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Abstract

Mapping a locus controlling a quantitative genetic trait (e.g. blood pressure) to a specific genomic region is of considerable

contemporary interest. Data on the quantitative trait under consideration and several codominant genetic markers with

known genomic locations are collected from members of families and statistically analysed to estimate the recombination

fraction, �, between the putative quantitative trait locus and a genetic marker. One of the major complications in estimating �
for a quantitative trait in humans is the lack of haplotype information on members of families. We have devised a

computationally simple two-stage method of estimation of � in the absence of haplotypic information using the expectation-

maximization (EM) algorithm. In the first stage, parameters of the quantitative trait locus (QTL) are estimated on the basis of

data of a sample of unrelated individuals and a Bayes's rule is used to classify each parent into a QTL genotypic class. In the

second stage, we have proposed an EM algorithm for obtaining the maximum-likelihood estimate of � based on data of

informative families (which are identified upon inferring parental QTL genotypes performed in the first stage). The purpose

of this paper is to investigate whether, instead of using genotypically `classified' data of parents, the use of posterior

probabilities of QT genotypes of parents at the second stage yields better estimators. We show, using simulated data, that the

proposed procedure using posterior probabilities is statistically more efficient than our earlier classification procedure,

although it is computationally heavier.

[Ghosh S. and Majumder P. P. 2000 An improved procedure of mapping a quantitative trait locus via the EM algorithm using posterior

probabilities. J. Genet. 79, 47--53]

Introduction

The recent identification of highly polymorphic DNA

markers has resulted in a resurgence of interest in develop-

ing statistical techniques for quantitative trait locus (QTL)

mapping (Haseman and Elston 1972; Amos and Elston

1989; Lander and Botstein 1989; Goldgar 1990; Haley and

Knott 1992; Kruglyak and Lander 1995; Olson 1995;

Almasy and Blangero 1998). Many common human dis-

orders (e.g. hypertension, diabetes) are inherently quantita-

tive in nature. Therefore, QTL mapping is of considerable

interest in human genetics. Many currently used QTL

mapping methods, especially those that have been devel-

oped in the context of plant genetics or genetics of inbred

animals, assume knowledge of linkage phase in individuals,

which imposes a severe restriction on the applicability of

these methods in human genetics. One of the major

problems in QTL mapping is to accurately infer the geno-

type of an individual at the major locus controlling variation

of the quantitative trait. Ghosh and Majumder (2000) have

proposed a method to estimate, via the expectation-

maximization (EM) algorithm, the recombination fraction

between a marker locus and an autosomal major locus

controlling a quantitative trait from data on nuclear families

without any assumptions on linkage phase and haplotypes.

The proposed method is a two-stage strategy. In the first

stage, individuals are probabilistically classified into the

major locus genotypes, and in the second stage, the recom-

bination fraction is estimated using the inferences made in

the first stage. Monte-Carlo simulation studies showed that

this method works well only when the percentage of correct

trait locus classification is high and that the performance of

the method is quite poor in presence of high degree of

dominance in the QT. In this paper, we modify the

estimation procedure proposed by Ghosh and Majumder
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(2000). Instead of classifying each parent into a specific

trait locus genotype, we use the posterior probabilities

corresponding to each parental genotype in the second stage

of our algorithm. We show, using simulated data, that this

procedure performs better than the classification procedure.

Model

Consider an autosomal biallelic locus with alleles (A1; a1)

determining a quantitative trait Y . Suppose the distribution

of Y conditioned on the genotype is

YjA1A1 � N��; �2�
Y jA1a1 � N��; �2�
Y ja1a1 � N�ÿ�; �2�;

where � � � and �2 includes the environmental variance.

Suppose the allele frequency of A1 is p. Then, assuming

Hardy±Weinberg equilibrium proportions at the QTL, Y has

a mixture distribution given by

p2N��; �2� � 2p�1ÿ p�N��; �2� � �1ÿ p�2N�ÿ�; �2�:
Consider an autosomal biallelic codominant marker locus

with alleles (M1;m1) possibly linked to the QTL. The aim is

to estimate the recombination fraction, �, between the two

loci, which are assumed to be in linkage equilibrium.

