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An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is
presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm
to escape from the likely local optima and guide the swarm to perform more e	cient search. During the iterative optimization
process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate
new diverse individuals through the transposon operators. �e new generated individuals with better 
tness are selected to be the
newpersonal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation
study is conducted on a set of twelve benchmark functions. Compared with 
ve state-of-the-art quantum-behaved particle swarm
optimization algorithms, the proposed EB-QPSO performsmore competitively in all of the benchmark functions in terms of better
global search capability and faster convergence rate.

1. Introduction

Particle swarm optimization (PSO), inspired by the social
behavior of bird �ocks [1], is an important and widely used
population-based stochastic algorithm. Unlike evolutionary
algorithms, PSO is computationally inexpensive and its
implementation is straightforward. Each potential solution
in PSO, represented by a particle, �ies in a multidimensional
search space with a velocity dynamically adjusted by the par-
ticle’s own former information and the experience of the other
particles. For its superiority, PSO has rapidly developed with
applications in solving real-world optimization problems in
recent years [2–5].

However, as demonstrated by van den Bergh [6], PSO is
not a guaranteed global convergence algorithm according to
the convergence criteria in [7]. Based on quantummechanics
and trajectory analysis of PSO [8], Sun et al. [9] proposed a
variant of PSO, quantum-behaved PSO (QPSO) algorithm,
which is theoretically proved to be global convergent using
Markov process [10, 11]. �e global convergence of QPSO
guarantees to 
nd the global optimal solution upon unlimited

number of search iterations. Nevertheless, such condition is
unrealistic when it comes to the real-world problems as only
a 
nite number of iterations are allowed for the search of
optimal solution on using any optimization algorithm. �us,
QPSO is also likely to be trapped in local optima or with slow
convergence speedwhen it is used to solve complex problems.
So far, many researchers developed various strategies to
improve performance of QPSO in terms of convergence
speed and global optimality [12–21]. However, it is rather
di	cult to improve the global search capability and accelerate
the rate of convergence simultaneously. If any attempt focuses
on avoiding being stuck at local optima, it is likely to have a
slower convergence rate.

In PSO, the personal best (pbest) of each particle and
global best (gbest) of the swarm found so far in the search
process can be considered as the elitists of the whole swarm
at any search iteration. In most of the current QPSOs, the
information of elitists is either used directly or with some
simple extra processing to guide the �ying behavior of each
particle in the search space; to the best of our knowledge,
deep exploration with the elitist is not taken into account to
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assist the search of solutions in any work of QPSO reported in
literatures. �e exploration on the elitists will produce some
extra information that may be bene
cial for the search of the
optimal solution.

In this study, a novel variant of the QPSO algorithm,
called the quantum-behaved particle swarm optimization
with elitist breeding (EB-QPSO), is proposed for the desir-
able aims to achieve better global search capability and
convergence rate by employing a breeding scheme through
transposon operators on elitists of the swarm. Elitist breeding
is a kind of advanced elitist exploration method treating the
elitist members as parents to create new diverse individuals
with transposon operators. On one hand, elitist breeding
helps to diversify the particle swarm during the search and
thus enhance the global search capability of the algorithm.
On the other hand, the new bred individuals with better

tness are selected as the new members of elitists and used
to guide the swarm to perform exploration and exploitation
more e	ciently. Experiment results on twelve benchmark
functions show that EB-QPSO outperforms the original
QPSO and other four state-of-the-art QPSO variants.

�e rest of this paper is organized as follows. A brief
introduction of QPSO is presented in Section 2. In Section 3,
an overview of related work is given.�e proposed EB-QPSO
algorithm is elaborated and compared with various existing
QPSO algorithms over twelve benchmark functions in Sec-
tions 4 and 5, respectively. Finally, the general conclusions of
the paper are given in Section 6.

2. Quantum-Behaved Particle
Swarm Optimization

In the original PSO, each particle is de
ned by a position
vector x = (�1, �2, . . . , ��) which signi
es a solution in
the search space and associated with a velocity vector v =(V1, V2, . . . , V�) responsible for the exploration of the search
space. Let� denote the swarm size and� the dimensionality
of the search space, during the evolutionary process, the
velocity and the position of each particle are updated with the
following rules:

V
�+1
�,� = �V��,� + �1���,� (	
����,� − ���,�)

+ �2���,� (�
���� − ���,�) ,
��+1�,� = ���,� + V

�+1
�,� ,

(1)

where � (1 ≤ � ≤ �) and � (1 ≤ � ≤ �), V��,� and ���,� are the�th dimension component of velocity and position of particle� in search iteration , respectively, 	
����,� and �
���� are
the �th dimension of the personal best of particle � and the
global best of the swarm in search iteration , respectively,� is the inertia weight, �1 and �2 are two positive constant
acceleration coe	cients, and ���,� and ���,� are two random
numbers uniformly distributed in the interval (0, 1).

