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Abstract: In this paper, a scheme is presented for fusing a foot-mounted Inertial 

Measurement Unit (IMU) and a floor map to provide ubiquitous positioning in a number of 

settings, such as in a supermarket as a shopping guide, in a fire emergency service for 

navigation, or with a hospital patient to be tracked. First, several Zero-Velocity Detection 

(ZDET) algorithms are compared and discussed when used in the static detection of a 

pedestrian. By introducing information on the Zero Velocity of the pedestrian, fused with a 

magnetometer measurement, an improved Pedestrian Dead Reckoning (PDR) model is 

developed to constrain the accumulating errors associated with the PDR positioning. Second, 

a Correlation Matching Algorithm based on map projection (CMAP) is presented, and a zone 

division of a floor map is demonstrated for fusion of the PDR algorithm. Finally, in order to 

use the dynamic characteristics of a pedestrian’s trajectory, the Adaptive Unscented Kalman 

Filter (A-UKF) is applied to tightly integrate the IMU, magnetometers and floor map for 

ubiquitous positioning. The results of a field experiment performed on the fourth floor of the 
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School of Environmental Science and Spatial Informatics (SESSI) building on the China 

University of Mining and Technology (CUMT) campus confirm that the proposed scheme 

can reliably achieve meter-level positioning. 

Keywords: zero-velocity detection; adaptive unscented Kalman filter; heading angle; floor 

map matching; Inertial Measurement Unit; Pedestrian Dead Reckoning 

 

1. Introduction 

Pedestrian Dead Reckoning (PDR) [1,2] is a priority technique for the first responder ubiquitous 

positioning system. Several positioning algorithms have been developed over the past ten years. 

The basic PDR model involves three components: step detection, step length estimation and heading 

angle estimation [3,4]. Acceleration measurements are an ideal choice for step detection because of the 

periodicity of a pedestrian’s walking pattern. They require little or no infrastructure for pre-installation 

in buildings, but without an external reference, errors quickly accrue [5]. 

In a standard PDR algorithm, the step number and length are detected using the threshold for vertical 

acceleration, and the accuracy of the results is not as good as that of the estimates. In practice, while 

walking, the velocity of one foot should be zero when it is settled down. Therefore, considering the 

different walking patterns of different users, the Zero-velocity information, which can improve the 

position result, can be used to detect the step and calculate the step length. 

Meanwhile, orientation determination is also an essential issue for the PDR algorithm that requires 

attention because the sensor is unlikely to be axis-aligned. It continuously rotates with respect to the 

Navigation frame (N-frame) during the walking cycle. We must, therefore, track the rotation of the 

sensor by using the angular velocities provided by the gyroscopes and the magnetic field strength (MFS) 

from the magnetometer. However, both have their associated limitations. 

Moreover, as we know, measurement errors are inevitably present within the sensor data, and a triple 

integration results in a potentially cubic growth in time (drift). Taking the drift into account has 

implications on regularly closing the integration loop by applying external constraints to the system. The 

most widespread PDR constraint is provided by Zero Velocity Updates (ZUPTs) [6–8], which is also 

used in this paper [9]. 

Hence, floor map information is important for this kind of research. To overcome the constraints we 

elaborated on before, a floor map can be used to further calibrate the bias and correct for unreasonable 

positioning results, keeping the walking trace under control. It works by rectifying the weight of the 

position information or correcting the heading angle, among others. For example, combining gyroscope 

measurements with the use of a floor map allows the orientation to be corrected using only map  

aids [10,11], and large heading errors are eliminated via long-range geometrical constraints exploited by 

Particle Filters (PFs) [2,11,12]. Unfortunately, the large number of particles makes such algorithms 

unrealistic in terms of real-time operations. Hence, the unscented Kalman filter, which requires a limited 

number of particles (2n+1, where n denotes the dimension of the state vector) and still confers the 

advantage of a Kalman filter, has been chosen for this study. 
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In addition, it is also well recognized that there exist many surveys on various positioning systems in 

the literature such as WiFi [13,14], UWB [15,16], RFID [17,18], Zigbee [19,20], and Image-Based 

Location (IBL) [21,22], among others. However, most of them require a fundamental facility to support 

their detection. In this paper, zero-velocity is detected and used to develop an improved PDR model, and 

thereafter, it is used to fuse floor map topology to provide a more accurate position without any other 

hardware preparation. 

