
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

An improved pattern matching algorithm for
strings in terms of straight-line programs

Miyazaki, Masamichi
Department of Informatics, Kyushu University

Shinohara, Ayumi
Department of Informatics, Kyushu University

Takeda, Masayuki
Department of Informatics, Kyushu University

http://hdl.handle.net/2324/3236

出版情報：DOI Technical Report. 130, 1997-01-23. Department of Informatics, Kyushu University
バージョン：
権利関係：

DO1 Technical Report

An improved pattern matching algorithm

for strings in terms of straight-line programs

Masamichi Miyazaki

Ayumi Shinohara

Masayuki Takeda

January 23, 1997

Department of Informatics

Kyushu University 33

Fukuoka 81 2-81, Japan
E-mail: masamichG3 i.kyushu-u.ac.jp Phone: +81-92-641-3131 ex.8422

An improved pattern matching algorit hm for
strings in terms of straight-line programs

Masamichi Miyazaki Ayumi Shinohara
Masayuki Takeda

{masamich, ayumi , takeda)@i . kyushu-u. ac . jp
Department of Informatics, Kyushu University 33,

Fukuoka 812-81, Japan

Abstract

We show an efficient pattern matching algorithm for strings that are succinctly de-
scribed in terms of straight-line programs, in which the constants are symbols and the
only operation is the concatenation. In this paper, both text T and pattern P are given
by straight-line programs T and P. The length of the text T (pattern P, resp.) may
grows exponentially with respect to its description size 111 = n (lPl = m, resp.). We
show a new combinatorial property concerning with the periodic occurrences in a text.
Based on this property, we develop an 0(n2m2) time algorithm using O(nm) space, which
outputs a compact representation of all occurrences of P in T. This is superior to the
algorithm proposed by Karpinski et al. [ll], which runs in O((n + m)4 log (n + m)) time
using O ((n + ~ n) ~) space, and finds only one occurrence. Moreover, our algorithm is much
simpler than theirs.

1 Introduction

The string pattern matching is a task to find all occurrences of a pattern in a text. In practice
the text is large and is stored in secondary storage, hence most of the time required for pattern
matching is devoted to data transmission. If the text is stored in some compressed form, the
data transmission time is decreased according to the compression ratio. Text compression
thus speeds up pattern-matching. Of course, the processing time (excluding I/O time) may
be much longer than searching the original text. Therefore it is important to give an efficient
pattern matching algorithm for searching a compressed text directly.

The problem of pattern matching in compressed text is of not only practical interest but
also of theoretical interest. I t has been studied recently by several researchers for several
compression methods. For example, [I, 2, 3, 5, 61 are for the run-length coding, [4] for the
LZW coding, 17, 8, 91 for the LZ77 coding.

A straight-line program is a compact representation of string. It is a context-free grammar
in the Chomsky normal form that derives only one string. The length of the string represented
by a straight-line program can be exponentially long with respect to the size of the straight-line
program. In this sense, conversion of string into straight-line program can be viewed as a kind
of text compressions. In fact, any text compressed by the LZW coding can be transformed
directly into a straight-line program within a constant factor.

In this paper we concentrate on the pattern-matching problem where both text and pat-
tern are represented in terms of straight-line programs. Karpinski e t al.[10] showed the first

polynomial-time algorithm. Later in [I l l they proposed an O ((n + m)4 log (n + m)) time
algorithm using O ((n + m)3) space, where n and m are the sizes of straight-line programs
representing the text and the pattern, respectively. However, the algorithm is complicated and
finds only one occurrence of pattern. In this paper we describe a new combinatorial property
concerning with the periodic occurrences of pattern in text, and then present an O(n2m2) time
algorithm using O(nm) space, which is based on this property. Our algorithm is simple and
easy to understand, and outputs an O (n) representation of all occurrences of pattern in text.

2 Preliminary

In this paper, both text and pattern are described in terms of straight-line programs. A
straight-line program R is a sequence of assignments as follows:

X1 = exprl; X2 = expr2; ... ; Xn = expr,,

where Xi are variables and expri are expressions of the form:

e expri is a symbol of a given alphabet C, or

e expri = Xe . Xr (t, r < i) , where denotes the concatenation of Xl and X,.