According to the trajectory analysis given by Clerc and
Kennedy [8], the convergence of the PSO algorithm may be

achieved if each particle converges to its local attractor 	� =(	�,1, 	�,2, . . . , 	�,�), of which the coordinates are de
ned as

	��,� = ��� × 	
����,� + (1 − ���) × �
����, (2)

where ��� = �1���,�/(�1���,� + �2���,�).
�e concept of the QPSO was developed based on the

analysis above. Each single particle in QPSO is treated as a
spin-less onemoving in quantum space and the probability of
the particle’s appearing at position ��� in the search iteration is determined from a probability density function [22].
Employing the Monte Carlo method, each particle �ies with
the following rules:

��+1�,� = 	��,� + � ��������,� − �
��������� ln( 1���,�) ,
if randV ≥ 0.5,

��+1�,� = 	��,� − � ��������,� − �
��������� ln( 1���,�) ,
if randV < 0.5,

(3)

where � is a parameter called contraction-expansion coe	-
cient; both ���,� and randV are random numbers uniformly
distributed on [0, 1]; �
�� is a global virtual point called
mainstream or mean best de
ned as

�
���� = 1�
�∑
�=1
	
����,�. (4)

A time-varying decreasingmethod [23] usually is adapted
to control the contraction-expansion coe	cient de
ned as
follows:

� = �1 + (� − ) × (�0 − �1)� , (5)

where �0 and �1 are the initial and 
nal values of �,
respectively; � is the maximum number of iterations;  is the
current search iteration number.

�e QPSO algorithm has simpler evolutional equation
forms and fewer parameters than classical PSO, substantially
facilitating the control and convergence in the search space.
Without loss of generality, let  be the objective function to
be minimized; the procedure for implementing the QPSO is
given in Algorithm 1.

3. Related Work

Since QPSO was proposed, it has attracted much attention
and di�erent variants of QPSO have been proposed to
enhance the performance from di�erent aspects and applied
to solve various real world optimization problems. In this
section, a brief review of these QPSO variants will be
presented. In general, most current QPSO variants can be
classi
ed into three categories, that is, the improvement based
on operators from other evolutionary algorithms, hybrid
search methods, and cooperative methods.
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(1) Procedure of QPSO
(2) For � = 1 to swarm size�
(3) randomize the position of each particle �[�];
(4) evaluate �[�]; 	
��[�] = �[�];
(5) Endfor

(6) Do

(7) �
�� = argmin( (	
��));
(8) compute�
�� by (4);
(9) For � = 1 to swarm size�
(10) calculate 	[�] with (2);
(11) update �[�] with (3);
(12) If  (�[�]) <  (	
��[�])
(13) 	
��[�] = �[�];
(14) Endif

(15) Endfor

(16) Untilmaximum number of iterations is reached

Algorithm 1: �e pseudocodes for QPSO algorithm.

To improve the search e	ciency, di�erent operators de-
rived from other evolutionary algorithms were introduced
intoQPSOalgorithms.�emutation operator provides diver-
sity in the search of solutions and consequently enhances the
global search capability; therefore, various mutation opera-
tors based on Cauchy probability distribution [24], Gaussian
probability distribution [14, 25], Lévy probability distribution
[20], and chaotic sequences [26] were proposed to improve
theQPSOperformance in preventing premature convergence
to local optima. Selection operators are bene
cial in making
good use of the information of elitists and the particles’ posi-
tion in the last iteration. Elitist selection operator and ranking
strategy were introduced into QPSO to balance the conver-
gence rate and global searching ability in [27, 28]. In [15], the
mbest in each particle’s position update procedure is deter-
mined by a random selection operator on all the pbests of the
whole swarm. Another approach incorporating a ranking
operator to select a random particle with its personal best
position replacing the global best position in order to guide
the particle to escape from the local optima is also proposed
in [15]. Besides mutations and selections mentioned above,
DE operators [29] and crossover operator [30] were also inte-
grated into QPSO to enhance the particles’ search capability.