In this paper, a scheme for indoor positioning by fusing the floor map and sensor data to obtain  

a real-time hybrid indoor navigation result is presented. Compared with the existing technology, 

integrating the zero-velocity detection method and high sampling frequency could improve the accuracy 

and sensitivity of step detection and step length estimation to some extent. Moreover, an adaptive 

unscented Kalman filter (A-UKF) is presented to fuse the map information with the improved PDR 

result, as a compromise for considering both accuracy and Computational Load (CL). In Section 2, a 

type of zero-velocity detection method is proposed, and Section 3 proposes the basic theory for map 

matching used in this method. Subsequently, a fusion algorithm based on an A-UKF is demonstrated in 

Section 4. Then, Section 5 details the methodologies used in this study. Section 6 lists the equipment 

and environment for the experiments and the test designs to verify the accuracy and robustness of the 

idea, which is also analyzed. Finally, Section 7 concludes the paper. 

2. An Improved PDR Model 

2.1. Zero-Velocity Detection 

The ZDET algorithm is considered the most reliable and versatile method regardless of the user and 

displacement patterns (walk, run, side walk, crisscross) [23]. Just as its name implies, at foot stance, the 

velocity is zero, while v, which is obtained by integrating the free acceleration, should be below some 

certain threshold δ. However, due to the measurement noise and bias of the accelerometers, de-noising 

has to be applied. The algorithm is elaborated below. 

2.1.1. Acceleration Processing 

As the acceleration measurements have noise and gross errors, a processing model is required before 

PDR model development. 

(1) Transform the captured accelerations. acci from the B-frame (B) is transformed into the 

Navigation frame (N) as the Figure 1 shows below using the rotation matrix: 𝑎𝑐𝑐𝑖𝑁 = 𝑅𝐵→𝑁 ∙ 𝑎𝑐𝑐𝑖𝑏; then, the influence of gravity is canceled out. 

(2) Filter the acceleration at every stance event: 

(a) Compute the accelerometer magnitude: 𝑎𝑐𝑐_𝑚𝑎𝑔 =  √𝑎𝑐𝑐𝑋2 + 𝑎𝑐𝑐𝑌2 + 𝑎𝑐𝑐𝑍2 , where 𝑎𝑐𝑐𝑋, 𝑎𝑐𝑐𝑌 and 𝑎𝑐𝑐𝑍 denote the tri-axis acceleration in the navigation frame. 

(b) High-Pass (HP) filter accelerometer data. The Butterworth digital and analog filter, which is 

a kind of ordinary HP/LP filter, is used in this algorithm: [𝑏, 𝑎] = 𝐵𝑈𝑇𝑇𝐸𝑅(𝑁, 𝑊𝑛, ′𝑠′), 

where N is equal to 1 and “s” equals “high”. 𝑊𝑛 must satisfy 0.0 < 𝑊𝑛 < 1.0, with 1.0 

corresponding to half the sample rate.  
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Then,𝑎𝑐𝑐_𝑚𝑎𝑔𝐹𝑖𝑙𝑡 = filtfilt(𝑏, 𝑎, 𝑎𝑐𝑐_𝑚𝑎𝑔) the transfer function is [24]: 
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Figure 1. Illustration of the two coordinate systems. 

2.1.2. Zero-Velocity Detection (ZDET) Model 

We do not have a consensus on the best model for Zero-velocity detection (ZDET) for all situations. 