Denote by R the string which is derived from the last variable Xn of the program R. The size
of the straight-line program R, denoted by IIRII, is defined to be the number of assignments
in R. The length of a string w is denoted by /wI. We identify a variable Xi with the string
represented by Xi if it is clear from the context.

Example 1 Let us consider the following straight-line program R:

We can see that R = X8 = abaababaababaababa, and IlRll = 8, IRI = 18. The evaluation
tree is shown in Figure 1.

We introduce a measure depth of a variable X in a straight-line program R defined by

1 i f X = a E : C ,
dep th(X) = { 1 + max(depth(Xl), depth(Xr)) if X = & X,.

I t corresponds to the length of the longest path from the node X to a leaf in the tree.

/ j i . ~ i i /
j f /
1 1 1
: : j / ; I
: :

a b a

Figure 1: Evaluation tree of R in Example 1.

Figure 2: k E Occ*(X, Y), since Y covers the boundary between Xe and Xr.

For a string w denote by w[f . . t](l 5 f 5 t 5 Iwl) the subword of w starting at f and
ending at t. The pattern matching problem for strings in terms of straight-line programs is,
given straight-line programs P and 7 which are the descriptions of pattern P and text T
respectively, to find all occurrences of P in T. Namely, we will compute the following set:

Hereafter, we use Xi for a variable in 7 and Y, for a variable in P. We also denote by n
and m the sizes of 7 and P, respectively. For a set U of integers and an integer k, we denote
U @ k = { i + k : i ~ U) a n d U ~ k = { i - k : Z E U) .

3 Overview of algorithm

In this section, we give an overview of our algorithm together with its basic idea. Let X
be a variable which appears in 7, and Y be a variable in P . First we consider a compact
representation of the set Occ(X, Y).

Suppose X = Xl . X,. We define Occ*(X, Y) to be the set of occurrences of Y in X such
that Y covers the boundary between Xe and Xr (see Figure 2):

OCC*(X, Y) = { S E OCC(X, Y) : IXtI - IY/ + 1 5 s 5 lxei + 1).

For the sake of convenience, let Occ*(X, Y) = Occ(X, Y) for X = a E C. Then we have the
following lemma, which is informally stated in [8].

Lemma 1 For any X in I and any Y in P, Occ*(X, Y) forms a single arithmetic progression.

We have the following observation (see Figure 3 (a)):

Observation 1 (decomposition of text variables)
For Xi = Xe(i) X,(i) in I and Y in P,

The above observation suggests that Occ(X,, Y) can be represented by a combination of
{Occ*(Xi, Y))F=L_, . By Lemma 1, each Occ*(Xi, Y) forms a single arithmetic progression,
which can be stored in O(1) space as a triple of the first element, the last element, and
the step of the progression. Thus the desired output, a compact representation of the set
Occ(T, P) = Occ(X,, Ym) is given as a combination of {Occ*(Xi, Ym)),".,, which occupies
O(n) space. Moreover, as we will show in Lemma 4 in Section 5, the membership to the
set Occ(Xi, Y,) can be answered in O(depth(Xi)) = O(n) time using this representation.
Therefore the computation of the set Occ(T, P) is reduced to the computation of each set
Occ*(Xi, Y,), i = 1 , . . . , n. The next observation gives us a recursive procedure to compute
the set Occ*(Xi, Y,) (see Figure 3 (b)):

(a) k l , k2, k3 E Occ(Xi, Y), while k l E (b) k E Occ*(Xi, 5) if and only if either k E
Occ(Xe(i), Y), kz E Occ*(Xi, Y), and k3 - Occ*(Xi, and k + I Ye(j) 1 E Occ(Xi, Yr(j))
IXt(i) 1 E O"(x~,(i) 7 Y) . (left case), or k E Occ(Xi, and k+ 1 Ye(j) 1 E

Occ*(Xi, YT(j) ,) (right case).

Figure 3: Decomposition of variables.

Observation 2 (decomposition of pattern variables)
For Xi in I and Y, = Ye(j) . Yr(j) in P7

Occ*(Xi, Y,) = Occ;(Xi, 5) U Occ:(Xi, Y,) , where

Occi(Xi,Y,) = Occ*(Xi, Yecj)) n (Occ(Xi, Yr(j)) €3 I Yt(j)l), and
Occ:(Xi,Y,) = Occ(Xi, n (Occ*(Xi, Yr(j)) €3 I Yecj)I).