Various search methods, including those from other
optimization algorithms and the new proposed approaches,
were incorporated into QPSO for better search e	ciency. In
[31], local searchwas incorporated into themain global search
mechanism of QPSO to enhance the searching qualities of
QPSO.�e chaotic search method was integrated into QPSO
to diversify the swarm in the latter period of the search
process so as to alleviate the likelihood to be stuck in the local
optima [32]. In [33, 34], the immune system was introduced
toQPSO to e�ectively restrain the degeneration in the process
of optimization. Simulated annealing was incorporated into
QPSO to improve the ability to e�ectively jump out of the
local optima in [35].

�e third category, cooperative methods, refers to the
searches performed with multiswarms or the approaches

of optimizing di�erent components of each solution vector
separately. In [36], two subswarms were used to search in
di�erent layers and the cooperation of the subswarms leads to
better performance in approximating solutions to the global
optima. In [21, 37], a particle is split into several subparts and
makes contribution to the populationnot only as awhole item
but also in subset of the position vector.

4. The Proposed Algorithm

�ere are numerous variants of QPSO which have been
proposed in recent literatures. In most of the QPSOs, elitists
are simply stored in memory for the solution comparison or
through simple processing step like mutation for the explo-
ration search. Nevertheless, to the best of our knowledge,
all the existing QPSOs seldom explore the elitist memory
and get more potential information from it, which might
be a signi
cant trend to improve the performance of the
algorithm.

�e memory of QPSO mainly consists of the elitist
individuals which are the personal best of each particle
and the global best of the whole swarm. According to the
iterative equation of QPSO, the memory is very important in
a�ecting the behavior of the swarm and thus impinges the
performance of the algorithm. If the personal best particles
and the global best particle get trapped in local optima, the
algorithm will likely converge to local optima. On the other
hand, if the individuals in memory are less likely to be stuck
at local optima, the algorithm can achieve better solutions.

In fact, we believe that the information from elitists
can have a better use in aiding the search exploration and
exploitation of the global optima. New subswarms can be
generated from the elitists with proper mechanism to aim at
the better search e	ciency in terms of the solution quality
and rate of convergence. An elitist exploration strategy,
namely, elitist breeding, is proposed in this study. It makes
use of the elitists generated in the evolutionary processes of
algorithm to create new subswarms through the proposed
breeding scheme. In the elitist breeding scheme, an elitist
pool consists of personal best particles and global best particle
found so far was constructed, and then the transposon
operators which has the ability to enhance the diversity of
solutions are selected as the breeding operators to explore
the elitist memory and extract some more potential essences
from the elitist individuals, thus to improve the search
e	ciency ofQPSO.Moreover, themechanismof updating the
elitists with the new bred individuals with better 
tness also
provides a more e	cient and precise search guidance for the
swarm.�epseudocodes of the proposed EB-QPSO are given
in Algorithm 2.

We can see from the pseudocodes of EB-QPSO that when
the criteria is met, the personal best of each particle and the
global best will be put into an elitist pool named epool and
a new subswarm called epool eb is generated through the
transposon operators on the elitist pool. �e size of epool eb
is the same as the epool and each individual in both of the
pools is identi
ed with its sequential order. To maintain the
diversity of the swarm, each individual in epool eb is only
compared with the member with the same sequential order
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(1) Procedure of EB-QPSO
(2) For � = 1 to swarm size�
(3) randomize the position of each particle �[�];
(4) evaluate �[�]; 	
��[�] = �[�];
(5) Endfor

(6) Do

(7) �
�� = argmin( (	
��));
(8) compute�
�� by (4);
(9) If elitist breeding criterion is met
(10) For � = 1 to swarm size�
(11) �	!!"[�] = 	
��[�];
(12) Endfor

(13) �	!!"[� + 1] = �
��;
(14) �	!!" �
 = transposon op(�	!!");
(15) For � = 1 to swarm size�
(16) If  (�	!!" �
[�]) <  (	
��[�]);
(17) 	
��[�] = �	!!" �
[�];
(18) Endif

(19) Endfor

(20) �
�� = argmin( (	
��));
(21) Endif

(22) For � = 1 to swarm size N
(23) calculate 	[�] with (2);
(24) update �[�] with (3);
(25) If  (�[�]) <  (	
��[�])
(26) 	
��[�] = �[�];
(27) Endif

(28) Endfor

(29) Untilmaximum number of iterations is reached

Algorithm 2: �e pseudocodes for the proposed EB-QPSO algo-
rithm.

in epool. �e pbests will be updated when the new generated
individual is better than the corresponding one in epool. Here,
a prede
ned parameter # is used to control the frequency of
elitist breeding. In every # iteration, the breeding operation
will be performed once.