Data description

We consider data on nuclear families. Suppose

f�yi1; yi2� : i � 1; 2; . . . ;Kg are the observed values of the

quantitative trait of K pairs of parents such that, in each

pair, either one parent is M1M1 and the other M1m1 or both

parents are M1m1. (Obviously, if neither parent is hetero-

zygous at the marker locus, the family is not informative for

linkage.) For the ith pair of parents with ni offspring, the

known trait values will be denoted as �yi3; yi4; . . . ; yini�2�;
i � 1; 2; . . . ;K. We further assume that the marker genotype

(M1M1;M1m1, or m1m1) of each offspring is known. Thus,

the data comprise trait values and marker genotypes of

parents and offspring in nuclear families.

An outline of the classification procedure

Estimation algorithm

Although the primary aim is to estimate �, since the trait

parameters �; �; �2 and p are unknown, one can estimate

these also to facilitate estimation of �. Knowledge of

�; �; �2 and p facilitates estimation of � because using the

estimated values of �; �; �2 and p, and the observed values

of the quantitative trait, one can classify each parent, albeit

probabilistically, to a specific trait locus genotype. When

trait locus genotypes are known for the parents in a nuclear

family, then obtaining an estimate of � from the remaining

data (marker genotypes of parents and offspring, and values

of the quantitative trait of the offspring) becomes much

simpler. The estimation procedure is based on this two-stage

strategy.

Let f1�x�, probability density function (pdf) of

N��; �2�;� 1����
2�
p

�
exp ÿ �xÿ��2

2�2

� �
,

�1, prior probability of f1;� p2,

f2�x�, pdf of N��; �2�;� 1����
2�
p

�
exp ÿ �xÿ��2

2�2

� �
,

�2, prior probability of f2; = 2p�1ÿ p�,
f3�x�, pdf of N�ÿ�; �2�, = 1����

2�
p

�
exp ÿ �x���2

2�2

� �
, and

�3, prior probability of f3; = �1ÿ p�2.

Thus the pdf of yi j (i � 1; 2; . . . ;K; j � 1; 2) is given by

f �yi j� �
P3

n�1 �n fn�yi j�.
The parameters to be estimated in this mixture model are

�, �2 and p. One can estimate these parameters by the

maximum-likelihood method.

The likelihood of the parental data is L��; �; �2; pjyi j� �QK
i�1

Q2
j�1

P3
n�1 �n fn�yi j�:

A computationally simple and elegant procedure of

estimating the parameters is based on the EM algorithm

(Dempster et al. 1977) corresponding to a mixture of

normal populations (see McLachlan and Krishnan 1997). A

sketch of the algorithm is presented below.

The mixture distribution can be viewed as an `incomplete'

setup in the sense that we have no a priori knowledge of

which of the three component distributions any particular

observation belongs to. The first step (E-step) in this algo-

rithm is therefore to estimate the probabilities with which an

observation may belong to any of the three component

distributions. The second step (M-step) uses these estimates

to build up the `complete' likelihood function, which is

easily maximized to yield relevant parameter estimates.

Define:

zi jn � 1; if yi j is an observation from pdf fn;

� 0; otherwise;

where i � 1; 2; . . . ;K; j � 1; 2; n � 1; 2; 3:
The E-step of the EM algorithm isbzi jn � E�zi jnjyi j�

� �n fn�yi j�P3
n�1 �n fn�yi j�

;

where i � 1; 2; . . . ;K; j � 1; 2; n � 1; 2; 3: We note that

these estimators are Bayes's.