The problem to be overcome is to perform the set operations, union and intersection efficiently,
since each set may possibly contain exponentially many elements.

Lemma 2 in the next section is a key to solving this problem. The key lemma concerns
with the periodicities in strings. It guarantees that each of Occi(Xi, 5) and OccF(Xi, Y,)
forms a single arithmetic progression again. This enables us to perform the union operation
of these two sets in O(1) time. At the same time, the key lemma gives us a basis to construct
an efficient procedure of computing Occi(Xi, Y,) from Occ*(Xi, Ye(?)), assuming the function
FirstMismatch which returns the first position of the mismatches between Xi and Y,(j). We can
compute the set Occ:(Xi, 5) in the same way. In Section 5, we will explain these procedures
in detail.

When computing each Occ*(Xi, Y,) recursively, we may often refer to the same set Occ*(Xit, Y,!)
repeatedly for i' < i and j' < j . We take the dynamic programming strategy. Let us consider
an n x m table App where each entry App[i, j] at row i and column j stores the triple repre-
senting the set Occ*(Xi, Y,) . We compute each App[i, j] in bottom-up manner, for i = 1 , . . . , n
and j = 1,. . . , m. As we will show in Lemma 6 in Section 5, each App[i, j] is computable in
O(depth(Xi) depth(Y,)) time. Since depth(Xi) 5 n and depth(?) 5 m for any Xi and Y,, we
can construct the whole table App in O(n2rn2) time. The size of the whole table is O(nm),
since each triple occupies O(1) space. Hence we have the main theorem of this paper.

Theorem 1 Given two straight-line programs I and P7 we can compute an O(n) size repre-
sentation of the set Occ(T, P) of all occurrences of the pattern P in the text T, in O(n2m2)
time using O(nm) work space. For this representation, the membership to the set Occ(T, P)
can be determined in O(n) time.

4 Key lemma

This section shows the key lemma on a property of periodic occurrences of a pattern in a
text, which our algorithm based on. Let T and P be strings of a text and a pattern. At first
we define the function FirstMismatch(T, P, k) which returns the first (leftmost) position of
mismatches, when we compare P with T at position k. Formally,

for 1 5 k 5 IT1 - IPi + 1. If there is no such i, the value of FirstMismatch(T, P, k) is nil. The
value is a witness of k $ Occ(T, P) .

Lemma 2 (Key Lemma). Let T = UPZ (u, z E C + , p 2 0) and P E C+. The set S =
Occ(T, P) n (1 + i lul : i = 0, 1, . . ., p) forms a single arithmetic progression, which can be
computed by at most three calls of FirstMismatch.

Proof (sketch) We use the following notation in this proof: For two integers a and b, we denote
by (q, r) = diu(a, b) that q is the quotient and r is the remainder of the division of a by b.
That is, a = b . q + r and 0 5 r < b.

L e t h = m a x { j s /TI-lPl+I : j = l + i l u I f o r i = O , l , . . . , p) . I f n o s u c h j e x i s t , S = 4 .
The case h 5 1 + 21211 is trivial, since S contains a t most three positions. We consider the case
h 2 1 + 3lul. At the beginning, we invoke the function FirstMismatch for the two positions 1
and h as follows:

miss l = FirstMismatch(T, P, I), and

miss2 = FirstMismatch (T, P, h).

Note that 1 5 miss l , miss2 5 I PI, if not nil. It is convenient that we regard nil as IPI + 1.
Depending on the values of miss l and miss2, we have six cases as shown in Figure 4.

miss2

case 3 ; i ~ i t~a i l i ~y~ i ; t i . 1 i s i . 1 ; I i& - - - - rf

Figure 4: Six cases depending on miss l and miss2.
(Cases 2 and 5 are vacant if h > JPI.)

case 1: miss l = nil and miss2 = nil or IPI - h + 1 < miss2. See Figure 5.
Let (q , r) = diu(lPI, lul) and (ql,r') = diu(h+miss2-2, 1 ~ 1) . We can show that

P = uqu[l. .r] and T = u'J'u[l..rl] w for some w E C+ with u[rl + I] # w [I]. We can show
that S = {I + iluI : i E (0, . . , t)), where t = ql- q if r' 2 r and t = ql- q - 1 otherwise.
We note that such t can be directly computed by (t, r") = diu (h+ miss2 - 1 PI - 2, 1 u 1) .