Transposon operators were 
rstly proposed by Man
et al. [38] and mainly used in multiobjective evolutionary
algorithms (MOEAs). A transposon is made of consecutive
genes located in the randomly assigned position in each
chromosome while the transposon operators are lateral
movement operations that happen in one chromosome or
between di�erent ones. Generally speaking, there exist two
types of transposon operators, that is, cut-and-paste and
copy-and-paste, which are demonstrated in Figures 1 and 2.
�e transposon operations conducted within an individual
chromosome or on a di�erent chromosome are chosen
randomly. Moreover, the size of each transposon can be
greater than one and is decided by a parameter called
jumping percentagewhile the number of transposons is also a
prede
ned parameter. Another parameter, the jumping rate,
is assigned to determine the probability of the activation of
transposon operations.

As demonstrated in Figure 3, each particle which can
be regarded as a chromosome consists of the same number
of genes as the size of its position vector and each gene
holds a real number of the corresponding decision variable.
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Figure 1: Cut-and-paste transposon operator. (a) Cut-and-paste in
same chromosome. (b) Cut-and-paste in di�erent chromosomes.
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Figure 2: Copy-and-paste transposon operator. (a) Copy-and-paste
in same chromosome. (b) Copy-and-paste in di�erent chromo-
somes.
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Figure 3: An example of the particle is represented as a chromo-
some.
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(1) Function epool eb = transposon op(epool)
(2) generate the epool ratio with the epool based on (6)
(3) For � = 1 to� + 1
(4) For $ = 1 to number of transposon
(5) If rand(0, 1) < jumping rate
(6) %1 = �;
(7) %2 = ���"(rand(0, 1) × (� + 1))
(8) If %1 == %2
(9) If rand(0, 1) > 0.5
(10) perform cut and paste operation in epool ratio [%1];
(11) Else

(12) perform copy and paste operation in epool ratio [%1];
(13) Endif

(14) Else

(15) If rand(0, 1) > 0.5
(16) perform cut and paste operation in epool ratio [%1] and epool ratio [%2];
(17) Else

(18) perform copy and paste operation in epool ratio [%1] and epool ratio [%2];
(19) Endif

(20) Endif

(21) Endif

(22) Endfor

(23) Endfor

(24) restore the individuals from epool ratio based on (7) and save to epool eb

Algorithm 3: �e pseudocodes for the transposon operations in the proposed algorithm.

It is clear that the number of the chromosomes is the same
as the number of particles in the swarm. With such repre-
sentation, the transposon operators can be integrated into
PSOs. However, since di�erent decision variables might have
di�erent boundary constraints, the transposon operators
might generate invalid individual. As illustrated in Figure 3,
the boundary violation occurs if �1 is copied to the position
of �2. To overcome the boundary violation problem caused
by transposon operators, according to the description in
[39], the position vector of each particle is normalized to
a chromosome consists of the ratio value of each variable
occupying in its own boundary range before performing the
transposon operations.�e conversion equation is de
ned as
follows:

conv (�) = � − lb (�)
ub (�) − lb (�) , (6)

where lb(�) and ub(�) represent the lower and upper bounds
of �, respectively. A�er the transposon operations, the value
of each gene should be restored back to its corresponding
positional value in the search space according to the equation
as follows:

resto (�) = conv (�) × (ub (�) − lb (�)) + lb (�) . (7)

In transposon operations, a temporary pool called
epool ratio is used to store all the normalized chromosomes
converted from the individuals in epool according to (6).
When the transposon operations have been done, each
individual will be restored from epool ratio and saved to
epool eb. �e pseudocodes of the function transposon op are
given in Algorithm 3.

