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Abstract: To solve the problem of local minima and unreachable destination of the 
traditional artificial potential field method in mobile robot path planning, chaos 
optimization is introduced to improve the artificial potential field method. The 
potential field function was adopted as a target function of chaos optimization, and 
a kind of “two-stage” chaos optimization was used. The corresponding movement 
step and direction of the robot were achieved by chaos search. Comparison of the 
improved method proposed in this paper and the traditional artificial potential field 
method is performed by simulation. The simulation results show that the improved 
method gets rid of the drawbacks, such as local minima and unreachable goal. 
Furthermore, the improved method is also verified by building up a physical 
platform based on “Future Star” robot. The success of the physical experiment 
indicates that the improved algorithm is feasible and efficient for mobile robot path 
planning. 

Keywords: Artificial potential field method, chaos optimization, path planning, 
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1. Introduction 

Given in a complicated task environment, the robot’s first task is to avoid obstacles 
and reach the destination as efficiently as possible. Typically, path planning can be 
described as the procedure in which the robot finds out the optimal collision-free 
path from a specified position to the destination according to certain criteria, such 
as minimum distance, minimum time and maximum safety. Path planning has been 
studied and applied in many research fields [1-3]. 
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The artificial potential field method proposed by Andrews, Hogan and Khatib 
[4] has gained increased popularity in the field of mobile robot path planning [5-7]. 
In these approaches, the target exerts an imaginary attractive force on the robot, 
while the obstacles apply repulsive forces to the robot. The total resultant force 
determines the subsequent direction and speed of travel. With the characteristic of 
simplicity, the traditional potential field method can be implemented conveniently 
due to its high efficiency. 

However, inappropriate definitions of the potential field equations will 
produce local minima of potential fields. As a result, the robot might be trapped into 
local situations. For example, it oscillates in the presence of obstacles and swings  
in narrow passages [6, 7]. Thus, the artificial potential field method requires to be 
associated with some other artificial intelligence optimization algorithms, such as 
genetic algorithms, fuzzy and artificial neural networks, etc. [8-10]. 

To solve the problems above described, this paper introduces chaos 
optimization into path planning algorithm to improve the artificial potential field 
method. This paper is organized as follows. In Section 2 the algorithm principle and 
the problems of the potential field methods are analyzed. Section 3 presents the 
improved artificial potential field method based on chaos optimization. In Section 4 
comparison and analysis of the improved method proposed in this paper and the 
traditional artificial potential field method are performed by simulation. 
Furthermore, the improved method is also verified by building up a physical 
platform based on “Future Star” robot in Section 5. 

2. Traditional artificial potential field method 

The artificial potential field method introduces field concepts of physics theory into 
environment planning expressions [4, 6]. The obstacles produce a repulsive force 
while the goals produce an attractive force on the robot. The resultant force 
determined by the repulsive and attractive forces controls the moving direction of 
the robot. Substantially, this method is to define the virtual potential field among 
the moving environments of the robot. The defined potential field is the 
superposition of the goal’s attractive field and the obstacle’s repulsive field [4, 11]. 

The artificial potential field can be written as 
(1)  U ,sum att repU U= +   

where attU  and repU  are the attractive and repulsive fields in which the robot 
locates. 

As shown in Fig. 1, the total force applied to the robot is the resultant of the 
attractive force attF  towards the goal and the repulsive force Frep from the obstacle.  

(2)  .total att repF F F= +  

Obviously, the resultant force totalF  determines the speed and direction of the 
robot. 
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Fig. 1. Resultant force applied to the robot 

2.1. Definition of the attractive potential field 

Assuming that the robot locates at coordinate X = (x, y)T in a planar space and the 
coordinate of the goal point is T

( , ) ,g g gX x y=  the attractive potential field function 

can be defined as  

(3)  
21

( ,t g2 )a t k X XU = −  

where attU  denotes the attractive field function where the robot is located; k is an 
attractive constant which is always greater than zero; X  is the coordinate vector of 
the robot, while gX  is the coordinate vector of the goal. 