! missl =nil 1
! u I U IU I U I U I u

I ~ l ' ~ ' J J l l ~ # / ~ / , / , !
I
I ",/,#/// i
I "I/,/. i

p l u l u l u ! u l u l u l u l u H ;

Figure 5: Case 1, P = uqu[l..r] and T = uqlu[l..r']w.

Figure 6: Case 4, P = uqu[l..r]u and T = uqlu[l..r']w.

case 2: m i s s l = nil and miss2 5 lPl - h + 1. (This is impossible if h > lPI).
Let (q, r) = div(h+miss2-2, 1111). We can show that P = uqu[l. .r]v and T = uqu[l..r]w
for some v , w E C+ such that u [r + 11 # v [l] = w [l] and v is a prefix of w. Thus we have
s = { l).

case 3: miss l # nil and miss2 = nil.
Let (q, r) = div(miss1- 1, IuI), and (q', r') = div(h+missl -2, lul). We can show that
r = r', P = uqu[l..r]v and T = u ~ ' u [l . . r] w for some v , w E C+ such that u[r + 11 f v [l]
and v is a prefix of w. Thus we have S = { h) .

case 4: miss l - h + 1 < miss2 < m i s s l . See Figure 6 .
Let (q , r) = div(miss1- 1, iul) and (ql ,r ') = div(h+miss2-2, lul). We can show

that P = uqu[l..r]v and T = uqlu[l..r']w for some v , w E C+ such that u[r + 11 #
v [l] and u[rl + 11 # w[1] . If r = r' and v is a prefix of w, then S is a singleton of
s = l+pluj -miss l+miss2 . Otherwise S = 4 . That is, the only candidate for the
elements in S is s. We can verify whether S = { s) or S = q!I by the third call of
FirstMisrnatch (T, P, s) .

case 5: miss2 5 mzssl - h + 1. (This is impossible if h > IPI).
Let (q, r) = div(h+miss2- 2, IuI), and s = m i s s l - h - miss2 + 2. Since we can show that
P = uqu[l . .r]v and T = uqu[l..r]w for some v , w E C+ such that u[r + 11 # v [l] = w [l]
and v[s] # w [s] , we have S = 4.

case 6: miss l 5 miss2.
Let (q , r) = div(miss1-1, I u ~) , and (q ' ,r l) = div(h+missl-2, lul). Let s = miss2 -
miss l + 1. Since we can show that r = r', P = uqu[l..r]v and T = uqlu[l..r]zu for some
v , w E C+ such that u[r + 11 # v[1] and v[s] # w [s] , we have S = 4 .

For any case, S forms a single arithmetic progression, and we can compute its representation
by calling FirstMismatch at most three times. EI

The above lemma is the heart of our algorithm. It gives us an e6cient way of cornput-
ing the periodic pattern occurrences in the set Occ*(Xi, assuming that the function
FirstMismatch can be realized efficiently. In the next section, we will give such a realization
of FirstMismatch(X, Y, k) for variables X in 7 and Y in P.

5 Algorithm in detail

In this section, we explain the details on the algorithm. That is, how to compute each entry
App[i, j] of the table, which represents the set Occ*(Xi, Y,). The computation is done in
bottom-up manner.

If either Xi or Y, is a symbol, we can compute the entry App[i, j] in a trivial way. We
show how to compute App[i, j] for Xi = Xe(i) . Xr(i) and Y, = Ye(j) . Yr(j), assuming that all
preceding entries App[il, j'] for i1 < i and j' < j are already computed. We can also assume
that we know all lengths lXilI and IY,lI. As we have explained in Section 3, the critical point
is the computation of Occ;(Xi, Y,) = Occ*(Xi, n (Occ(Xi, Yr(j)) 9 I Yl(j) 1) .
Lemma 3 Independently of the cardinality of the set Occ*(Xi, Ye(i)), we can compute the set
Occ;(Xi, 5) by using the function FirstMismatch(Xi, Yr(j), k) at most three times.

