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ABSTRACT The partial shading of a photovoltaic array repeatedly occurs in the natural environment, which

can cause a failure of a conventional maximum power point tracking (MPPT) algorithm. In this paper,

the convergence conditions of the standard particle swarm optimization (PSO) algorithm are deduced by the

functional analysis, and then the influence of the random variables and inertia factor of the algorithm on the

trajectory in the particle swarm optimization is analyzed. Based on the analysis results, an improved particle

swarm optimization (IPSO) algorithm, which adopts both global and local modes to locate the maximum

power point, is proposed. Compared to the standard PSO algorithm, in the improved PSO algorithm, many

random and interfered variables are removed, and the structure is optimized significantly. The proposed

algorithm is first simulated in MATLAB to ensure its capability. The feasibility of the approach is validated

through physical implementation and experimentation. Results demonstrate that the proposed algorithm has

the capability to track the global maximum power point within 3.3 s with an accuracy of 99%. Compared with

five recently developed Global MPPT algorithms, the proposed IPSO algorithm achieved better performance

in the maximum power tracking in the partial shading conditions.

INDEX TERMS Maximum power point tracking, partial shade, particle swarm optimization, photovoltaic

array.

I. INTRODUCTION

The power–voltage (P − V ) characteristic of a photo-

voltaic (PV) module shows its operating point, which

denotes the point at which module can output the max-

imum power, and it is known as the maximum power

point (MPP). The position of theMPP depends on the external

environment, and it changes with the change in the envi-

ronmental conditions. Therefore, the maximum-power-point

tracking (MPPT) methods for a PV system are required to

maintain efficient power output. Recently, several MPPT

methods have been proposed. However, the Perturb and

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

Observation (P&O) [1]–[4] and the Incremental Conductance

(IncCond) [5]–[8] are the most commonly used methods.

Although these methods are easy to implement, they are

unable to track the MPP accurately under the partial shading

conditions (PSC) due to the inability to distinguish between

a local MPP and the global peak (GP) [9]–[12]. Therefore,

some studies have proposed a new modified P&O (MPPT)

method with adaptive duty cycle step size using fuzzy logic

controller [13]. A new incremental conductance controller is

developed, based on a fuzzy duty cycle change estimator with

direct control [14].

In the related literature, there are many MPPT methods

[15]–[19]. These methods can be classified into two main

categories: indirect methods and direct methods. The indirect
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methods establish the mathematics model using the physical

parameters of a solar cell, and when the external variables

are fed to the model input, the maximum power point of a

PV system can be quickly estimated [15]–[17]. On the other

hand, the direct methods use the on-linemeasured voltage and

current of a PV system and obtain the maximum power point

by using the tracker. These methods are less dependent on the

physical parameters of a solar cell, but the tracking precision

of the maximum power point is low [18], [19].

In [20], a direct method was adopted, and a simulated

annealing (SA)-based global maximum power point tracking

(GMPPT) technique designed for PV systems that experience

partial shading conditions was proposed; also, it was found

that a conventionalMPPT algorithm under the partial shading

conditions could not track the maximum power point effec-

tively. In most MPPT algorithms it is considered that there

is only one, a single peak in the P–V characteristic of a PV

module [21]. However, when a PSC occurs, the P–V char-

acteristic exhibits multiple peaks, so the traditional MPPT

algorithms cannot determine which of the peaks denotes

the maximum power point, which reduces the entire output

power of a PV system [22]–[25]. Recently, to improve the

MPP tracking accuracy and system dynamic response, sev-

eral modified MPPT methods have been proposed [26]–[29].

In [30], an improved global search space differential evolu-

tion (DE) algorithm for tracking the GMPP is introduced,

optimization algorithm can search for the GMPP within a

larger operating region and quickly response against load

variation. In [31], the relationship between the load line and

the I -V curve is used with trigonometry rule to obtain the fast

response. In [32], it reviews AI-based techniques proven to be

effective and feasible to implement for MPPT, including their

limitations and advantages.

In recent years, another technology has been proposed for

the MPPT, named the particle swarm optimization (PSO)

technique [33]–[36]. The PSO technique has the advantages

of easy implementation, fast computation, and strong envi-

ronmental adaptability [37], [38]. Moreover, it can perform

a more flexible search than other evolutionary techniques,

such as the Genetic Algorithm (GA) [39]. Also, the duty

cycle based on the particle velocity is variable, while the duty

cycle of the other techniques is easy to perturb by a fixed

value. Therefore, by approaching the maximum power point,

the searching oscillations tend to be stable. However, the PSO

algorithm has a few shortcomings. Since the particles in the

standard PSO are randomly initialized in the searching space,

the convergence time of approaching the maximum power

point is longer, which results in a large-amount computation.

Meanwhile, although a proper initialization of the particles

can improve the efficiency of the PSO algorithm and lead to

the faster convergence, the initialization process of the swarm

in the PSO is not easy to control. The conventional MPPT

algorithm combined with the PSO and a two-stage algorithm

was proposed in [26]. In the first stage, the nearest local

maximum was detected by the conventional MPPT method,

and in the second stage, the obtained informationwas used for

tracking the GP by the PSO algorithm; however, this method

was not efficient in more complex shading conditions.