Hence, in this experiment, four kinds of detector models, provided by Nilsson [9], have been chosen as 

alternative schemes. They are presented below: 

(1) Generalized likelihood ratio test (GLRT) 
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where 𝑔(𝑖) and 𝑓(𝑖) represent the data on the tri-axis gyros and free acceleration, respectively, and 𝜖𝑔and 𝜖𝑓 denote the standard deviation of the respective associated noise. Meanwhile, n denotes the 

window size of the zero-velocity detector, and T is the test statistic for the detector. 

(2) Accelerometer measurement variance test (MV) 
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where 𝑎(𝑖) denotes the raw data on the tri-axis acceleration and 𝑎𝑣𝑔 denotes the average value of the 

acceleration from 1 to n. 

(3) Accelerometer measurement magnitude test (MAG) 
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where 𝑛𝑜𝑟𝑚 is the linearization and 𝑔𝑟𝑎𝑣 denotes local gravity. 

(4) Angular rate measurement energy test (ARE) 
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(5) 

To verify the accuracy of the four schemes, we tested them under conditions similar to our test site 

(with corners and lines), and the results are shown below: 

As we see in Table 1, the covariance denotes the gap between the measured result and real trajectory 

for each step. GLRT and ARE perform much better than the other two models. We therefore choose 

GLRT as our ZDET model in the experiments. 

Table 1. Covariance of the four Zero-Velocity Detection (ZDET) models. 

Type Covariance (m2) 

GLRT 0.43197 

MV 1.04398 

MAG 2.68470 

ARE 0.43931 

2.2. Step Length Estimation 

(1) The acceleration after step detection during each step, 𝑎𝑐𝑐𝑖𝑁, is integrated to obtain the linear 

velocity 𝑣𝑒𝑙𝑖𝑁: 𝑣𝑒𝑙𝑖𝑁 =  𝑣𝑒𝑙𝑖𝑁 + 𝑎𝑐𝑐𝑖𝑁/𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑎𝑡𝑒. We set the velocity to be zero when the 

foot is stationary [25]. 

(2) We obtain the position increment at step k, ∆𝑃𝑘 = (∆𝑃𝑘(𝑛𝑜𝑟𝑡ℎ), ∆𝑃𝑘(𝑒𝑎𝑠𝑡), ∆𝑃𝑘(𝑢𝑝)) , by 

integrating the corrected velocity samples, 𝑣𝑒𝑙𝑖𝑁, at every single step: 

( )

( 1)

= /
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(3) The 2D SL is computed by taking the horizontal Cartesian distance of the position increment: 

   2 2

kZUPT k kSL P north P east    (7) 

The step length estimation results for the respective Walking and Running models are shown in Table 2: 

Table 2. Gait recognition based on the ZDET algorithm. 

Walking Step Number Accuracy Rate Running Step Number Accuracy Rate 

1 50 100.0% 1 10 100.0% 

2 60 100.0% 2 20 100.0% 

3 70 97.1% 3 30 96.7% 

4 80 92.5% 4 40 92.5% 

5 90 96.7% 5 50 98.0% 

6 100 96.0% 6 60 86.7% 
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The results demonstrate that the accuracy of Walking and Running for several tests with the same 

experimenter, but different steps, are above 90% and 85%, respectively (compared with ground truth), 

indicating that the method developed is a reliable method for indoor experiments. 

2.3. Heading Determination by Fusing Gyroscope and Magnetometer Data 

Heading determination is a significant component of PDR-based positioning. The heading angle ψ is 
defined as the angle of rotation about the Z-axis with respect to the horizon/ground, which can be 

estimated using a gyroscope integrated with a magnetometer as well as by a magnetic field. 