Proof In case that the cardinality of the set Occ*(Xi, is at most two, we can com-
pute the set Occ$(Xi7 Y,) easily: For each s E Occ*(Xi, Ye(j)) we check whether or not
s E Occ(Xi, Yr(j)) 9 / Ye(j) I by using FirstMismatch(Xi, Yr(j), s + I Yecj) I) .

For the case that Occ*(Xi7 Ye(j)) contains more than two positions, we apply Lemma 2 as
follows. Let L and R be the minimum and the maximum elements in Occ*(Xi7 Yecj)) @ I &(j)17

respectively (Figure 7). Let d be the step of the arithmetic progression of Occ*(Xi, Ye(j)), and
let p = (R - L)/d. Then we can see that the string Xi [L.. IXi I] is of the form upz, where u is
the suffix of Ye(j) of length d. By Lemma 2, we can compute the set

s = Occ(Xi[L..lXiI], Y&)) n {1,1 + d , . . . , l + p d)

by calling the function FirstMismatch(Xi, Yr(j), k) at most three times. Since

S @ (L - 1) = (0cc(Xi[L..lXi/], Yr(j)) (L - 1)) n {L, L + d, . . . , L + p-d)
= Occ(Xi7 Yr(j)) n (Occ*(Xi7 Ye(j)) @ I Yecj) I) ,

Figure 7: FirstMismatch(Xi, Yr(j), L) and FirstMzsmatch(Xi, Yr(j), R).

function FirstMismatch (X , Y, k) : integer;
/* returns the minimum s such that X [k + s - 11 + Y [s] if exists,

and nil otherwise */
begin

if IYI = l then
if X [k] = Y then return 1 else return nil

else /* assume Y = Ye . Y, */
if Match(X, I$, k) then

return l & l + FirstMismatch(X, Y,, k + I & [)
else

return FirstMismatch(X, 6, k)
end

function Match(X, Y, k) : boolean;
/* returns true ifl X[k..k + IYI - 11 = Y . */
begin

if (k < 0) or (1x1 < k + IYI) then return false;
if 1x1 = 1 then

if Y = X then return true else return false
else /* assume X = Xl X , */

if k + lYl < iXel then
return Match(Xe, Y, k)

else if lXel < k then
return Match(X,, Y, k - /Xe l)

else
if k E Occ*(X, Y) then return true
else return false

end

Figure 8: Pseudo-codes of the functions FirstMismatch and Match.

we have S@ (L - 1 - / Yt(j)l) = (Occ(Xi7 Y,(j)) 9 / Yl(j)l) n Occ*(Xi, Ye(j)) = Occ;(Xi, Y ,) , which
is the desired set.

We show how to realize the function FzrstMismatch(X, Y, k) for each pair of variables X
in 7 and Y in P and an integer k . Remark the following recursive property:

Observation 3 For two variables X i n 7 and Y with Y = f i Y , in P,

FirstMismatch(X, Y, k) =
FirstMismatch(X, k) z f k $ Occ(X, f i) ,
ll$l + FirstMismatch(X, Y,, k) if k E Occ(X, f i) .

Figure 8 shows a pseudo-code of the function FirstMismatch, where the function Match(X, Y, k)
returns true if and only if k E Occ(X , Y) . The correctness of Match(X, Y , k) is directly derived
from Observation I.

Lemma 4 The function Match(Xi , Y, , k) answers i n O(dep th (X i)) time.

Proof The membership query of the form k ~ O c c * (X ~ l , 51) can be answered in O (1) time
by simple calculations for any i' < i and j' < j , since it is already computed and stored in

the entry App[if, j']. Moreover, the number of recursive calls of Match(Xi, Y,, k) is at most
depth(Xi). Thus the lemma holds.

Lemma 5 The function F i r ~ t M i ~ m a t c h (X ~ , Y,, k) answers in O(depth(Xi) depth(Y,)) time.

Proof We can verify easily that the number of recursive calls of FirstMismatch(Xi, Y,, k) is
at most depth(5). At each call, FirstMismatch(Xi, Y,, k) calls the function Match(Xi, Y, , k)
once. By Lemma 4, it answers in O(depth(5)) time. Thus the lemma holds.

By Lemma 3 and Lemma 5, we have the following result.

Lemma 6 We can compute each entry App[i, j] in O(depth(Xi) . depth(?)) time.