Having obtained the bzi jns, we can easily obtain the closed

form expressions for the maximum likelihood estimate

(mle) of p, � and �2 in the M-step of the algorithm:

L�p; �; �; �2jyi j;bzi jn� �
YK
i�1

Y2

j�1

Y3

n�1

f�n fn�yi j�gbzi jn :
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The mle's of the parameters are given by

bp �PK
i�1

P2
j�1�bzi j1 � 1

2
bzi j2�

2K
;

b� �PK
i�1

P2
j�1�bzi j1 ÿbzi j3�yi jPK

i�1

P2
j�1�bzi j1 �bzi j3�

;

b� �PK
i�1

P2
j�1bzi j2yi jPK

i�1

P2
j�1bzi j2

;

b�2 � 1

2K

XK

i�1

X2

j�1

fbzi j1�yi j ÿ b��2 �bzi j2�yi j ÿ b��2
�bzi j3�yi j � b��2g:

As this algorithm is an iterative procedure, one requires

initial estimates of p, �, � and �2 �bp�0�; b��0�; b��0�; b�2�0�� to

implement this iterative algorithm. As an initial approxima-

tion of �, one can assume that there is no dominance effect,

i.e. b��0� � 0. As 0 � p � 1, one can fix bp�0� � p0 within this

interval. One can obtain the initial estimates of � and �2

using the method of moments.

In the next stage the parents are classified (i.e.

f�yi1; yi2� : i � 1; 2; . . . ;Kg) into one of the three compo-

nent distributions. One uses the usual classification rule

given by:

Classify yi j into fn if and only ifbzi jn � maxt�1;2;3bzi jt; �1�
where i � 1; 2; . . . ;K; j � 1; 2; n � 1; 2; 3; the bzi jns being

the final (converged) values in the above EM algo-

rithm. This is, in fact, the Bayes's classification rule

corresponding to the 0±1 loss function and thus minimizes

the error in classification under such loss functions

(Fergusson 1967).

Having estimated �; �; �2; p and having classified the

parents into the trait genotypes, one is now in a position to

implement another maximum-likelihood procedure to esti-

mate �. One uses the conditional trait distribution of the

offspring given the trait genotypes of the parents and the

marker genotypes of both parents and the offspring in order

to estimate �. We provide these distributions in tables 1 and 2.

Let

Mi j � marker genotype of jth individual in ith

family; i � 1; 2; . . . ;K; j � 1; 2; . . . ; ni � 2

Gi1;Gi2 � classified trait genotypes of the parents in ith

family; i � 1; 2; . . . ;K; j � 1; 2

Hi j � trait genotype of jth individual �i:e: � jÿ 2�th
offspring� in ith family; i � 1; 2; . . . ;K;

j � 3; 4; . . . ; ni � 2

Pi jn � PfHi j � 
njGi1;Gi2;Mi1;Mi2;Mi jg; where


1 � A1A1; 
2 � A1A2; 
3 � A2A2;

i�1; 2; . . . ;K; j � 3; 4; . . . ; ni � 2; n�1; 2; 3:

The Pi jns are obviously functions of �. However, for the

same genotype, Pi jn may be different for different

haplotypes. Thus, in estimating �, one has to consider the

different possible haplotypes separately for given trait and

marker loci genotypes of each parent. Next, one classifies

the offspring into their trait genotypes.

Define:

Qi jn � P�Hi j � 
njGi1;Gi2;Mi1;Mi2;Mi j; yi j�

� Pi jn fn�yi j�P3
n�1 Pi jn fn�yi j�

;

i � 1; 2; . . . ;K; j � 3; 4; . . . ; ni � 2; n � 1; 2; 3:

Table 1. Trait locus mating types among M1M1 �M1m1 parents, mating probabilities, and probabilities of trait locus genotypes among
offspring with marker genotype M1M1

�.