First, we fuse the data from the magnetometer and gyroscope using the heading estimation algorithm 

presented by Wonho Kang in [21]. The fused heading angle is calculated as follows: 
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 (8) 

where m and n denote the magnetometer and the gyroscope, respectively, and α, β and γ are the weights 

of the current measurements from the gyroscope and the magnetometer. 𝜃𝑚,𝑘  and 𝜃𝑔,𝑘  denote the 

measurements acquired by the gyroscope and the magnetometer, respectively, for the 𝑘𝑡ℎ step. 𝜃𝑚is 

the standard deviation of the magnetometer, and 𝜃𝑐 is the correlation between the magnetometer and 

the gyroscope readings. 𝜃∆,𝑐  is the difference between 𝜃𝑚,𝑘 and 𝜃𝑔,𝑘 . 𝜃∆,𝑚  is the difference in the 

magnetometer readings between two consecutive steps k and k − 1. 

 

Figure 2. A test of heading fusion. 

Figure 2 presents the fusion results of a test for which a person walked forward dozens of steps with 

a smartphone held firmly in his hand and then crossed the first corner (turn of almost 38.5 degrees). 
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After a long corridor, the experimenter eventually turned left (turn of approximately 90 degrees) and 

reach the destination. The results reveal that the pseudo-heading measurements recorded by the 

magnetometer before and after the turn are considerably smoothed by the proposed algorithm, reducing 

fluctuation to a certain extent [12]. 

2.4. The Improved PDR 

Presented below is the flow chart (Figure 3) for the improved PDR method: 

Acceleration

Velocity

Distance

Kalman 
Filter

ZDET

Integrate

Integrate

0

1Vel = 0

MagnetometerGyro

Fusion Heading 
Angle

Position

 

Figure 3. Flow chart of the improved PDR. 

Compared with the traditional PDR method, ZDET could render the velocity to be zero, which 

eliminates the residual error in the velocity. 

3. Floor Map Matching Algorithm 

Map matching is a kind of position-calibrated method based on software technology, which is used 

as a sort of pseudo-measured technology. The main idea involves comparing localization results and the 

passable zone in the floor map, from which the most suitable trajectory should be found. We can use the 

Point of Interest (POI), such as a corner, to calibrate the accumulated error. In a broad sense, map 

matching in Indoor Positioning can be classified into a combined application category rather than a 

framework model category [26]. 

3.1. Correlation Matching Algorithm Based on Projection (CMAP) 

The CMAP is a kind of matching algorithm that involves mapping points to arcs. As shown in  

Figure 4 when the user’s position (Point P) exceeds the set buffer zone, by comparing the respective 
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distances (d1, d2 and d3) between Point P and each Line (L1, L2 and L3), an optimal solution that matches 

the user’s position to the nearest lines instead of knots and sharp points (“nearest” here represents the 

shortest distance between the terminal and road) can be determined. In most situations, this strategy 

performs better than the point to point (P2P) method [10]. 

 

Figure 4. Demonstration of Correlation Matching Algorithm based on Projection (CMAP). 

3.2. Zone Division 

First, the base map is to be divided into several components, such as passable zones and impassable 

zones. The passable zone can also be divided into linear vector zones and non-linear vector zones [12]. 

As the width of the corridor (indoor) has a limit, the walking trace can be seen as an approximate 

straight line, denoted by the grey components in Figure 5, and the corners can be thought of as  

non-linear zones. 

 

Figure 5. Zone division. 

3.3. Vector Matching 

When the walking trace is out of range, such as observed when running into an impassable zone, it 

can be rectified by CMAP to a certain extent. Moreover, the POI can be evaluated using the accumulated 

gyroscope data, as shown in Figure 6. When we turn a corner, the valley of accumulated data may be 

under a certain limit (10 rad in this instance). 
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Figure 6 Accumulated gyroscope data. 

The method for floor map matching (Figure 7) is shown below: 

Position

Gyros

 Ɵ=0   Ɵ=Corner Angle

Section 
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Figure 7. The flow of map matching. 