Obviously, the attractive force attF  is a negative gradient function of the 
attractive field.  
(4)  grad( ) ( ).att att gF U k X X= − = −  

2.2. Definition of the repulsive potential field  

Usually, the artificial repulsive potential function can be written as 

(5)  
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where repU  is the repulsive field of the position where the robot is located; η  is a 
positive scaling factor; ρ  is the distance between the robot and the obstacles in  
planar spatial coordinates; oρ  is the maximum distance of the repulsive field 
influenced by the obstacle. The obstacle has no influence on the robot’s movement, 
if it is further away than oρ . 

The repulsive force can be written as 
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o

1 1 1 ,
grad( )

,

,

.0
F U X

ρη ρ ρ
ρ ρ ρ

ρ ρ

⎧ ⎛ ⎞ ∂
− ≤⎪ ⎜ ⎟= − = ∂⎨ ⎝ ⎠

⎪ >⎩

  



 184

3. Improved artificial potential field method based on chaos 
optimization 

3.1. Principle of chaos optimization 

An early proponent of chaos theory was Henri Poincaré. Chaotic systems are 
predictable for a while and then appear to become random [12]. 

Based on the chaos theory, the chaos optimization algorithm can directly 
search the extremum point in a certain space [ ],i ia b  by a chaotic variable. Many 
optimization problems can be formulated as follows: 
(7)  Min ( ),f X  [ ]1 2, , , nX x x x= ⋅ ⋅ ⋅  s.t. [ ],i i ix a b∈ , i=1, 2, ..., n, 
where f is the objective function, and X is the decision vector consisting of n 
variables. 

According to the pattern of chaotic behavior, the search process can jump out 
of the local minimum easily. Moreover, the search efficiency is high. 

The well-known logistic mapping is usually used to describe the chaotic 
motion ergodic characteristics [8, 13]: 
(8)  1 ( , ) (1 ),k k k kx f x x xμ μ+ = = −  
where kx  denotes the chaotic variable and its range is 0 1kx≤ ≤ . The variable range 
of the control parameter μ, which can control the system state, is 0 4μ≤ ≤ . It is 
easy to find that (8) is a deterministic system without any random disturbances. It 
seems that its long-term behavior can be predicted. But this is not true. When  
μ  > 3.57 the system (8) begins to behave chaotically in an unpredictable pattern. 
Fig. 2 shows the logistic mapping orbit at different values of μ in the iterative 
trajectory.  
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Fig. 2. Logistic mapping orbit at different μ values  
 

When 4μ =  it is entirely a state of chaos. The track of the chaotic variable can 
traverse the whole space of interest. Fig. 3 shows the value of kx  in an iterative 
trajectory, in which the initial value 0x  is 0.007.  
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Fig. 3. Iterative sequence of the logistic map 

3.2. Characteristics of chaos optimization 

The traditional optimization algorithms, such as the descent algorithm, conjugate 
direction algorithm and the variable metric algorithm are all classified in 
deterministic optimization algorithms, which can be used to solve the convex 
optimization problem of the extreme point’s seeking. However, the actual 
optimization problems are often quite complex. For example, the objective function 
has multiple extreme points, does not meet the requirement of convexity, is not 
continuously differentiable and even cannot have a specific expression. So, the 
traditional methods often have difficulty in solving these optimization problems. 

The chaos search method is a derivative-free optimization method. It 
overcomes the difficulties of the traditional derivative-based optimization methods 
which heavily depend on the gradient information.  

3.3. Artificial potential field method based on chaos optimization 

The chaos artificial potential field method combines the chaos optimization 
algorithm and the traditional artificial potential field method. The potential field 
function is adopted as a target function of chaos optimization. The parameters 
needed to optimize are the step length and the potential field angle which is the 
moving direction of the robot.  