Another advantage of the PSO algorithm is that it treats

the maximum power tracking problem as an optimization

problem. Due to the ability of the PSO to handle multi-modal

objective functions, in [40]–[42], the PSO was applied to

search the GP in the partial shading conditions. However,

the random variables of the PSO algorithm can reduce the

searching efficiency significantly in the optimization process,

so more searching iterations need to be executed. On the other

hand, since the PSO algorithm contains the random variables,

the operation process of the algorithm is complex, which not

only makes the control difficult but also can easily cause

falling into a local optimum. In addition, the perturbation in

the PSO is related to the number of iterations of the algo-

rithm itself. When the random values are too small, the time

for reaching the algorithm reference value extends, and the

number of iterations increases; when the random values are

too large, the searching particles may omit the maximum

power point and fall into a local optimum. Therefore, it is

necessary to study the convergence constraints of the PSO

algorithm and the effect of its random variables on the particle

trajectory. However, the research on this subject has been

rarely conducted in recent studies.

Considering the mentioned PSO drawbacks, this paper

proposes an improved method to augment the MPPT method

for a PV system under partial shading. The novel of this paper

is listed as follows:

(1) By functional analysis, the convergence conditions of

standard PSO algorithm are derived.

(2) Through comparative analysis of parameters, the influ-

ence of random variables and inertia factors in the PSO

algorithm on the convergence is obtained.

(3) An improved particle swarm optimization (IPSO) algo-

rithm, which adopts both global and local modes to locate the

maximum power point, is proposed. The proposed algorithm

is particularly suitable for tracking global power point under

local shading.

The paper is organized as follows. In Section I, the research

on the MPPT when PV modules are under the partial shading

is presented, and the advantages and disadvantages of the

PSO used are discussed. In Section II, first the characteristics

of photovoltaic cells are presented, the equivalent circuit

model is given, and the reasons for multiple peaks in the

P-V characteristic when PV modules are sheltered from a

local shadow are analyzed. In Section III, the standard particle

swarm optimization algorithm is analyzed, and the constraint

conditions of the particle swarm convergence are deduced

by the functional analysis. In Section IV, the influence of

the random variables and inertia factor of the algorithm on a

trajectory in the particle swarm optimization is explored, and

the conception of an improved particle swarm optimization

algorithm is presented. In Section V, an improved method

to augment the MPPT method for the PV system under the

partial shading conditions is described. In Section VI, first

the simulation platform of the MPPT is introduced, then the
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FIGURE 1. The equivalent model of a PV array under the partial shading
conditions; (A) Physical model of a PV array; (B) Circuit model of a PV
array.

standard and improved PSO algorithms are respectively

applied to the simulation platform, and lastly, the simulation

results are compared and analyzed. In Section VII, the exper-

imental platform is described, and the MPPT experiment of a

PV module under shading conditions is carried out using the

PSO, an improved particle swarm optimization (IPSO), and

fuzzy logic control (FLC) algorithms, and then, the exper-

imental results are compared. Lastly, a brief conclusion is

given in Section VIII.

II. P-V CHARACTERISTIC UNDER PARTIAL CONDITION

The equivalent model of a PV array under the partial

shading conditions is presented in Fig. 1. Since the PV

modules are connected in series, in the case of partial shad-

ing, the current flowing through all the PV modules is the

same. When one of the PV modules is shaded (for instance,

the first PV module), the photocurrent Isc drops rapidly to

zero. Namely, the shaded diode has a reverse bias, so the

bias current Id reduces to zero; thus, the current I causes a

voltage drop (Vc) through Rp and Rs which can be expressed

by:

Vc = −(Rp + Rs)I (1)

whereRp is the equivalent parallel resistance of a photovoltaic

module,Rs is the equivalent serial resistance of a photovoltaic

module, and I is the output current of a photovoltaic module.

As voltage drop Vc has a negative value, it needs to be

removed from the final output voltage, which forms a hot spot

on the shaded position. The appearance of the hot spot not

only reduces the output power but also shortens the service

life of PV modules. A better way to protect the PV modules

is to use the bypass diodes, which canmake the excess current

bypass the shaded module.

In order to simplify the analysis of the electrical character-

istics of shading, a PV array composed of two PV modules

connected in series is used. Assume that one PV module

is fully sun-lighted, and the other one is shaded. In this

case, since the modules are connected in series, the current

flowing through the two PVmodules is the same. The current

generated by the shaded module is less than that of the

sun-lighted (unshaded) module, so that the excess current

will pass through the bypass diode. The corresponding I -V

characteristic is shown in Fig. 2.

FIGURE 2. The multi-peak I-V characteristic of the PV array; (A) Not
shading module; (B) Shading module; (C) Series of a PV array.

In Fig. 2, the photovoltaic modules are connected in series.

Thus, when the modules receive a different level of sunlight,

the output voltage has multiple peaks, which further results

in many peaks in the final output power. With the increase in

the number of photovoltaic modules, the I -V characteristic of

PV modules becomes more complex, containing more peaks.

Thus, it is difficult to track the maximum power point by the

conventional methods.

III. ANALYSIS OF PSO ALGORITHM

A. STANDARD PSO

The mathematical description of the PSO algorithm is as

follows. Assume the ith particle contains an N -dimensional

position vector defined as xi = (xi1, xi2, . . . , xiN ), and a

velocity vector defined as vi = (vi1, vi2 , . . . , viN ).When the ith

particle searches in the solution space, it will remember the

optimal experience location pi = (pi1, pi2, . . . , piN ). At the

beginning of every iteration, the particles adjust their speed

vectors according to their inertia and optimal experience

location of group pg = (pg1, pg2, . . . , pgN ), so as to adjust

their positions. The acceleration factors c1 and c2 and the

random variables r1 and r2 are all in the range [0, 1]. Also,

vi ∈ [−vmax, vmax], where vmax denotes a speed factor, and it

is set by a user, and w denotes an inertia weight factor. The

position and speed of a particle are updated by the following

formulas:

vk+1
i = wvki + c1r1(pi − xki ) + c2r2(pg − xki ) (2)

xk+1
i = xki + vk+1

i (3)

where xki is the position of the i
th particle in the k th generation,

vki is the speed of the ith particle in the k th generation, xk+1
i

is the position of the ith particle in the (k + 1)th generation,

vk+1
i is the speed of the ith particle in the (k+1)th generation,

pi is the optimal experience position of the ith particle, and

lastly, pg is the optimal experience position of the group. The

particle position updating process in a generation is shown

in Fig. 3.