4. Adaptive Unscented Kalman Filter (A-UKF) 

Despite the better accuracy of the approaches described above, the absolute heading angle obtained 

using pre-process formula (5) may exhibit unpredictable errors, which could be eliminated by map 

matching (CMAP) to a certain extent. Considering the combination of the above methods and the  

non-linearized features of the observation equation, the Unscented Kalman Filter may be a suitable 

method to use [27–29]. 

4.1. Dynamic Equation 

The system state is estimated using recursive UKF equations, and the state equation is  

1 1
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 (9) 
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where 𝑁𝑘 and 𝐸𝑘 are the position states in the northern direction and the eastern direction, respectively, 

at time k; 𝜃𝑘 denotes the heading angle of the pedestrian; 𝑠̃ and 𝜃̃ denote the step length and angle 

velocity, respectively; and Wk−1 is the system noise at time k − 1. 

4.2. Observation Equation 

The observation equation for the integrated step length based on AHRS, the heading angle and 

orientation measurements can be written as follows: 
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 (10) 

where 𝑠𝑘 is the step length calculated using velocity increments of two consecutive steps and ∆𝜃𝑘 is 

the heading angle variable determined by CMAP, including corners and galleries. 𝜃𝑘 is the kth heading 

angle measured by formula (5), and V is the measurement noise vector. 

4.3. A-UKF Algorithm 

If the dynamic model of the system is abnormal, the variance of the dynamic model has to be adjusted 

to control the parameter estimation. Based on an Unscented Kalman filter (UKF) and the adaptive 

filtering algorithm, using the UKF algorithm for importance sampling, the sampling variance and mean 

value can be calculated by establishing the adaptive factor and real-time adjustment of the sampling 

variance, thereby weakening the error state model [30]. 

The steps for calculating the adaptive state parameter variance, which is different from ordinary UKF, 

is as follows: 

(1) Adaptive parameter 

The distinguishing statistic of the adaptive factor is the discrepancy of the state. 𝑋̅𝑘|𝑘−1 denotes the 

state forecasting value, 𝑥̃𝑘 denotes the robust state solution, and 𝑉̅𝑘denotes the difference between the 

state forecasting value and robust solution. When 𝑉̅𝑘 reaches a certain limit, the system is considered to 

be in an abnormal state[31]. 
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where tr(·) denotes the trace formula. The form of the adaptive factor function is: 
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where C is constant and ranges in value between 0.85 and 1. 

(2) Calculating the adaptive filter equivalent variance 
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where 𝑃𝑘|𝑘−1 denotes the variance of the Predictive Sample Point (PSP) and 𝑃𝑣𝑣 and 𝑃𝑥𝑣 represent the 

variance and covariance of the Predictive Measurement Point (PMP), respectively. 

The flowchart is shown below in Figure 8: 
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Figure 8. Flowchart of the filter process. 

4.4. Adaptive Factor Test 

To verify the effectiveness of the adaptive factor, an experiment was designed for proving the effect 

of A-UKF. The route in the SESSI building is shown below in Figure 9: 

 

Figure 9. Test Route in the School of Environmental Science and Spatial Informatics 

(SESSI) Building. 



ISPRS Int. J. Geo-Inf. 2015, 4 2649 

 

 

Moreover, three artificial error points are added into the data for each linear corridor in the route 

(approximately 60 steps, 126 steps and 219 steps), and the results are shown below:  

 
(a) 

 
(b) 

Figure 10. The results of the test: (a) estimated position based on Unscented Kalman Filter 

(UKF) and A-UKF and (b) variance of the adaptive parameter. 

As we can see in Figure 10a, the A-UKF trace is much closer to the real trace than the classic UKF 

trace, and it eliminates the influence of artificial error more rapidly. In addition, from Figure 10b, we 

see that when a gross error appears, the adaptive factor will rectify it, as does the two corners method, 

but with much less fluctuation, which means that the corners may cause some error that is still smaller 

than the gross error, which is also corrected. 