�g

g Mating type Probability A1A1 A1a1 a1a1

1 A1A1 � A1A1 p1
4 1

2
0 0

2 A1A1 � A1a1 p1
3p2

1
2
�1ÿ �� 1

2
� 0

3 A1A1 � a1A1 p1
3p2

1
2
� 1

2
�1ÿ �� 0

4 A1A1 � a1a1 2p1
2p2

2 0 1
2

0
a1a1 � A1A1

5 A1a1 � A1A1 2p1
3p2

1
4

1
4

0
a1A1 � A1A1

6 A1a1 � A1a1 2p1
2p2

2 1
4
�1ÿ �� 1

4
1
4
�

a1A1 � A1a1

7 A1a1 � a1A1 2p1
2p2

2 1
4
� 1

4
1
4
�1ÿ ��

a1A1 � a1A1

8 A1a1 � a1a1 2p1p2
3 0 1

4
1
4

a1A1 � a1a1

9 a1a1 � A1a1 p1p2
3 0 1

2
�1ÿ �� 1

2
�

10 a1a1 � a1A1 p1p2
3 0 1

2
� 1

2
�1ÿ ��

11 a1a1 � a1a1 p2
4 0 0 1

2

�Probabilites of trait locus genotypes among offspring with marker genotype M1m1 can be obtained by replacing � by (1ÿ �) in this table.

Journal of Genetics, Vol. 79, No. 2, August 2000 49

Mapping a QTL



Table 2. Trait locus mating types among M1m1 �M1m1 parents, mating probabilities, and probabilities of trait locus genotypes among offspring with marker genotype M1M1 and
M1m1*.

�g�M1M1� �g�M1m1�

g Mating type Probability A1A1 A1a1 a1a1 A1A1 A1a1 a1a1

1 A1A1 � A1A1 p1
4 1

4
0 0 1

2
0 0

2 A1A1 � A1a1 2p1
3p2

1
4
�1ÿ �� 1

4
� 0 1

4
1
4

0
A1a1 � A1A1

3 A1A1 � a1A1 2p1
3p2

1
4
� 1

4
�1ÿ �� 0 1

4
1
4

0
a1A1 � A1A1

4 A1A1 � a1a1 2p1
2p2

2 0 1
4

0 0 1
2

0
a1a1 � A1A1

5 A1a1 � A1a1 p1
2p2

2 1
4
�1ÿ ��2 1

2
��1ÿ �� 1

4
�2 1

2
��1ÿ �� 1

2
�1ÿ 2��1ÿ ��� 1

2
��1ÿ ��

6 A1a1 � a1A1 2p1
2p2

2 1
4
��1ÿ �� 1

4
�1ÿ 2��1ÿ ��� 1

4
��1ÿ �� 1

4
�1ÿ 2��1ÿ ��� ��1ÿ �� 1

4
�1ÿ 2��1ÿ ���

a1A1 � A1a1

7 a1a1 � A1a1 2p1p2
3 0 1

4
�1ÿ �� 1

4
� 0 1

4
1
4

A1a1 � a1a1

8 a1A1 � a1A1 p1
2p2

2 1
4
�2 1

2
��1ÿ �� 1

4
�1ÿ ��2 1

2
��1ÿ �� 1

2
�1ÿ 2��1ÿ ��� 1

2
��1ÿ ��

9 a1a1 � a1A1 2p1p2
3 0 1

4
� 1

4
�1ÿ �� 0 1

4
1
4

a1A1 � a1a1

10 a1a1 � a1a1 p2
4 0 0 1

4
0 0 1

2

�Probabilites of trait locus genotypes among offspring with marker genotype m1m1 can be obtained by replacing � by (1ÿ �) in the block corresponding to the genotype M1M1 in this

table.

5
0

J
o

u
rn

a
l

o
f

G
en

etics,
V

o
l.

7
9
,

N
o
.

2
,

A
u
g
u
st

2
0
0
0

S
a
u
ra

b
h

G
h
o
sh

a
n
d

P
a
rth

a
P
.

M
a
ju

m
d
er



In the computation of Qi jn, one uses b�, b� and b�2 obtained

using the EM algorithm described previously.