Since the particle swarm optimization algorithm adopts the

searching technology based on the neighborhood principle,

it can use a small number of particles to ensure enough diver-

sity and search for an optimal solution simultaneously. Mean-

while, the particle swarm optimization has good universality,

which is suitable for dealing with various kinds of objective

functions and constraints and can be easily combined with
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FIGURE 3. The particle position updating process.

the traditional optimization methods, so as to avoid its limita-

tions. Therefore, in this study, the PSO algorithm is improved

and applied to the photovoltaic maximum power tracking in

the shading conditions.

B. CONVERGENCE ANALYSIS OF PSO ALGORITHM

In order to optimize the power of photovoltaic arrays by the

PSO algorithm, the primary premise is to ensure that the

position and speed of a searching particle are convergent.

Considering the relationship between pi and various dimen-

sions of a searching space, the update of each dimension is

independent; thus, the algorithm analysis can be simplified

to one dimension. Assume that only the ith particle is moving

and the other particles in this group are stationary. Then, when

the behavior of a single particle is analyzed, (2) and (3) are

respectively equivalent to the following formulas:

vk+1 = wvk + ϕ1(p− xk ) + ϕ2(pg − xk ) (4)

xk+1 = xk + vk+1 (5)

where ϕ1 = c1r1 , ϕ2 = c2r2 .

Because all ϕ1 , ϕ2 ,w are constant, when k changes, p

and pg remain unchanged. By combining (4) and (5), we get:

xk+1 = (1 + w− ϕ)xk − wxk−1 + ϕ1p+ ϕ2pg (6)

where ϕ = ϕ1 + ϕ2 .

In order to deduce the convergence condition, the position

vector defined by (6) is expressed as follow:

xk = a+ bβk + cγ k (7)

where:

a =
ϕ1p+ ϕ2pg

ϕ

b =
γ (x0 − x1) + (w− ϕ)x1 − wx0 + ϕ1p+ ϕ2pg

(β − 1)
√

(1 + w− ϕ)2 − 4w

c =
β(x0 − x1) + (w− ϕ)x1 + wx0 − ϕ1p− ϕ2pg

(γ − 1)
√

(1 + w− ϕ)2 − 4w

β =
1 + w− ϕ +

√

(1 + w− ϕ)2 − 4w

2

γ =
1 + w− ϕ −

√

(1 + w− ϕ)2 − 4w

2
(8)

x0 and x1 are two initial values of (7).

The convergence of (7) depends on the values of β and γ .

Based on the mathematical theory of limit, three cases are

possible, and they are listed in the following.

(1) In the first case, it holds that:

(1 + w− ϕ)2 − 4w < 0 (9)

where β and γ are the complex numbers that are determined

by the two-dimensional norm, that is, ‖β‖ = ‖γ ‖ =
√
w.

Following the principles of the applied functional mathemat-

ics, if max(‖β‖ , ‖γ ‖) < 1, that is, 0 < w < 1, lim
k→∞

x(k) =
a, then, the particle swarm is converged.

(2) In the second case, it holds that:

(1 + w− ϕ)2 − 4w = 0 (10)

Thus, it can be deduced that:

‖β‖ = ‖γ ‖ =
|1 + w− ϕ|

2
(11)

If max(‖β‖ , ‖γ ‖) < 1, that is, 0 ≤ w ≤ 1, lim
k→∞

x(k) = a,

then the particle swarm is converged.

(3) In the third case, it holds that:

(1 + w− ϕ)2 − 4w > 0 (12)

This case can be divided into three sub-cases as follows.

(3.1) If w > ϕ − 1, and when max(‖β‖ , ‖γ ‖) < 1,

due to ‖β‖ > ‖γ ‖, then ‖β‖ < 1, that is, ‖β‖ =
1+w−ϕ+

√
(1+w−ϕ)2−4w

2
< 1, which is expressed by:

√

(1 + w− ϕ)2 − 4w < 1 − w+ ϕ (13)

By solving (13), ϕ > 0 and w < 1 + ϕ can be obtained,

so the convergence region of a particle swarm is defined by

ϕ > 0 , ϕ − 1 < w < ϕ + 1.

(3.2) If w = ϕ − 1, it holds that:

‖β‖ = ‖γ ‖ =
√

−w (14)

If max(‖β‖ , ‖γ ‖) < 1, then
√

−w < 1, and as a result,

−1 < w < 0 is obtained.

(3.3) If w < ϕ − 1 and max(‖β‖ , ‖γ ‖) < 1,

since ‖β‖ < ‖γ ‖, then ‖γ ‖ < 1, that is, ‖γ ‖ =
−1−w+ϕ+

√
(1+w−ϕ)2−4w

2
< 1, which is expressed by:

√

(1 + w− ϕ)2 − 4w < 3 + w− ϕ. (15)

By solving (15), the convergence region of the particle

swarm is defined by: 2w+ 2 − ϕ > 0 and w < 1.

Based on the above three cases, the convergence region of

a particle swarm is an enclosed region defined by (1 + w −
ϕ)2 − 4w > 0, 2w + 2 − ϕ > 0, w < 1, ϕ > 0, and it

is shown in Fig. 4. Thus, the convergence conditions of the

PSO algorithm are expressed as: 2w + 2 − ϕ > 0, 0 < w <

1 and ϕ > 0. The values of w, ϕ in this region satisfy the

convergence of searching particles at each initial position and

each initial velocity.
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FIGURE 4. The convergence region of the PSO algorithm.