5. An Improved PDR/Magnetometer/Floor Map Integration Scheme 

In summary, the methodologies used are described below: 
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(1) Theoretical analysis. A series of basic studies have been analyzed. As mentioned in the 

introduction, recent PDR systems are becoming a feasible option for indoor localization due to 

the continual miniaturization of inertial sensors (Inertial Management Unit and Attitude Heading 

Reference System). Moreover, based on the three main components of PDR (step detection, step 

length estimation and orientation determination), we select the ZDET algorithm, an unusual but 

accurate algorithm, to detect the step. Then, during every step, a continuous integration algorithm 

is used to determine the distance with the acceleration, which is recorded from the accelerometer 

and transformed to N-frame coordinates. Moreover, the determination of orientation should be 

the most essential step. We therefore use a hybrid filter to fuse the data, provided by the AHRS 

system, to guarantee the stability and precision of the orientation. 

(2) Integration Methodology Development. In the experiment, several filters are tested, such as the 

Extended Kalman Filter, Unscented Kalman Filter, Particle Filter, and others. Considering 

various factors, including Measuring Accuracy (MA) and Computational Load (CL), we 

eventually choose one kind of adaptive unscented Kalman filter (A-UKF) as the fusion algorithm. 

(3) Physical System Implementation and Tests. A specific flowchart is shown in Figure 11: 
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Figure 11. The general flowchart. 

6. Experiment and Analysis 

6.1. Equipment and Situation 

We use a commercially available Inertial Measurement Unit, x-IMU, from x-io Technologies in UK. 

Figure 12 shows this sensor. It is 55 × 35 × 18 mm (L × W × H) in size and almost 50 g in weight. 
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(a) (b) 

Figure 12. Photos of the equipment and their usage: (a) the x-IMU and  

(b) foot-mount installation. 

 
(a) 

 
(b) 

Figure 13. Experimental site: (a) floor map of the fourth floor and (b) 3D model of the 

experimental site. 
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The x-IMU was designed to be the most versatile Inertial Measurement Unit (IMU) and Attitude 

Heading Reference System (AHRS) platform available. It hosts on-board sensors, a configurable auxiliary 

port and real-time communication via USB, Bluetooth or UART, which makes it both a powerful sensor 

and controller. The on-board SD card, battery charger (via USB), real-time clock/calendar and motion 

trigger wake up also make the x-IMU an ideal standalone data logger. 

The x-IMU has three orthogonally oriented accelerometers, three gyroscopes and three 

magnetometers. The accelerometers and gyroscopes are MEMS solid state with capacitive readouts, 

providing linear acceleration and rate of turn, respectively. Magnetometers use a thin-film 

magnetoresistive principle to measure the Earth’s magnetic field. 
The performance of each individual MEMS sensor within this facility is summarized in Table 1. They 

suffer from a significant bias, and this bias also varies over time; therefore, PDR algorithms have the 

challenge of avoiding excessive error accumulation (drift) during integration. 

To verify the effectiveness of the proposed algorithm, a field experiment was performed on the fourth 

floor of the School of Environmental Science and Spatial Informatics (SESSI) building on the campus 

of China University of Mining and Technology (CUMT) in Xuzhou, Jiangsu, China. In Figure 13a, blue 

arrows indicate linear corridors, and red “corners” indicate non-linear corridors and other areas that are 

unavailable for a person to pass through. A type of AHRS named x-imu produced by x-io Technologies 

Limited was used as the user terminal in the experiment; its technical specifications are shown in Table 3. 

Table 3. Technical specifications of the IMU. 

Instrument Scale Factor Random Walk 

Accelerometer (m/s2) 10.3333 ±0.0005 

Gyroscope (m/s2) 5.2457 ±0.0003 

Magnetometer (μT) 800.0000 ±0.0400 

6.2. Experiment 

To compare the tracking results, four schemes were designed: 

Scheme 1: Floor-map-aided PDR-based tracking result by hand-held smartphone (MPDR). 