The usual classification rule is given by:

Classify yi j into fn if and only if

Qi jn � maxt�1;2;3Qi jt;

i � 1; 2; . . . ;K; j � 3; 4; . . . ; ni � 2; n � 1; 2; 3:
The likelihood of � is given by

L��� �
YK
i�1

Li���; �2�

where Li��� is the likelihood of the ith family based on the

classified genotypes of the ni offspring of that family. Note

that as haplotypic information is usually unavailable from

nuclear family data, Li��� would be a mixture of the

different conditional trait distributions of the offspring

corresponding to the different possible haplotypes. In fact

Li��� is a mixture with components of the form ci0�
i1

�1ÿ ��i2 or ci0�
i1�1ÿ ��i2f�2 � 1ÿ ��2gi3

, where ci0 is some

constant. Since a direct analytical maximization procedure

is complicated, one implements an EM procedure. Li
����

would be of the form ci�
ui�1ÿ ��vi , where ci is some

constant while ui and vi are functions of �. Thus,

L���� �
YK
i�1

ci

( )
�
PK

i�1
ui�1ÿ ��

PK

i�1
vi ;

which is easy to maximize, giving

b� � PK
i�1 uiPK

i�1�ui � vi�
:

Since uis and vis depend on �, one needs an initial

approximation for implementing the EM algorithm. As

0 � � � 0:5; � � 0:25 may be used as an initial approx-

imation. If the final (converged) value of b� exceeds 0:5, one

takes b� � 0:5.

We finally note that families in which neither parent is

classified as a heterozygote at the major QTL can be

discarded even before marker-typing because these families

will not provide any information for estimating �. This

strategy will be cost-effective.

Efficiency of the estimation procedure

Assessment of the efficiency of the estimation procedure is

of obvious importance. Before providing the results, we

describe the simulation procedure for fixed values of

p; �; �; �2 and �. In the first step, we randomly generated

the trait values of a fixed number (NOBS) of pairs of

unrelated parents from appropriate (selected randomly using

a trinomial random number generator with cell probabilities

p2, 2pq and q2) normal distributions (see Model section

above). In the second step, using the data so generated, the

trait parameters (�; �; �2; p) were estimated using the EM

algorithm. (We emphasize that, for the purpose of estimat-

ing the trait parameters, it is not essential to obtain data on

pairs of parents; only data on randomly sampled unrelated

individuals suf®ce.) In the third step, the QTL genotypes of

the parents are inferred using the Bayes's rule. For further

computations, only those pairs of parents with at least one

inferred QTL heterozygote are retained. In the fourth step,

for each parent in the retained pairs, marker genotype was

determined using a trinomial random number generator. For

subsequent computations, only those parental pairs with at

least one double heterozygote were retained. In the ®fth

step, we randomly generated the marker genotype of an

offspring by sampling either from a binomial distribution

with success probability 1=2 for a parental mating in which

one parent is M1M1 or M2M2 and the other parent is M1M2

at the marker locus, or from a trinomial distribution with

cell probabilities �1=4; 1=2; 1=4� for a parental mating in

which both parents are M1M2. In the sixth step, based on the

conditional probabilities of offspring genotypes given

parental mating type as provided in tables 1 and 2, we

generated, using a trinomial random number generator, the

genotype of the offspring with respect to the trait locus.

These steps were repeated until the required number of

informative families (NFAM) were obtained. Using the data

so generated, we again used the EM algorithm to estimate �.
Replication of this procedure a large number of times

(NREP) yielded the empirical frequency distribution. For

every set of parameter values, we have evaluated the

performance of the estimator with ®ve offspring per family,

NFAM � 100 and NREP � 1000.

Classification of parents with respect to QTL genotypes

As mentioned earlier, in the first stage of the procedure

parents are classified into genotype classes on the basis of

their observed trait values. Success of estimating the recom-

bination fraction accurately by the present procedure depends

critically on the classification performance at the first stage.

We find that when there is no dominance (i.e. � � 0) more

than 95% and 99.5% of the parents were correctly classified

into their true genotypic classes. The percentage of correct

classification increased as p deviated more from 0:5. The

percentage of correct classification decreased as the extent of

dominance (�) increased. The worst classification arose

when the overlap between distributions of the A1A1 and A1a1

genotype classes was the largest.

Mean and variance of b� and confidence interval for �

To examine the behaviour of the estimator in respect of

variation in values of p and �, we have performed simula-

tions for fixed parameter values � � 5; �2 � 1, and for

values of p � 0:9; 0:7; 0:5; � � 0; 2; 4; and � � 0:1; 0:3; 0:5.