5. Experiment Result and Discussion

To validate the performance of the proposed EB-QPSO, it was
tested on a set of twelve widely adopted benchmark testing
functions and compared with the original QPSO [9] and
four state-of-the-art QPSO variants including WQPSO [28],
CAQPSO [14], QPSO-RM [15] and QPSO-RO [15], which
have been studied thoroughly in the corresponding litera-
tures, on solution accuracy, convergence speed, and algo-
rithm reliability.�eseQPSO variants are very competitive in
comparing with some other forms of PSO algorithms includ-
ing PSO with inertia weight (PSO-In) [40], PSO with con-
striction factor (PSOCo) [41], the Standard PSO [42], Gaus-
sian PSO [43], Gaussian Bare Bones PSO [44], Exponential
PSO (PSO-E) [45], Lévy PSO [46], comprehensive learning
PSO (CLPSO) [47], dynamic multiple swarm PSO (DMS-
PSO) [48], and fully informed particle swarm (FIPS) [49].

5.1. Test Instances and Algorithmic Con
guration. �e test set
consisted of twelve unconstrained test instances widely used
in early researches reported in literatures [50–53] as listed
in Table 1 with seven unimodal functions ( 1– 7) and 
ve
multimodal functions ( 8– 12). �ese benchmark instances
pose di�erent di	culties to optimization algorithms. �e
more detailed description of each function can be found in
[51]. Following [51], an “acceptance” value is de
ned to gauge
the acceptability of a solution found by the QPSOs.

For the simulation experiment, the contraction expansion
(CE) coe	cients of the proposed EB-QPSO algorithm and
the compared 
ve QPSOs decreased linearly from �0 to �1
during the search process according to (5). �0 and �1 were
set at 0.6 and 0.5 for EB-QPSO, QPSO-RM and QPSO-RO
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Table 1: �e test instances used in the experiment.

Name Function � Search space Global 
min

Acceptance

Sphere  1 (�) = �∑
�=1
�2� 30 [−100, 100]� 0 0.01

Schwefel’s P2.22  2 (�) = �∑
�=1

���������� + �∏
�=1

���������� 30 [−10, 10]� 0 0.01

Quadric  3 (�) = �∑
�=1
( �∑
�=1
��)2 30 [−100, 100]� 0 100

Rosenbrock  4 (�) = �−1∑
�=1
[100 (��+1 − �2� )2 + (�� − 1)2] 30 [−100, 100]� 0 100

Step  5 (�) = �∑
�=1
(������ + 0.5����)2 30 [−100, 100]� 0 0

Quadric Noise  6 (�) = �∑
�=1
��4� + rand[0, 1] 30 [−1.28, 1.28]� 0 0.01

Schwefel  7 (�) = �∑
�=1
−�� sin (√��) + 12569.5 30 [−500, 500]� 0 2569.5

Rastrigin  8 (�) = �∑
�=1
[�2� − 10 cos (2:��) + 10] 30 [−5.12, 5.12]� 0 50

Noncontinuous
Rastrigin

 9 (�) = �∑
�=1
[?2� − 10 cos (2:?�) + 10]

30 [−5.12, 5.12]� 0 50

where ?� = {{{{{{{
��, |��| < 0.5
round(2��)2 , |��| ≥ 0.5

Ackley

 10 (�) = −20 exp(−0.2√ 1�
�∑
�=1
�2�)

30 [−32, 32]� 0 0.01

− exp( 1�
�∑
�=1

cos 2:��) + 20 + �
Griewank  11 (�) = 14000

�∑
�=1
�2� − �∏
�=1

cos( ��√�) + 1 30 [−600, 600]� 0 0.01

Generalized
penalized

 12 (�) = :� {10 sin2 (:?�) + �−1∑
�=1
(?� − 1)2 [1 + 10 sin (:?�+1)]}

30 [−50, 50]� 0 0.01
+ (?� − 1)2 + �∑

�=1
�(��, 10, 100, 4)

where

?� = 1 + 14 (�� + 1), �(�, O, P, �) =
{{{{{{{{{{{{{

P (�� − O)� , �� > O
0, −O ≤ �� ≤ O
P (−�� − O)� , �� < O

while 1.0 and 0.5were used forQPSO,WQPSO, andCAQPSO
accordingly.�e other parameters of the proposed EB-QPSO
algorithm for the experiment were chosen at values as given
in Table 2. For the compared QPSO algorithms, parameters
settings other than CE coe	cients were used with values
according to their corresponding references.

For each test problem, 50 simulation trials were con-
ducted for each of the compared algorithms with random

initial populations. For a fair comparison among all theQPSO
algorithms, they were tested with the same population size
of 20 at each trial run. Furthermore, the maximum number
of objective function evaluations (FEs) was set at 4.0 × 104

for each test instance for all the algorithms. Since all the
algorithms in the simulation experiment are stochastic, not
solely compared on the success rate, it is essential to have
the statistical analysis conducted so as to provide con
dential
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Table 2: �e parameters setting for the proposed EB-QPSO.