Scheme 2: ZDET-based indoor positioning test with ordinary data (ZDET). 

Scheme 3: ZDET-based indoor positioning test with map-matching (MZDET). 

Map matching (achieved by A-UKF) was used to correct the information from different sensors for 

Schemes 1 and 3. In Schemes 2 and 3, the ZDET was used for step detection and step length estimation, 

and the ordinary PDR was accepted by Scheme 1. The floor level should, in general, be determined in 

advance from Z-axis accelerometer measurements, although only 2D positioning was considered here. 

Figure 14 shows the position trajectories for the three schemes. The colorful lines represent the travel 

paths calculated using the different schemes. In the test, the test participant walked with a uniform and 

stable gait; therefore, the true trajectory should be stable. 

As seen from Figure 15, the map-matching algorithm could help PDR eliminate the accumulated 

error, which should be an inevitable problem for classic PDR. However, some issues are still revealed 

to some degree; the step length estimation and step detection may be imprecise, and the error will be 
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accumulated just as a black line in a block. Moreover, compared with ZDET, the positioning results of 

the MZDET are more accurate and rarely suffer from the influence of a variable heading angle.  

 

Figure 14 Estimated position of the three schemes. 

 

Figure 15. The accumulated error of the PDR algorithm. 

Moreover, compared with an ordinary PDR algorithm, the figure below illustrates that the UKF 

algorithm preserves the continuity and stability of the PDR algorithm while simultaneously restricting 

the accumulation of errors, thereby improving the positioning accuracy. 

Figure 16 shows the step series of the position errors of the three schemes with respect to the reference 

positions provided by a master station. The largest errors of the MZDET integration algorithm were 

observed during hundreds of steps, which it shows much better than the other two methods. 

Moreover, we can see in Figure 17 that when a gross error (huge error) is observed, the adaptive 

factor is able to react and rectifies it rapidly. 
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Figure 16. The error step series of the three schemes. 

 

Figure 17. The variance of the adaptive parameter. 

The MSE, the average error (AE) and the maximum error (ME) reveal that the map-aided ZDET 

algorithm achieved the most reliable and accurate positioning results. In this test, the accuracy indicated 

by the MSE of the integrated MZDET indoor positioning algorithm was improved by 78.3% compared 

with the pure ZDET algorithm, and the AE and ME were reduced by 73.8% and 69.2%, respectively. 

Compared with the MPDR algorithm, the MSE of the integrated WPO algorithm was improved by 

32.2%, and the AE and ME were reduced by 39.5% and 53.7%, respectively (Table 4). 

Table 4. Error analysis of the three schemes. 

ERROR MPDR ZDET MZDET 

MSE/m 4.443 13.903 3.011 

AE/m 4.360 12.190 2.639 

ME/m 11.427 17.142 5.285 

As seen from the comparison, the integrated MZDET positioning algorithm results in an improvement 

in the accuracy, reliability, and calculation rate and a decrease in the accumulated error; therefore, this 

method is superior to the others to a certain extent. 

  

0 50 100 150 200 250 300 350 400
0

5

10

15

20

Step

e
rr

o
r/

m

 

 

MPDR

ZDET

MZDET

0 75 150 225 300

0.2

0.4

0.6

0.8

1

Step

g
a

m
m

a



ISPRS Int. J. Geo-Inf. 2015, 4 2655 

 

 

6.3. Robustness Test 

To demonstrate the robustness of the A-UKF integration algorithm for a foot-mounted indoor 

positioning system, some gross errors (three times the threshold of the step length covariance) were 

added to the step length observations as listed in Table 5: 

Table 5. Gross errors added to the step length measurements. 

