Architecture (BUCEA). The frames of the building are rein-
forced concrete. Figure 4 shows a simple plan of the corridor
with a total length of 68 meters. The magnetic field was
measured every 25Hz producing a three-dimensional vector
m = mx ,my ,mz , in units of μT.

In order to prove the defect of particle filter algorithm, we
randomly collected a row of data in the corridor. Figure 5
shows the magnetic field distribution in the corridor which
is linear and continuous, and the magnetic field intensity of
different locations is likely to be the same. This proves that
when the particle position xit is far from the target, it will lead
to biased estimate x̂t in the particle filter algorithm. An exam-
ple is shown in Figure 6.

In the corridor, we collected geomagnetic data along four
lines of 60 cm apart. For building the fingerprint model, we
control the acquisition robot along the planned route to
move forward which the step length of robot is 0.2m with
geomagnetic data measurement at a sampling rate of 5Hz.
To perform localization, we use the norm of the magnetic
field m = mx ,my ,mz as the observation, because magnetic

field intensity m is a rotation invariant scalar quantity.
The m is given by

m = m2
x +m2

y +m2
z 9

The final fingerprint model is created by applying a linear
interpolation to the magnetic field intensity using a 0.02m
step size in the computer, as shown in Figure 7, and the
map adds the grid coordinates as its relative coordinate frame
after it is generated.

4. Positioning Results

The acquisition robot used to take measurements was con-
trolled to travel straight along the corridor, with a step length
of 0.6m. It recorded data every second, iteration times t=16.
In the positioning system, the number of sample particles
N is set to 400; each test set was conducted using the same
value of the standard deviation of the measurement model
σr = 5 0μT, and a total of 20 time tests. The SIS algorithm
and the particle filter algorithm with the SIR algorithm are
used to investigate the geomagnetic matching precision
and the degree of continuous filtering divergence.

The burr in Figure 8 shows that the SIS algorithm has the
problem of filtering divergence and geomagnetic matching
instability in the geomagnetic matching process. Although
the positioning error shows an overall decreasing trend, there
is no convergence.

As shown in Figure 9, the addition of the SIR algorithm
makes the filtering divergence more serious, and the con-
tinuous filtering divergence phenomenon results in the loss
of positioning (see ①, ②, ③ in Figure 9). Most of the
experiments began to converge after t=5. The average
matching accuracy was 1.78m and the average run time
was 10.9 s. We can see from the comparison of Figures 8
and 9 that after the SIR algorithm is added, the particle is
convergent after iteration calculation for a period of time
due to its resampling step. The matching accuracy is far
superior to that of the SIS algorithm, although positioning
loss is also inevitable.

The idea of the positioning error constraint method is
shown in Figures 10 and 11. In Figure 10, the dots indicate
the sample particles that are randomly selected in the posi-
tioning area; the hollow circle represents the initial position
of the weighted position and the ∗ sign indicates the position
of the moving carrier at time t=1. In Figure 11, the circle
which is deformed due to the limitation of the geomagnetic
fingerprint model range represents the initial positioning
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error range. It can be concluded from Figures 10 and 11 that
with the establishment of the positioning error constraint
after the initial positioning, the sampling particles have a
restriction on their maximum distance dH . It does not use
the particles which are far from the true location of target
in the positioning process. Due to the reduction in the
number of particles, the time of the whole system iterating
16 times is saved (the average running time is 9.1 s).

Figure 12 shows that the initial positioning errors are all
within 10m, which is acceptable for indoor positioning.
The experimental results and the positioning error analysis
based on the improved particle filter algorithm are shown

in Figure 13. In the experiments using the improved algo-
rithm, most particles began to converge at t=2 and have no
loss of positioning as in Figure 9, with an average matching
accuracy improved to 0.62 meters. Compared to the particle
filter with the SIR algorithm, the improved algorithm can
effectively prevent the filter divergence, eliminating location
losses. Its convergence rate is faster than that of the classic
particle filter algorithm, with an average running time of
the whole system iterating 16 times is reduced by 16.15%.

5. Conclusions and Future Work

Indoor geomagnetic disturbance prevents the classical parti-
cle filter algorithm from stably finding the location in real
time. Although the particle filter algorithm has a strong
convergence in the matching accuracy, the particle iteration

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

x (m)

0

5

10

15

20

25

30

35

40

45

50

y 
(m

)

Particle
True state

Weighted position of particles

1

Figure 10: Initial positioning of t= 1.
0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
o

si
ti

o
n

in
g 

er
ro

r 
(m

)

Iteration times (t)

2

3
1

Figure 9: Positioning error based on particle filter algorithm with
the SIR.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
o

si
ti

o
n

in
g 

er
ro

r 
(m

)

Iteration times (t)

Figure 8: Positioning error based on SIS algorithm.

Geomagnetic �eld intensity (�T)

A B

110
105
100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25

Figure 7: Geomagnetic fingerprint model. Straight-line AB is any one row of the corridors.

7Journal of Sensors



process is accompanied by the loss of positioning. In this
paper, we add the position error constraint to the particle
filter algorithm and compare and analyze the advantages
and disadvantages of the classical particle filter algorithm

with the improved algorithm in matching accuracy, running
time, and other aspects by real-field test. The results show
that the improved algorithm can solve the persistent
divergence problem in the particle filter and avoid the loss
of positioning. Under the premise of the single variable
feature, it can improve the indoor positioning speed and
effectively solve the technical defect in geomagnetic match-
ing. In the future work we will try to combine WLAN and
other technologies to achieve effective initial positioning
accuracy better than 5 meters.
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