The attractive force potential function is given by the most common form  
[14, 15]  

(9)  2 ,att targetU k ρ=  

targetρ  is the distance between the robot and the goal; k  is a positive constant 

determined by the shape of the obstacle, which can be defined as a gravity gain 
coefficient. The next expression is the improved repulsive force potential of the i-th 
obstacle. 

(10)   
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where iρ  is the distance between the robot and the i-th obstacle; oρ  stands for the 

safe distance; iλ  is a positive constant determined by the shape of the obstacle as 
well. Thus, the total repulsive potential field can be written as 

(11)    rep ,rep
1

n
U i

i
U ∑=

=
 

where n is the amount of the obstacles, including the static and moving obstacles in 
the working environment. 

Therefore, the obtained potential field function can be adopted as a target 
function of chaos optimization. The optimal step length and the potential field angle 
of the robot can be calculated by the chaos optimization algorithm in real time.  

A kind of a “two-stage” algorithm [16] is used to resolve the problem of 
multivariable and large solution space. The algorithm diagram of the two-stage  
chaos optimization  is shown in Fig. 4.  

 
Fig. 4. Algorithm diagram of two-stage chaos optimization 

The main idea of the algorithm divides the whole search space into a breadth 
space and a depth space. The mission of the breadth search is to find out a 
temporary optimum in a short time. After that, the depth search looks for the small 
space around the temporary optimum. During this procedure, if the algorithm is 
trapped at a local optimum, it goes back to the first stage. Both procedures are 
iterated until catching the global optimum. In the logistic iteration, with control 
parameter 4μ = , the logistic mapping turns out to be a full mapping within the 
interval [0, 1].  

Because of the characteristics of the chaos optimization algorithm above 
mentioned, the planned path using this method can get rid of the local minima. On 
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the other hand, the robot can find the path between two obstacles, which are close to 
each other and the two obstacles must have sufficient distance to make the robot 
pass. 

In the path planning process above described, once the value of the potential 
function U is relatively small, a smoothing factor should be considered. We can 
strengthen the attractive potential function and weaken the repulsive potential in the 
target function relatively according to the actual problem [17]. 

4. Simulation experiment  

To verify whether this method is efficient, a simulating experiment was conducted 
to compare the effects of the traditional and improved artificial potential field 
methods under local stable situations. Assuming that the environment is partly 
known, the size of the robot is ignored, the initial position and the goal position of 
the robot are [0, 0] and [10, 10] respectively. Moreover, the obstacle is defined as a 
circle whose center coordinate is the center of the mass to produce the repulsive 
force. In this experiment the other parameters 2oρ = , k = 1, 1000,iλ =  0 2,l j≤ ≤  

0 .θ π≤ ≤  l j  and θ  must be provided by each calculation, representing the step 

length and the moving directional angle of the robot. 
In Fig. 5 there are two obstacles located on [4.2, 5.8] and [5.2, 4.8]. In this 

situation, if the traditional artificial potential field method is used, the robot may 
oscillate or stop at the gap of the two obstacles. Thus the robot is not able to reach 
the destination. Fig. 5a indicates that the robot bypasses the two obstacles,  
approaching the obstacles, when using the traditional artificial potential field 
method. However, the robot reaches the destination. In Fig. 5b, if using the chaos 
artificial potential field method, the robot passes the narrow path between the two 
obstacles although there is a local minimum of the artificial potential field method. 
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(a)                                                                              (b)  
Fig. 5. Simulation comparison of the condition of trap situation due to a local minimum: Traditional 

artificial potential field method (a); improved artificial potential field methods (b) 
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In Fig. 6 the obstacle and the goal are close to each other, their coordinates 
being [9.5, 10] and [10, 10] respectively. In this situation, if we use the traditional 
artificial potential field method, the robot may not be able to reach the goal, because 
the attractive and repulsive forces are counter posed with respect to each other.  
Fig. 6a shows that the robot moves forwards from the first step to the 40th step at a 
directional angle of 45 degrees due to the attractive force.  