6 Conclusion

We have shown an improved pattern matching algorithm for strings in terms of straight-line
programs. In Table 1, we summarize the results compared to the previous ones [lo, 111, from
the view points of time complexity, space complexity, and pattern detection ability when the
pattern occurs in the text more than twice.

We briefly state the improvement of our algorithm compared to the that in [I l l . The latter
algorithm consists of two phases: At the first phase, it computes two sets: Pref(Xi, Y,) of the
lengths of prefixes of Y, that are suffixes of Xi, and Suff(Xi, Y,) of the lengths of suffixes of Y,
that are prefixes of Xi. At the second phases, it computes the set Occ(Xi, 5) from Pref(Xi, Y,)
and SufS(Xi, Y,) by solving certain linear Diophantine equations with using Euclid's algorithm.
Each Suff(Xi, 5) and Pref(Xi, Y,) can be stored in O(depth(Xi) + depth(?)) space, although
Occ(Xi, Y,) occupies only O(1) space. On the other hand, our algorithm directly computes
Occ(Xi, Y,). The property of periodic occurrences of a pattern in a text shown in the key
lemma enabled the direct computation.

Both of these two algorithms use the information on the first position of mismatches.
In our algorithm, pattern-to-text comparisons are enough, while the previous algorithm also
requires text-to-text comparisons and pattern-to-pattern comparisons. This is the reason why
the previous algorithm requires (n + m) x (n + m) table with O(n + m) size entries in order to
store the information on overlaps, while our algorithms requires only n x m table with O(1)
size entries. This is also the contribution of the key lemma.

Recently, G3sieniec et a1. [8] have developed a series of efficient algorithms, including pattern
matching algorithm, for strings in terms of composition systems. A composition system is an
extension of the straight-line program, where substring selection is also allowed as well as con-
catenation, in order to simulate the LZ77 coding scheme. We will adapt our algorithm to treat
composition systems in future works, hopefully combined with the randomized approaches [9].

Table 1: Summary

algorithm

[lo]
[Ill

Ours

detection
some one
some one

all

t ime

O h --I- mI7)
O((n+m)4 log (n+m))

0 (n2 m2)

space
not estimated

O ((~ z + m) ~)
O h m)

References

[I] A. Amir and G. Benson. Efficient two-dimensional compressed matching. In Proc. Data
Compression Conference, page 279, 1992.

[2] A. Amir and G. Benson. Two-dimensional periodicity and its application. In Proc. 3rd
Symposium on Discrete Algorithms, page 440, 1992.

[3] A. Amir, G. Benson, and M. Farach. Optimal two-dimensional compressed matching. In
Proc. 21 st International Colloquium on Automata, Languages and Programming, 1994.

[4] A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in Z-
compressed files. Journal of Computer and System Sciences, 52:299-307, 1996.

[5] A. Amir, G. M. Landau, and U. Vishkin. Efficient pattern matching with scaling. Journal
of Algorithms, 13(1):2-32, 1992.

[6] T . Eilam-Tsoreff and U. Vishkin. Matching patterns in a string subject to multilinear
transformations. In Proc. International Workshop on Sequences, Combinatorics, Com-
pression, Security and Transmission, 1988.

[7] M. Farach and M. Thorup. String-matching in Lempel-Ziv compressed strings. In 27th
ACM STOC, pages 703-713, 1995.

[8] L. Ggsieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms for
Lempel-Ziv encoding. In Proc. 4th Scandinavian Workshop on Algorithm Theory, volume
1097 of Lecture Notes in Computer Science, pages 392-403. Springer-Verlag, 1996.

[9] L. Gpieniec, M. Karpinski, W. Plandowski, and W. Rytter. Randomized efficient algo-
rithms for compressed strings: the finger-print approach. In Proc. Combinatorial Pattern
Matching, volume 1075 of Lecture Notes in Computer Science, pages 39-49. Springer-
Verlag, 1996.

[lo] M. Karpinski, W. Rytter, and A. Shinohara. Pattern-matching for strings with short
descriptions. In Proc. Combinatorial Pattern Matching, volume 637 of Lecture Notes in
Computer Science, pages 205-214. Springer-Verlag, 1995.

[ll] M. Karpinski, W. Rytter, and A. Shinohara. An efficient pattern-matching algorithm for
strings with short descriptions. Nordic Journal of Computing, 1997. (to appear).