IV. EFFECT OF RANDOM VARIABLES ON PARTICLE

TRAJECTORY

In the maximum power point tracking process of a PV array,

the role of random variables in the particle swarm optimiza-

tion is very important. Although the uncertainty of the ran-

dom variablesmay bring diversity to the particle swarm, it can

also add some unstable factors to the power optimization of

a PV array. In order to analyze the effect of random variables

on the maximum power point tracking performed by the

PSO algorithm, it is necessary to study the effect of random

variables on the particle trajectory. To facilitate the analysis,

the solution space is simplified to one dimension. Assuming

that pi and pg are constant, the state equations of the ith

particle can be expressed by:

vi(t + 1) = wvi(t) + c1r1[pi − xi(t)] + c2r2[pg − xi(t)]

= wvi(t) + ϕ1[pi − xi(t)] + ϕ2[pg − xi(t)] (16)

xi(t + 1) = xi(t) + vi(t + 1) (17)

where ϕ1 = c1r1 and ϕ2 = c2r2.

In (16), the discrete time point is moved back by one step,

and when (17) is substituted into (16), we get:

vi(t + 2) = wvi(t + 1) − (ϕ1 + ϕ2)[xi(t) + vi(t + 1)]

+ ϕ1pi + ϕ2pg (18)

where −(ϕ1 + ϕ2)xi(t) = vi(t + 1) − wvi(t) − ϕ1pi − ϕ2pg
is deduced from (16), and then substituted into (18), which

leads to the following formula:

vi(t + 2) + (ϕ1 + ϕ2 − w− 1)vi(t + 1) + wvi(t) = 0 (19)

As can be seen in (19), the velocity change of the ith

particle conforms to the second-order derivative equation.

When pi and pg are assumed to remain unchanged during the

movement, the velocity change is independent of pi and pg.

FIGURE 5. The effect of random variables on the particles’ positions.

By using the same method, the position equation of the

ith particle can be deduced. By substituting (16) into (17),

we get:

xi(t + 1) = xi(t) + wvi(t) + ϕ1[pi − xi(t)] + ϕ2[pg − xi(t)]

(20)

where vi(t) = xi(t) − xi(t − 1), which is obtained by (17)

and then substituted into (20). When the discrete time point

is moved back by one step, we get:

xi(t + 2) = (1 + w− ϕ1 − ϕ2)xi(t + 1) − wxi(t)

+ ϕ1pi + ϕ2pg (21)

In (21), it can be seen that the trajectory of the ith particle

satisfies the second-order derivative equation.

The derivative equation (21) can be converted by the Z -

transformation [43], which can be expressed as (22), as shown

at the bottom of this page: where ζ = ϕ1 + ϕ2 − 1 − w.

If the initial values of (22) are set to xi(0) = xi(1) = 0, then

pi(t) and pg(t) can also be converted by the Z -transformation,

which can be expressed by:

Xi(z) =
zϕ1pi(z) + zϕ2pg(z)

(z2 + ζ z+ w)(z− 1)
(23)

(23) demonstrates the effect of the random variables on

the particles’ positions, which is also shown in Fig. 5. The

random variables exist in ϕ1 = c1r1, ϕ2 = c2r2; therefore,

the random variables in the control system cannot be treated

as an interfering signal or a noise. The existence of random

variables makes the whole control process be a complex

nonlinear process, which can difficultly converge by applying

conventional methods.

In order to clarify the influence of random variables on

particle trajectory, five combinations of parameters are set up;

thus, the optimal trajectories of particles may be intuitively

detected.

(1) Combination of parameters #1: when w = 0.7, ϕ1 =
1.2, and ϕ2 = 1.2, the parameters meet the convergence

conditions. The initial state is set to: pi = 5, pg = 9, x(0) = 1,

and v(0) = 2. The evolution trajectory and velocity of the

Xi(z) =
z3xi(0) + z2[xi(1) + (ζ − 1)xi(0)] + z[ϕ1pi + ϕ2pg − ζxi(0) − xi(1)]

(z2 + ζ z+ w)(z− 1)
(22)

VOLUME 7, 2019 143221
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FIGURE 6. The particle motion process for five combinations of parameters; (A) The particle trajectory for combination #1; (B) The
particle speed for combination #2; (C) The particle trajectory for combination #2; (D) The particle speed for combination #2; (E) The
particle trajectory for combination #3; (F) The particle speed for combination #3; (G) The particle trajectory for combination #4;
(H) The particle speed for combination #4; (I) The particle trajectory for combination #5; (J) The particle speed for combination #5.
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FIGURE 6. (Continued.) The particle motion process for five combinations of parameters; (A) The particle trajectory for combination #1;
(B) The particle speed for combination #2; (C) The particle trajectory for combination #2; (D) The particle speed for combination #2; (E) The
particle trajectory for combination #3; (F) The particle speed for combination #3; (G) The particle trajectory for combination #4; (H) The
particle speed for combination #4; (I) The particle trajectory for combination #5; (J) The particle speed for combination #5.

particle are shown in Figs. 6 (A), (B). The particle movement

belongs to the damping oscillation, its final trajectory con-

verges to 7, and its final convergence speed is equal to 0.

(2) Combination of parameters #2: when w = 0.7, ϕ1 =
1.2∗rand(1), and ϕ2 = 1.2∗rand(1), the parameters meet the

convergence conditions. The initial state is set to: pi = 5,

pg = 9, x(0) = 1, and v(0) = 2. The evolution trajectory

and velocity of the particle are shown in Figs. 6 (C), (D).