We have evaluated the means and variances of b� and have

obtained 95% confidence intervals of �. The results are

given in table 3. These results indicate that the performance

of the estimator is poor when p is close to 0:5 and the degree

of dominance ��� is high. When p is close to 0:5, the mean

of b� is more deviant from the true value of � and the 95%
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confidence interval of � is wider, particularly when � is very

close to 0:5. We also note that for fixed values of �; �2; p

and � the estimator is adversely affected in a nonlinear

fashion by increase in �.

Effect of using posterior probabilities at
the second stage

As described in the previous section, Ghosh and Majumder

(2000) classified each parent into a most likely trait

genotype using Bayes's 0±1 classification rule. As we note

from our simulation results in the previous section, the

performance of the estimator is strongly dependent on the

percentage of correct genotypic classification of the parents.

The estimator does not perform well for high degrees of

dominance in the trait.

In this section, we investigate whether the performance of

the estimator can be improved by using posterior prob-

abilities of the three possible parental trait genotypes given

the trait values of the parents in the second stage of the

proposed procedure instead of classifying each parent into

one specific trait genotype [which is equivalent to using one

of posterior probability distributions (1,0,0), (0,1,0) or

(0,0,1)].

As mentioned in the previous paragraph, we do not use

the classification rule given by equation 1. We note that the

posterior probability of the jth parent of the ith family

belonging to the tth trait genotype is given byczi jt; i � 1; 2; . . . ;K; j � 1; 2; t � 1; 2; 3, which will be used

in the second stage of our estimation procedure.

In the present setup, we need to redefine Gi1;Gi2 and Pi jn

as:

Gi1;Gi2 � trait genotypes of parents in the ith family:

P
l;m
i jn � P�Hi j � 
njGi1 � 
l;Gi2 � 
m;Mi1;Mi2;Mi j�;

where 
1 � A1A1; 
2 � A1a1; 
3 � a1a1:

Similarly, Qi jn has to be redefined as:

Q
l;m
i jn � P�Hi j � 
njGi1 � 
l;Gi2 � 
m;Mi1;Mi2;Mi j; yi j�

� Pi jn
l;m fn�yi j�P3

n�1 Pi jn
l;m fn�yi j�

:

Thus, at the trait genotype classification stage of each

offspring, we need to classify the offspring for every

possible trait genotype combination of the parents (i.e. for

each combination of �l;m�; l;m � 1; 2; 3). The likelihood

function L��� is identical to equation 2 except that each

Li��� comprises more complex mixture components than in

the classification procedure, with the mixture proportions

being functions of the product �czi1l �dzi2m�, for each

combination of �l;m�, i.e. the posterior trait genotype

probabilities of the parents in the ith family.

We use simulated data with the same sets of trait and

linkage parameters as in the previous section to compare the

performances of the estimators under the two strategies. The

results based on the present strategy are given in table 4.

Comparing this table with table 3, we find that means of the

estimates of � are, in general, more close to the true values

of � and have less variance compared to the earlier

procedure based on parental classification. Moreover, the

confidence intervals of � are less wide under this strategy.

The two procedures perform similarly when the proportion

of homozygotes is high and dominance at the trait locus is

low. However, as the proportion of heterozygotes or the

degree of dominance at the trait locus increases, the

performance of this procedure becomes increasingly better.

This is due to the fact that unlike our proposed procedure,

this procedure does not depend on the performance of

parental trait genotype classification. Thus, the performance

of this procedure is not affected by parameters that increase

the misclassification probabilities like trait locus hetero-

zygosity and dominance. The estimator under this strategy

has more desirable statistical properties than the earlier

estimator (Ghosh and Majumder 2000), though data ana-

lysis using this strategy is computationally more complex.