Time (s) 30 60 85 126 178 219 269 

s (m) 3 3 3 3 3 3 3 

Figure 18 illustrates the positioning trajectories determined using the UKF algorithm and the A-UKF 

algorithm. As shown in Table 6, seven gross-error-contaminated points, which cause the trajectory to be 

deteriorated, are observed around each corner and linear corridor in Figure 13a. Table 6 shows the 

residuals of these two algorithms for each affected time point (as shown in the table before), and the 

results demonstrate that the A-UKF algorithm achieves a much higher reliability and accuracy. 

 

Figure 18 Estimated position based on A-UKF and UKF. 

Table 6. Residuals of the gross-error epochs. 

Time (s) UKF(m) A-UKF (m) 

30 1.50 1.39 

60  1.99 0.43 

93  3.00 0.32 

126  2.57 0.58 

172 1.84 0.76 

219 1.48 1.08 

269 1.50 1.05 

Gross errors were also added to the θk measurements (three times the threshold of the heading angle 

covariance), as listed in Table 7, to verify the robustness of both algorithms. The resulting positioning 

trajectories obtained by using the UKF algorithm and the A-UKF algorithm are shown in Figure 19. As 

shown in Figure 19, the seven gross-error-contaminated points cause the trajectory to be deteriorated 
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around the affected epochs as a result of the algorithms’ recursions. Table 8 lists the residuals of the 

gross-error-contaminated epochs. 

Table 7. Gross errors added to the orientation measurements. 

Time (s) 30 60 93 126 172 219 269 

k
 (°) +20 +20 +20 +20 +20 +20 +20 

 

Figure 19. Estimated position based on UKF and A-UKF. 

Table 8. Residuals of the gross-error epochs. 

Time (s) UKF (m) A-UKF (m) 

30 0.23 2.13 

60 1.08 1.10 

93 0.92 0.14 

126 2.15 0.27 

172 1.78 0.50 

219 0.56 0.46 

269 1.08 0.75 

These results demonstrate that the A-UKF algorithm is more robust than the ordinary UKF algorithm, 

regardless of where the gross error originated. 

These observations yield the following conclusions regarding the investigated positioning algorithms 

for indoor navigation systems. 

(1) Considering the issue of step detection, a ZDET method was proposed to improve the accuracy 

of detection, thereby decreasing the fluctuation to an acceptable level and improving the accuracy 

of the entire algorithm. 

(2) Despite the high accuracy provided by zero-velocity detection, PDR always requires a 

considerable precision of orientation, and therefore, most experiments using PDR require 

constraints to cope with the information obtained from the gyroscope or magnetometer. However, 

incorporating an electronic map of the structure by UKF into the analysis eliminates redundant 

operations, thereby helping to improve the computational speed and quality. 
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(3) Considering the stability of UKF, the adaptive parameter is integrated into the algorithm. The 

experiments show that compared with the classic UKF, A-UKF offers a much more powerful 

robustness, improving the positioning reliability and producing a dramatic upward shift in 

operating rate and quality. 

(4) In view of the considerable CL of A-UKF, which could load upon read-time calculation on an 

ordinary smartphone, there is the possibility of quasi-real-time measurements using mobile phones 

instead of a central computer, as has generally been used in other recent experiments. 

7. Conclusions 

This paper investigated several positioning algorithms for indoor navigation systems. A Zero-Velocity 

Update (ZDET) algorithm step detection method was presented. The proposed floor-map-aided ZDET 

algorithm was combined with an adaptive unscented Kalman filter (A-UKF). The experimental test 

results indicate that the ZDET methods eliminated the error of step length estimation and step detection 

to a certain extent. It was also demonstrated that the A-UKF could be very useful for correcting the 

heading angle and improving the quality and accuracy of the positioning results. Further development 

of the algorithm will focus on fusing other data sources, such as WiFi and ibeacon based on Bluetooth 

Low Energy (BLE), which could improve the accuracy and stability of the algorithm and make it  

more efficient. 
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