The particle is always in the process of repeated movement,

unable to converge to a fixed position.

(3) Combination of parameters #3: when w = 0.9, ϕ1 =
1.2∗rand(1), and ϕ2 = 1.2∗rand(1), the parameters meet the

convergence conditions. The initial state is set to: pi = 5,

pg = 9, x(0) = 1, and v(0) = 2. The evolution trajectory

and velocity of the particle are shown in Figs. 6 (E), (F). The

particle is always in the process of movement, and cannot

converge to a fixed position. The oscillation amplitude of the

particle is obviously greater than that at w = 0.7.

(4) Combination of parameters #4: when w = 0.4, ϕ1 =
1.2∗rand(1), and ϕ2 = 1.2∗rand(1), the parameters meet the

convergence conditions. The initial state is set to: pi = 5,

pg = 9, x(0) = 1, and v(0) = 2. The evolution trajectory

and velocity of the particle are shown in Figs. 6 (G), (H). The

oscillation amplitude of the particle is much smaller than that

at w = 0.7; thus, the particle movement tends to be stable.

(5) Combination of parameters #5: when w = 0.9, ϕ1 =
1∗rand(1), and ϕ2 = 1∗rand(1), the parameters meet the con-

vergence conditions. The initial state is set to:pi = 5, pg = 9,

x(0) = 1, and v(0) = 2. The evolution trajectory and velocity

of the particle are shown in Figs. 6 (I), (J). The particle

quickly approaches the best position, but it cannot converge

to the best position; namely, it immediately diverges, and then

circulates.

Accordingly, it can be found that when the combination

of parameters meets the convergence conditions of the PSO

algorithm, the particle motion is not necessarily stable, so it

is difficult to ensure that the particle finds the maximum

power point. Apparently, due to the existence of random vari-

ables, the particle trajectory is not always in accordance with

the convergence law; in other words, the traditional particle

swarm algorithm may cause the PV optimization to fall into

the local optimum,missing to locate the real maximum power

point.

The results of different parameter combinations also show

that when a combination of parameters is close to the conver-

gent boundary, the probability that the particle is stabilized

to a fixed position is reduced, and vice versa. Therefore,

the influence of the inertial factor w is very large. The

larger the inertial factor w is, the higher the probability of

non-convergence is, and vice versa. Moreover, the oscilla-

tion amplitude is closely related to the choice of parame-

ters. Namely, when the combination of parameters does not

meet the convergence conditions, the oscillatory fluctuation

is more intense, and sometimes even the oscillation tends to

diverge. On the other hand, when a combination of parame-

ters meets the convergence conditions, the oscillation ampli-

tude is greatly influenced by the inertia factor w. The larger

the inertial factor w is, the larger the oscillation amplitude is.

This helps to expand the range of particle optimization and

accelerate the searching speed of a particle.

According to the analysis given in the previous section,

when the traditional particle swarm algorithm is applied to

the power optimization control of a PV array, some uncon-

trollable factors will be faced. As can be seen in (16) and (17),

the update of a particle position is related to the change in the

random variables, so there are two uncontrollable factors.

(1) When the change in the random variables’ values is

larger, the particle velocity variation is also larger. The par-

ticle can very easy omit to find the global peak and go to

the surrounding area of a local peak. As a result, the particle

swarm optimization finds a local optimum instead of the

global optimum. At present, if the standard particle swarm
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optimization algorithm is applied to the MPPT of a PV array,

the difference between a local peak and the global peak

cannot be directly differentiated.

(2) When the change in the random variables’ values is

smaller, the particle velocity variation is also smaller; so it

takes a longer time to a particle to arrive at a new position,

and a large number of iterations are needed to approach the

target position. As a result, real-time performance is poor, and

a large amount of calculation is caused.

By considering the above two problems, the standard PSO

algorithm is improved in this work. To reduce the influence of

random variables, first, the convergence direction of velocity

has to be consistent, and then the maximum power point

can be searched by a small-step perturbation. To achieve this

goal, we first let the particles quickly scan the P-V curve

and explore the possible peaks, and then slowly approach the

optimal solution by a small-step perturbation. The velocity

after the modification is given by:

vk+1
i = wvki + c1r1(pi − xki ) + c2r2(pg − xki ) , v < |vmax|

⇒ vk+1
i = wvki + (pi + pg − 2xki ) (24)

The transformation of this search pattern has the following

benefits.

(1) Because there is no interference from the random vari-

ables, the trajectory of particle swarm optimization tends to

be consistent, so the divergence of trajectories is avoided,

and the global maximum can be quickly located by a small

number of particles, which further reduces the computation

cost.

(2) Compared with the standard PSO algorithm, the con-

trol structure is simplified. Among the control variables,

except for the inertia weight which needs to be adjusted,

the other parameters are displayed in a quantitative form,

which makes the searching process more effective and con-

trollable. By adjusting the inertia weight, the speed of

power optimization of a photovoltaic array can be controlled

effectively.

V. POWER TRACKING BY IPSO ALGORITHM

In the IPSO algorithm, the two-step method which combines

the global searching model with the local searching model

is adopted for tracking control. The algorithm flowchart is

shown in Fig. 7.

Under the common circumstances, the solar radiation

changes slowly. For instance, when the solar radiation fluctu-

ates slightly or the photovoltaic panel is not shaded, because

the maximum power point is near the operating point,

the IPSO algorithm only operates in the local searchingmode.

On the other hand, when the solar radiation experiences a

great fluctuation, for instance, when there is a shadow on

a photovoltaic array, the global searching mode is started.

In that case, the algorithm firstly enters a fast convergence

state and approaches some possible peaks with a large step.

By roughly comparing the values of several power peaks,

it determines which peak may be the global maximum.