Parameter Value

CE coe	cient (�) �0 = 0.6, �1 = 0.5
Jumping percentage 6

Jumping rate 0.1

Number of transposons 6

Table 3: Search result comparisons among six QPSOs.

Problems
EB-QPSO�̃ (IQR)

QPSO�̃ (IQR)
WQPSO�̃ (IQR)

CAQPSO�̃ (IQR)
QPSO-RM�̃ (IQR)

QPSO-RO�̃ (IQR)

 1 0.000E + 00 1.974S − 12 4.373S − 26 5.271S + 00 6.074S − 31 2.649S − 05
+(0.000E + 00) (5.003S − 12) (1.039S − 25) (6.794S + 00) (2.290S − 29) (4.408S − 04)

 2 0.000E + 00 5.497S − 09 1.459S − 18 1.225S − 01 1.319S − 18 5.124S − 06
+(0.000E + 00) (1.344S − 08) (2.283S − 18) (5.969S − 02) (7.520S − 18) (8.130S − 05)

 3 3.919E − 04 8.796S + 02 1.140S + 01 2.620S + 04 1.493S + 01 9.875S + 02
+(2.019E − 03) (3.557S + 02) (1.122S + 01) (6.306S + 03) (1.476S + 01) (7.522S + 02)

 4 6.290E − 02 8.830S + 01 2.476S + 01 2.643S + 05 2.879S + 01 8.907S + 02
+(1.828E − 01) (1.324S + 02) (6.817S + 01) (5.027S + 05) (1.004S + 02) (1.238S + 03)

 5 0.000E + 00 2.178S − 12 1.209S − 03 5.168S + 00 1.972S − 31 5.042S − 06
+(0.000E + 00) (1.149S − 11) (2.756S − 04) (6.310S + 00) (5.276S − 30) (3.926S − 05)

 6 3.138E − 03 7.314S − 03 9.824S − 03 1.219S − 01 1.096S − 02 1.246S − 02
+(2.605E − 03) (3.798S − 03) (6.296S − 03) (7.925S − 02) (5.525S − 03) (9.904S − 03)

 7 3.818E − 04 3.432S + 03 3.273S + 03 7.901S + 03 2.496S + 03 3.020S + 03
+(1.819E − 12) (8.739S + 02) (8.595S + 02) (4.248S + 02) (5.330S + 02) (5.892S + 02)

 8 0.000E + 00 2.933S + 01 2.600S + 01 2.335S + 02 6.847S + 01 2.289S + 01
+(0.000E + 00) (1.344S + 01) (6.959S + 00) (3.252S + 01) (7.292S + 01) (7.699S + 00)

 9 0.000E + 00 4.525S + 01 3.018S + 01 2.288S + 02 1.410S + 02 3.250S + 01
+(0.000E + 00) (1.901S + 01) (1.617S + 01) (3.662S + 01) (4.711S + 01) (1.113S + 01)

 10 7.994E − 15 2.774S − 07 1.004S − 13 2.023S + 01 1.510S − 14 1.712S + 00
+(7.105E − 15) (5.001S − 07) (4.263S − 14) (1.035S + 01) (1.243S − 14) (1.252S + 00)

 11 0.000E + 00 7.396S − 03 7.475S − 03 1.045S + 00 7.396S − 03 1.015S − 01
+(0.000E + 00) (1.907S − 02) (1.671S − 02) (5.193S − 02) (1.232S − 02) (1.938S − 01)

 12 1.571E − 32 4.510S − 12 4.557S − 05 2.077S + 01 1.057S − 29 1.039S − 01
+(0.000E + 00) (4.574S − 11) (1.012S − 05) (6.941S + 01) (9.400S − 27) (4.960S − 01)

comparisons. �e median (�̃) and interquartile range (IQR)
of each test instancewere recorded as themeasures of location
(or central tendency) and statistical dispersion. To provide
the con
dential comparisons, the statistical analysis as in
[54, 55] was used. �e general structure of statistical analysis
is given in Figure 4.