However, when the robot approaches the goal and comes into the affected 
range of the obstacle, the robot changes its direction suddenly. It is not able to reach 
the goal correctly. According to the analysis of the repulsive and attractive field 
models, it is the repulsive force that balances out the attractive force and the 
resultant force guides the robot away from the goal. In other words, the goal is not 
the minimum potential field position among the whole force field at present. Thus, 
the robot goes to the wrong direction and fails to reach the destination. 

Fig. 6b shows that the robot bypasses the obstacle and reaches the destination 
successfully. The reason is that the robot will choose the new sub-target when the 
robot is close to the obstacle and goal simultaneously. This will change the 
attractive force’s effect on the robot. With the help of the resultant force, the robot 
can reach the destination. The improved artificial potential field method 
successfully overcomes the problem that the robot is not able to reach the 
destination if the obstacle is too close to the goal. 
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Fig. 6. Simulation comparison of the condition that the obstacle and goal are nearby: Traditional 
artificial potential field method (a); improved artificial potential field methods (b) 

5. Path planning experiment based on “Future Star” robot 

5.1. Building the path planning experiment platform 

“Future Star” robot was selected to construct the physical experimental platform. 
The experiment used the path planning method and a part of the map was known. In 
the robot’s program the experimental field, the initial position and goal’s position 
were already defined. The position of the obstacle was recognized by the robot. The 
obstacle was a square box and the goal was an orange basketball. The robot could 
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calculate the attractive force and move forward to the goal. The robot was always 
scanning the obstacles along its forwarding path. When the robot was close enough 
to an obstacle, the repulsive force of the obstacle made the robot bypass the 
obstacle. Due to the fact that the initial position and destination of the robot were 
known in advance, and only the position of the obstacle had to be detected by the 
sensors, the planned path was under the condition that a part of the map was known. 

Fig. 7 shows the experimental environment. The x axis was the direction along 
the robot which is [0, 400] (totally 4 m). The right edge was the y axis [0, 800] 
(totally 8 m). The robot set out at coordinate [150, 0]. The obstacle is located at 
[200, 150] and the destination is [350, 400]. 

 
Fig. 7. Calibration of the coordinate  

 

5.2. Description and analysis of the experiment 

In Fig. 8a the robot set out at an initial position and prepared to move towards  the 
goal. In Fig. 8b, the robot changed its direction because of the attractive force and 
was about to move to the destination. Fig. 8c showed that the robot had already 
aimed to the destination, though there was an obstacle, which was ahead of the 
robot. 

Fig. 8d, e, f indicated that the ultra-sonic sensor, which was used to measure 
the distance detected a blue obstacle in front of the robot (as shown in Fig. 8d). The 
repulsive force affected the robot when the distance to the obstacle was too close 
(when the distance was less than oρ  as Fig. 8d shows). The robot changed its 
direction to avoid the obstacle and moved to the goal at the minimal cost (shown in 
Fig. 8f).  
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(a)                                              (b)                                                  (c) 
 

 

(d)                                             (e)                                                (f) 
 

 

(g)                                              (h)                                                (i) 

Fig. 8. Path planning with a single obstacle 

In Fig. 8g the robot bypassed the obstacle successfully and adjusted its 
direction to move forward to the goal. In Fig. 8h the robot was on the side of the 
obstacle. Fig. 8i indicated that the robot was about to reach the destination 
successfully. 

6. Conclusion 

In this paper chaos optimization is introduced in the artificial potential field method 
and some problems, such as local minima and unreachable goal existing in the 
traditional artificial potential field method are solved. Comparison and analysis of 
the improved method proposed in this paper and the traditional artificial potential 
field method are performed by simulation. In addition, the improved method is also 
verified by building up a physical platform based on “Future Star” robot. 

The simulation results show that the improved method proposed in this paper 
gets rid of the drawbacks of the traditional artificial potential field method depicted 
above. In addition, the planned path is smoother and easier to track. The success of 
the physical experiment further indicates the rationality and efficiency of the 
improved algorithm, which can be applied to mobile robot path planning. 
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