FIGURE 7. The algorithm flowchart; (A) Global search mode; (B) Local
search mode.

Once the approximate position of the maximum power point

is determined, the IPSO algorithm automatically switches to

the local searching mode. Since the local searching mode
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adopts the hill climbing method with a small disturbance, it is

beneficial to get the exact position of power maximum.

A. STARTING CONDITIONS

Before the algorithm is started, the duty vector dg that drives

N particles is defined as:

dg = [d1, d2, d3, . . . , dN ] (25)

Also, the objective function of the optimized model is

defined as:

f (xki ) > f (pi) (26)

where xki is the location of the i
th particle in the k th generation,

and pi is the best position that the i
th particle has experienced

in the solution space.

If the speed vector is initialized to 0, the minimum value

dmin and the maximum value dmax of the duty ratio are

respectively calculated by:

dmin =
(ηRLmin)

1
2

(RPV max)
1
2 + (ηRLmin)

1
2

(27)

dmax =
(ηRLmax)

1
2

(RPV min)
1
2 + (ηRLmax)

1
2

(28)

where η is the converter efficiency, RLmax and RLmin are the

maximum and minimum values of the output load, respec-

tively, and RPVmax and RPVmin are the maximum and mini-

mum impedances of a PV array, respectively.

As the photovoltaic array is laid outside, there are many

factors that can affect the power output, such as natural

fluctuation of solar radiation intensity, the passing of clouds

over the sun, and tree shade. In order to discriminate among

these influencing factors and reduce the unnecessary start of

the algorithm, the automatic judgment on starting condition

is needed, and the criterion is given by:
∣

∣

∣

∣

∣

I
(xk+1
i )

− I(xki )

I(xki )

∣

∣

∣

∣

∣

≥ ε1 (29)

∣

∣

∣

∣

∣

V
(xk+1
i )

− V(xki )

V(xki )

∣

∣

∣

∣

∣

≥ ε2 (30)

where I (xki ) is the current value of the ith particle in the k th

generation, V (xki ) is the voltage value of the i
th particle in the

k th generation, I (xk+1
i ) is the current value of the ith particle in

the (k+1)th generation, V (xk+1
i ) is the voltage value of the ith

particle in the (k+1)th generation, and lastly ε1 and ε2 are the

startup numbers, and generally, ε1 = 0.1, ε2 = 0.2. However,

when the partial shadow is occluded, the single peak of the

P-V curve transforms into multiple peaks. At the same time,

the searching particles are also dispersed naturally to each

peak of the P-V curve, which causes the power tracking to

falls into a local optimum. If the voltage and current between

the particles are quite different, namely, the conditions given

by (29) and (30) are satisfied, and the shadow occlusion state

of a PV array is confirmed, then the algorithm applies the

global searching mode directly.

B. PARAMETER ADJUSTMENT

After simplifying the standard PSO algorithm, only one

parameter, namely, the inertia weight needs to be adjusted.

The adjustment steps are as follows.

(1) In the initial stage of algorithm operation, the inertia

weight is set to be larger, which prevent the particle easily

fall into a local optimum.

(2) In the later stage of algorithm operation, most of

the particles are concentrated near the peaks. In that case,

a smaller inertia weight is needed to make the convergence

process stable.

Therefore, the strategy of the linearly decreasing

weight (LDW) is added into the improved algorithm, specif-

ically, by increasing the number of iterations, the inertia

weight decreases; the specific calculation is given by:

wk =
kmax − k

kmax
(wmax − wmin) + wmin (31)

where wmax represents the maximum inertia weight, wmin

represents the minimum inertia weight, k is the number of

current iteration, and kmax is the maximum number of itera-

tions. In this study, w satisfies the following:

wk = 0.9 −
k

kmax
× 0.5. (32)

The value of the inertia weight is linearly decreasing from

0.9 to 0.4, which enables the algorithm to explore larger areas

at the operation beginning to search for the global mode, and

locate the approximate location of the optimal solution as fast

as possible. As the number of iterations increases, the inertia

weight becomes smaller. Then, the algorithm enters the local

searching mode; thus, the searching range of the particle

decreases, which is conducive to finding the maximum power

point accurately.

C. TERMINATION STRATEGY

Since the algorithm performs an iterative search, the num-

ber of iterations should not be large. The iterative process

stimulates power oscillation, which reduces the output power

of a photovoltaic array. In order to avoid the endless search-

ing for the maximum power point, a mandatory termination

strategy is adopted in the proposed algorithm. According to

the characteristics of the searching particles, they are initially

distributed in the different locations on the P-V curve. As the

search process proceeds, each particle will slowly gather

around a certain peak.When the maximum voltage difference

between the particles is no more than 5% of Voc, the iteration

terminates, and the algorithm stops.

In order to test the convergence of the proposed algorithm,

we used the benchmark function of Griewank. There is a

great interaction among the variables of the function, which

has strong oscillation and many local points. It can be seen

from Fig. 8. that compared with the standard PSO, the IPSO

improves the convergence speed and search accuracy for the

benchmark function.
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FIGURE 8. The fitness of Griewank function with the number of iterations.

FIGURE 9. The block diagram of the PV system including the proposed
MPPT.

VI. SIMULATION ANALYSIS

A. SIMULATION MODEL

The block diagram of a PV system under the partial shad-

owing, used in the simulation, is shown in Fig. 9. The duty

ratio of the switching power supply was adjusted by the

MPPT algorithm. When the input impedance of the DC-DC

converter was changed, the equivalent load of the photo-

voltaic array also changed; the output voltage changed the

final adjustment of the PV array so as to achieve maximum

power point tracking. Finally, the maximum power point

tracking was achieved by adjusting the output voltage of the

photovoltaic array.