Kolmogorov-Smirnov test is 
rstly conducted to check
whether the value of the results follow the normal (Gaus-
sian) distribution or not. If the results do not follow the
normal distribution, the nonparametric Kruskal-Wallis test
is performed in order to compare the median result of
each algorithm; if not, the Levene test is used to check the
homogeneity of the variances. A Welch test is performed
to verify the con
dence of comparisons if the samples
have di�erent variance, otherwise ANOVA test is done to
accomplish this task. �e con
dence level of 95% is used
in the statistical analysis. �e results are shown in the last

column of Tables 3 and 4 with the symbol “+” indicating
that the performance di�erence between the proposed EB-
QPSO and best algorithm among the other QPSO algorithms
is statistically signi
cant, while the symbol “−” representing
the di�erence is insigni
cant.

5.2. Comparisons on the Solution Accuracy. �e performance
results on the solution accuracy of each of the algorithms in
the simulation experiment are shown in Table 3 in terms of
the median and interquartile range of the solutions obtained
in the 50 independent runs by each algorithm.�e best result
among those obtained by all six contenders for each problem
is highlighted with boldface.

From the results in Table 3, we can see that the proposed
EB-QPSO algorithmobtains the best values in all of the 12 test
instances. It is worth mentioning that EB-QPSO achieves the
solutions which have values reached or approximated to the
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Table 4: �e FEs number needed to reach an acceptable solution for six QPSOs.

Problems
EB-QPSO�̃ (IQR)

QPSO�̃ (IQR)
WQPSO�̃ (IQR)

CAQPSO�̃ (IQR)
QPSO-RM�̃ (IQR)

QPSO-RO�̃ (IQR)

 1 2.220E + 03 1.720S + 04 1.647S + 04 / 8.910S + 03 6.580S + 03
+(1.800E + 02) (6.100S + 02) (5.000S + 02) (0.000S + 00) (6.400S + 02) (2.860S + 03)

 2 2.230E + 03 1.694S + 04 1.593S + 04 / 9.140S + 03 4.700S + 03
+(1.400E + 02) (6.950S + 02) (3.600S + 02) (0.000S + 00) (6.750S + 02) (9.450S + 02)

 3 9.230E + 03 / 3.323S + 04 / 3.206S + 04 /
+(2.815E + 03) (0.000S + 00) (2.275S + 03) (0.000S + 00) (3.995S + 03) (0.000S + 00)

 4 4.730E + 03 1.743S + 04 1.788S + 04 / 9.190S + 03 /
+(1.470E + 03) (1.957S + 04) (3.900S + 03) (0.000S + 00) (1.214S + 04) (0.000S + 00)

 5 1.095E + 04 / / / / /
+(1.075E + 03) (0.000S + 00) (0.000S + 00) (0.000S + 00) (3.667S + 04) (0.000S + 00)

 6 1.099E + 04 2.974S + 04 2.563S + 04 / / /
+(7.035E + 03) (8.495S + 03) (3.415S + 04) (0.000S + 00) (3.366S + 04) (0.000S + 00)

 7 5.200E + 03 / / / 5.510S + 03 /
+(9.500E + 02) (0.000S + 00) (0.000S + 00) (0.000S + 00) (1.420S + 04) (0.000S + 00)

 8 4.700E + 03 2.920S + 04 2.749S + 04 / / 1.008S + 04
+(8.000E + 02) (3.910S + 03) (2.985S + 03) (0.000S + 00) (3.404S + 04) (6.340S + 03)

 9 3.400E + 03 3.073S + 04 3.384S + 04 / / 2.092S + 04
+(6.000E + 02) (3.500S + 04) (6.245S + 03) (0.000S + 00) (0.000S + 00) (1.468S + 04)

 10 2.490E + 03 1.809S + 04 1.726S + 04 / 1.021S + 04 /
+(2.050E + 02) (6.800S + 02) (7.250S + 02) (0.000S + 00) (9.850S + 02) (0.000S + 00)

 11 4.220E + 03 1.865S + 04 1.742S + 04 / 1.043S + 04 /
+(2.130E + 03) (1.997S + 04) (1.969S + 04) (0.000S + 00) (1.160S + 04) (0.000S + 00)

 12 2.010E + 03 1.754S + 04 1.735S + 04 / 9.500S + 03 /
+(4.350E + 02) (1.400S + 03) (1.785S + 03) (0.000S + 00) (2.230S + 03) (8.655S + 03)

Normality
(Kolmogorov-Smimov)

Variance homogeneity

(Levene)

ANOVAWelchKruskal-Wallis

Yes

YesNo

No

Figure 4: �e general structure of the statistical analysis performed in this work.

global optima on problems  3,  4,  7,  8, and  9 whereas the
other compared algorithms are unable to do so. It illustrates
that the proposed EB-QPSO having the ability to avoid being
stuck at the local optima with the bene
ts from the elitist
breeding through transposon operators. �e di�erence in
performance of the proposed algorithm comparing to the
other 
ve QPSO is statistically signi
cant as indicated in the
statistical analysis result shown in the last column of the table.