Table 3. Mean and variance of b� and 95% con®dence interval of
� using classi®cation procedure for � � 5; �2 � 1; p � 0:9;
0:7; 0:5; � � 0; 2; 4; � � 0; 0:1; 0:3; 0:5.

p True � � Mean(b�) Var(b�) 95% C.I. of �

0.9 0 0 0.015 0.000174 (0.009, 0.026)
2 0.044 0.000432 (0.017, 0.048)
4 0.075 0.000695 (0.051, 0.097)

0.1 0 0.103 0.000084 (0.099, 0.114)
2 0.117 0.000277 (0.095, 0.126)
4 0.172 0.001008 (0.131, 0.195)

0.3 0 0.303 0.000452 (0.291, 0.311)
2 0.313 0.000747 (0.286, 0.328)
4 0.368 0.001739 (0.345, 0.401)

0.5 0 0.478 0.000397 (0.438, 0.500)
2 0.471 0.000902 (0.415, 0.500)
4 0.409 0.001335 (0.395, 0.487)

0.7 0 0 0.021 0.000154 (0.019, 0.041)
2 0.053 0.000312 (0.023, 0.057)
4 0.081 0.000865 (0.063, 0.101)

0.1 0 0.107 0.000087 (0.095, 0.122)
2 0.122 0.000290 (0.097, 0.128)
4 0.182 0.001064 (0.143, 0.204)

0.3 0 0.308 0.000497 (0.293, 0.317)
2 0.317 0.000683 (0.284, 0.321)
4 0.373 0.001867 (0.357, 0.408)

0.5 0 0.491 0.000083 (0.477, 0.500)
2 0.487 0.000118 (0.472, 0.500)
4 0.413 0.001146 (0.401, 0.494)

0.5 0 0 0.038 0.000186 (0.022, 0.058)
2 0.067 0.000299 (0.035, 0.073)
4 0.105 0.001018 (0.071, 0.112)

0.1 0 0.113 0.000129 (0.097, 0.123)
2 0.115 0.000283 (0.089, 0.124)
4 0.196 0.001153 (0.162, 0.208)

0.3 0 0.314 0.000512 (0.291, 0.325)
2 0.321 0.000630 (0.287, 0.329)
4 0.381 0.001794 (0.358, 0.416)

0.5 0 0.497 0.000056 (0.486, 0.500)
2 0.491 0.000068 (0.478, 0.500)
4 0.421 0.001062 (0.411, 0.498)
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Discussion

The classification procedure for linkage detection proposed

by Ghosh and Majumder (2000) exploits the fact that

knowledge of parental genotypes at the QTL greatly eases

statistical estimation of �. Since for a quantitative character

the QTL genotype of an individual cannot be inferred with

certainty because of intrinsic variability within genotype

classes, Ghosh and Majumder (2000) had used the EM

algorithm coupled with a Bayes's classification procedure to

classify parents into QTL genotype classes. Here we have

modified this procedure by introducing posterior proba-

bilities of each parental trait genotype in the second stage of

our algorithm instead of classifying each parent into a

specific trait locus genotype. In this procedure, estimates of

trait parameters and recombination fraction are obtained.

The estimates of trait parameters are used in obtaining the

posterior probabilities of the parental QTL genotypes,

which are then used in obtaining an estimate of the

recombination fraction. The estimation of trait parameters,

in the first stage of the proposed two-stage procedure, can

be based either on data of a random sample of individuals or

on data of parents (assumed to be unrelated) in families.

We have shown using simulations that our proposed

method provides very good estimates of � for a wide range of

parameter values and reasonable sample sizes. Moreover,

unlike the earlier procedure proposed by Ghosh and

Majumder (2000), which is strongly dependent on the

quality of classification of parental QT genotypes, the present

procedure does not involve any parental trait locus classi-

fication and performs well even when heterozygosity is less

and dominance is high in the QT. Compared to numerical

maximization of the likelihood (Lincoln et al. 1993) of

parental and offspring data, on all families jointly with

respect to all parameters (recombination fraction, trait para-

meters and allele frequencies), the proposed stagewise proce-

dure using the EM algorithm is computationally much more

ef®cient and provides reduction of data collection costs.
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2 0.494 0.000167 (0.485, 0.500)
4 0.491 0.000245 (0.477, 0.500)
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