The simulation model was built by Matlab software, and

the photovoltaic cell was modeled by BP Solar’s Solarex-

MSX60. The parameters in the handbook were as follows.

The external reference temperature was 25 ◦C, and the

external reference irradiance was 1000 W/m2. The electrical

parameters were: Pmax = 60 W, Vmp = 17.1 V, Imp = 3.5 A,

Isc = 3.8 A, and Voc = 21.1 V. The parameters of buck-boost

circuit were: C = 200 uF, L = 1.2 mH, f = 60 KHz.

B. SIMULATION RESULTS

First, the simulation was run to obtain the P-V characteristic

under the partial shading condition. The P-V characteristic

curve is illustrated in Fig. 10. In Fig. 10, it can be observed

that under the partial shading condition, the global MPP was

at 140 V, and the corresponding output power was 2,720 W.

In addition, one local MPP was found at 91 V and 2,503 W,

and the other local MPP was at 170 V and 1860 W.

Next, we analyzed the dynamic behaviors by using the

PSO and IPSO algorithms. The obtained dynamic response is

FIGURE 10. The P-V characteristic under the partial shadow.

illustrated in Fig. 11. In Figs. 11(A), (B), the power tracking

effects of the standard PSO algorithm and the IPSO algorithm

under the partial shading conditions at the number of particles

Np = 4 are presented. On the other hand, Figs. 11(C),

(D) show the power tracking effects of the standard PSO

algorithm and the IPSO algorithm under the partial shading

conditions at the number of particles Np = 30.

In Fig. 11, it can be seen that when the number of particles

was Np = 4, by using the standard PSO algorithm, the output

power converged after 40 iterations, and the IPSO algorithm

took only 22 iterations to achieve the convergence state.

In addition, before reaching the convergence state, the stan-

dard PSO algorithm was accompanied by a large number

of searching oscillations, so much energy was wasted. One

reason for such a situation was that the standard PSO algo-

rithm firstly searched between the local peaks and the global

peak, so the convergence performance and the search speed

depended on the acceleration factors and inertia weight. How-

ever, the IPSO algorithm firstly scanned the whole P-V curve,

and then the searching particles were placed near the possible

peak point, so the number of oscillations was reduced, which

significantly increased the searching efficiency.

On the other hand, as the number of particles involved in

the search increased, the number of searching iterations also

increased, and the accuracy of power tracking was improved.

When the number of particles wasNp = 30, the standard PSO

algorithm needed 430 iterations to converge, while the IPSO

algorithm took only 220 iterations to achieve convergence

state; thus, the search efficiency was improved significantly.

Besides, the more particles were involved in the search,

the more accurate the power tracking was. At Np = 4,

the maximum power that the particles could find was 2742W,

and the real maximum power was 2750 W. The difference

between these two power values was 8W, so the relative error

was 0.3%. AtNp = 30, the maximum power that the particles

could find was 2746 W, and the real maximum power point

was 2750 W, so the difference between these two power

values was 4 W, and the relative error was 0.15%.

Accordingly, the proposed IPSO algorithm had better con-

vergence performance, it could find the maximum power

point more accurately and quickly. Based on the simulation
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FIGURE 11. Comparison of simulation results obtained by the PSO and IPSO algorithms; (A) Power tracking used by standard PSO,
Np = 4; (B) Power tracking used by IPSO, Np = 4; (C) Power tracking used by standard PSO, Np = 30; (D) Power tracking used by IPSO,
Np = 30.

results, the accuracy of power tracking was improved with the

increase in the number of searching particles at the cost of

slower convergence speed and a large amount of calculation.

Thus, the photovoltaic power tracking should be considered

comprehensively in the specific application.

VII. EXPERIMENT

In order to evaluate the feasibility and stability of the pro-

posed algorithm, the experimental system for the photovoltaic

power tracking was designed. The experimental system com-

posed of software and hardware. The hardware contained

a photovoltaic module, the control circuit of power track-

ing, a personal computer, a DSP2812, and shielding mate-

rial. The software environment included CCS3.3 and power

monitoring program written in VC++. The communication

between the hardware and software was realized through

the serial port RS232. The experimental system is shown

in Fig. 12(A).

The control circuit of photovoltaic power tracking was

composed of the Boost power circuit, voltage and current

detection circuit, signal sampling circuit, driving circuit of

power transistors, as shown in Fig. 12(B).

Because the photovoltaic module had similar electrical

characteristics as the photovoltaic array, the PV module was

used in the experiment, and the partial area of the PV module

was manually blocked. In this way, the P-V curve of the

PV module might show the characteristics of multiple peaks.

The control process was conducted by using DSP2812 and

MPPT tracking circuits. Using the human-computer interac-

tion interface written in Visual C++ and the SQL database,

the scanned data were stored and displayed, as shown

in Fig.13.

The photovoltaic module parameters were listed at Table 1.

During the experiment, the same irradiation and temperature

variation were used for all the methods.

The steady-state performance of the photovoltaic module

for patterns 1, 2, and 3 is shown in Fig. 13. Pattern 1 referred

to the shading at shelter #1 position, at this moment there

were one GMPP and one LMPP, and the power at GMPP was

53.8W. Pattern 2 referred to the shading at shelter #2 position,
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FIGURE 12. Experimental platform; (A) The experimental system for
photovoltaic power tracking; (B) The control circuit of photovoltaic power
tracking.

TABLE 1. Parameter of PV module at Temperature = 25 ◦C, Irradiation =

1000 W/m2.

at this moment there were one GMPP and one LMPP, and the

power at GMPP was 38.7W. Pattern 3 referred to the shading

at both shelter #1 and #2 positions at the same time, there

were one GMPP and two LMPPs, and the power at GMPP

was 32.6W.