5.3. Comparisons on the Convergence Speed and Reliability.
Another salient yardstick for evaluating the algorithm per-
formance is the speed in approximating the global optimum.
As shown in Table 4, EB-QPSO entirely o�ers a much

higher convergence speed which is measured by the median
and interquartile range of FEs number needed to reach an
acceptable solution. Note that here “/” represents the corre-
sponding algorithm cannot reach an acceptable solution in
at least one-half of all the trials. To compare the convergence
characteristics, Figure 5 graphically presents the convergence
processes in terms of median results obtained in the 50 runs
of all six contenders in solving the 12 test instances. It is worth
mentioning that the global optima of all the test instances are
at “0” and the logarithm of “0” has nomathematical meaning
and cannot be displayed graphically. For any algorithm,
if the optima is found, it will stop searching for solution
further even though the maximum number of function
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Figure 5: Continued.
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Figure 5: Convergence performance of the six QPSOs on the 12 test instances.

Table 5: Reliability comparisons among six QPSOs.

Problems EB-QPSO QPSO WQPSO CAQPSO QPSO-RM QPSO-RO 1 100.0% 100.0% 100.0% 0.0% 100.0% 100.0% 2 100.0% 100.0% 100.0% 0.0% 100.0% 98.0% 3 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 4 100.0% 56.0% 76.0% 0.0% 68.0% 2.0% 5 100.0% 0.0% 0.0% 0.0% 28.0% 0.0% 6 100.0% 82.0% 52.0% 0.0% 42.0% 22.0% 7 100.0% 4.0% 10.0% 0.0% 52.0% 18.0% 8 100.0% 98.0% 98.0% 0.0% 40.0% 100.0% 9 100.0% 62.0% 88.0% 0.0% 0.0% 92.0% 10 100.0% 100.0% 100.0% 0.0% 100.0% 12.0% 11 100.0% 62.0% 58.0% 0.0% 68.0% 4.0% 12 100.0% 90.0% 96.0% 0.0% 88.0% 44.0%

evaluation limit is not reached; thus, upon such condition,
the corresponding convergence curve for a particular test case
will be stopped at that point, It is the case for problems  1,  2, 5,  8,  9, and  11 as the search convergences to the global
optima. It shows that the proposed EB-QPSO has the best
convergent e	ciency amongst the compared algorithms in all
12 test instances.

Reliability here refers to the success rate; that is, the
percentage of trial runs reaching acceptable solutions. Table 5

reveals that EB-QPSO is able to reach acceptable solutions in
all the trials over all the test instances whereas the compared
algorithms cannot.

6. Conclusion

QPSO is a promising optimization technique which has
shown its superiority in solving wide range of optimization
problems. However, it is still a di	cult problem to improve
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the global search capability and accelerate convergence speed
of QPSO simultaneously. In this paper, we presented an
improved quantum-behaved particle swarm optimization
algorithmwith elitist breeding (EB-QPSO) for unconstrained
optimization. �e novel elitist breeding scheme acts on the
elitists found during the evolutionary process to jump out of
the likely local optima and guide the swarm to perform explo-
ration and exploitation more e	ciently and thus improves
the performance of QPSO in terms of better global search
capability and faster convergence speed. �e performance
of EB-QPSO has been compared against the existing QPSO
algorithms, the original, WQPSO, CAQPSO, QPSO-RM, and
QPSO-RO on a test suite consisting of twelve benchmark
functions. All simulation results have demonstrated that EB-
QPSOhas superiority over otherQPSOs in solution accuracy,
convergence speed, and reliability signi
cantly. Besides, EB-
QPSO can locate the global optima of most of the test
functions while the other algorithms cannot. Our further
work will concentrate on applying the EB-QPSO algorithm
to the real-world optimization problems and on integrating
the approach of elitist breed into other swarm intelligence
algorithms. In this paper, the proposed EB-QPSOwas studied
empirically; the theoretical analysis of the global convergence
of EB-QPSO will be developed in the future.
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