The waveforms of voltage, current, and power, which

were obtained by the PSO, the IPSO, and the FLC algo-

rithms under the dynamic condition are shown in Fig. 14.

For each waveform, the tracking time (TMPPT) and algo-

rithm were mentioned manually. The GMPP tracking

time of all the algorithms on all the patterns is given

in Table 2.

For comparison, the experimental results for conventional

PSO was obtained for partially shaded pattern 1, 2 and 3 as

shown in Fig. 14. The conventional PSO took 3.4 s, 3.6 s

FIGURE 13. The P-V characteristic at different positions occluded on the
photovoltaic module; (A) P-V characteristic curve, shelter #1 position;
(B) P-V characteristic curve, shelter #2 position; (C) P-V characteristic
curve, shelter #1 and #2 positions at the same time.

and 3.9 s to reach the GMPP in three patterns respectively.

Because PSO algorithm is affected by random variables,

it can not converge in a fixed direction at first, so it takes

a long time to locate GMPP accurately. The conventional

FLC took 3.8 s, 3.9 s and 4.1 s to reach the GMPP in three

patterns respectively. Although the conventional FLC reduces

the disturbance of variables, it is essentially a non-linear con-

trol, the searching time for maximum power point is longer.

The IPSO took 2.9 s, 3.0 s and 3.2 s to reach the GMPP in

three patterns respectively. The IPSO uses global localization
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FIGURE 14. Experimental results of the PSO, the IPSO, and the FLC
algorithms; (A) Experimental results of the PSO, the IPSO, and the FLC
algorithms in the case of pattern 1; (B) Experimental results of the PSO,
the IPSO, and the FLC algorithms in the case of pattern 2;
(C) Experimental results of the PSO, the IPSO, and the FLC algorithms in
the case of pattern 3.

and local convergence, so the convergence speed is obviously

better than PSO and FLC.

In Fig. 14, the time division on the x-axis was 2 s/div,

and on every 6 s the algorithm was changed another. The

experimental results are summarized in Table 2 and Table 3.

Table 2 reveals that the IPSO reached the GMPP at every

pattern in only 3.0 s on average, while the PSO and FLC

took 3.6 s and 3.9 s for the same task. Table 3 shows that

the tracking accuracy of IPSO was more than 99% in three

shading patterns. Since IPSO firstly differentiates the power

FIGURE 15. Performance comparison of the MPPT algorithms in the
experiment.

FIGURE 16. Experimental results including multiple power points; (A) P-V
characteristic curve; (B) Experimental results of the PSO, the IPSO, and
the FLC algorithms with multiple power points; (C) Experimental results
of the GA, the SA and the DE with multiple power points.

points, then it immediately turns to the local searching mode,

which is conducive to the accurate location of the maximum

power point.
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TABLE 2. Tracking time for patterns 1, 2 and 3.

TABLE 3. Tracking accuracy for patterns 1, 2 and 3.

The obtained voltage, current, and power waveforms are

given in Fig. 14. In Fig. 14, the searching area, as well as

the oscillations in the output waveform during the searching

process can be observed. Since the duration of major oscilla-

tions was directly proportional to the tracking time, the major

oscillations in the PSO algorithm were approximately 11.3%

longer than that of the IPSO algorithm. Similarly, the oscilla-

tions of the FLC algorithm were approximately 12.2% longer

than that of the IPSO algorithm.

The comparison of the algorithms regarding the tracking

performance for all the patterns in the experiment is pre-

sented by the bar-chart in Fig. 15, where it can be seen

that the performance of the IPSO was the best on all the

patterns. The average tracking time of the PSO, the IPSO,

and the FLC in the experiment was 3.6 s, 3.0 s, and 3.9 s,

respectively.

In order to verify the effectiveness of the proposed algo-

rithm, we carried out the tracking experiment including five

power points, as shown in Fig. 16. It can be seen that the

IPSO kept good tracking performance as before. It not only

had fast tracking speed, but also could lock the maximum

power point in only 3.3 s, and the tracking accuracy also

reached 99%. Compared with five recently developed Global

MPPT algorithms, the proposed IPSO shows better tracking

performance.

VIII. CONCLUSION

This paper introduces an improved power tracking algorithm

for a photovoltaic array under a local shadow. Based on the

analysis of the particle swarm optimization (PSO) algorithm

and the electrical characteristics of the photovoltaic arrays,

an improved particle swarm optimization (IPSO) is proposed

for the MPP detection under the PSC. The main contributions

of this work are as follows.

(1) The traditional PSO algorithm is profoundly studied.

Aiming at the convergence problem of the PSO algorithm

and the influence of random variables on the particle trajec-

tory, the convergence conditions of the PSO algorithm are

analyzed, which provides a theoretical basis for improving

the PSO algorithm.

(2) The traditional PSO algorithm is improved, and the

concrete realization principle of the IPSO algorithm is intro-

duced. Due to the combining of global and local searching

modes, the proposed algorithm is especially suitable for the

power tracking of a photovoltaic array under local shadows.

(3) The experiment of the GMPPT of the photovoltaic

module is conducted under the local shading conditions. The

experimental results show that under the same conditions,

compared with five recently developed Global MPPT algo-

rithms, the performance of the IPSO in the GMPPT under

the PSC is improved significantly.

APPENDIX

When the experimental systemworks, the output voltage Vpv,

current Ipv of the photovoltaic module and input voltage Vload
and current Iload of the load are sampled continuously by

DSP2812. The output power Ppv and load power consump-

tion Pload can be calculated in real time.

Experimental diagram.

FIGURE 17. Experimental diagram.
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