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Abstract — This paper proposes an improved random forest 
algorithm for classifying text data. This algorithm is 
particularly designed for analyzing very high dimensional 
data with multiple classes whose well-known representative 
data is text corpus. A novel feature weighting method and 
tree selection method are developed and synergistically 
served for making random forest framework well suited to 
categorize text documents with dozens of topics. With the 
new feature weighting method for subspace sampling and 
tree selection method, we can effectively reduce subspace 
size and improve classification performance without 
increasing error bound. We apply the proposed method on 
six text data sets with diverse characteristics. The results 
have demonstrated that this improved random forests 
outperformed the popular text classification methods in 
terms of classification performance.  
 
Index Terms — random forest, text categorization, random 
subspace, decision tree 
 

I.  INTRODUCTION 

With the ever-increasing volume of text data from 
Internet, databases, and archives, text categorization or 
classification poses unique challenges due to the very 
high dimensionality of text data, sparsity, multi-class 
labels and unbalanced classes. Many classification 
approaches have been developed for categorizing text 
documents, such as random forests [1, 2, 3], support 
vector machines (SVM) [4, 5], naïve Bayesian (NB) [6, 
7], k-nearest neighbor (KNN) [8, 9], decision tree. 

Due to its algorithmic simplicity and prominent 
classification performance for high dimensional data, 
random forest has become a promising method for text 
categorization. Random forest is a popular classification 
method which is an ensemble of a set of classification 

trees. One of the most popular forest construction 
procedures, proposed by Breiman, is to randomly select a 
subspace of features at each node to grow branches of a 
decision trees, then to use bagging method to generate 
training data subsets for building individual trees, finally 
to combine all individual trees to form random forests 
model [1]. Text data has many terms or features which 
are uninformative to a specific topic (i.e., a class). During 
this forest building process, topic-related or informative 
features would have the large chance to be missed, if we 
randomly select a small subspace from high dimensional 
text data [10]. As a result, weak trees will be created from 
these subspaces, the average discriminative strength of 
those trees in reduced and the error bound of the random 
forest is enlarged. Therefore, when a large proportion of 
such “weak” trees are generated in a random forest, the 
forest has a large likelihood to make a wrong decision 
which mainly results from those “weak” trees’ 
classification power. 

To solve this problem, we aim to optimize decision 
trees of a random forest by two strategies. One 
straightforward strategy is to enhance the classification 
power of individual trees by a feature weighted method 
proposed by Amaratunga [10]. This method computes 
feature weights with respect to the correlations of features 
to the class feature. A feature weight can be regarded as 
the probability of the feature to be selected in subspaces. 
Its underlying principle is similar to Adaboost method 
[11] which selects training samples according to the 
sample weights computed from the result of the previous 
classifier. This method obviously increases the 
classification performance of individual trees because the 
subspaces of decision trees will be biased to contain more 
informative features. However, Amaratunga's method is 
only applicable to solve two class problems, because it 
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uses t-test of variance analysis to calculate the feature 
weights. The second strategy is more straightforward: 
detect and exclude bad trees for preventing their negative 
impacts from the performance of the random forest. In 
our previous work [12], we proposed to use the out-of-
bag accuracy to evaluate the importance of a tree, which 
is then used to guide the tree selection process by 
choosing “important” trees into a random forest. 
However, this method is not applicable to the 
classification of text data. 

In this paper, we propose an improved random forest 
algorithm by simultaneously taking into account of a new 
feature weighting method and the tree selection method 
to categorize text documents. Instead of using t-test's 
method by Amaratunga, we employ chi-square statistic as 
feature weights for weighting random subspace sampling 
which can generate random forest to solve multi-class 
text categorization problem. We have conducted a series 
of experiments on six text data sets and compared our 
method with the popular random forest method [1]. The 
results show that our method can generate better random 
forests with higher classification performance and lower 
error bound than the competing random forest method. 
We also make extensive experimental comparisons 
against other popular text classification methods, such as 
SVM, NB and KNN. The results indicate that our method 
outperforms all of them. 

The rest of this paper is organized as follows. Section 
II introduces the feature weighting method, the tree 
selection method and the novel random forest algorithm. 
Using the evaluation methods presented in Section III, we 
show experimental results on the six text data sets in 
Section IV. Conclusion and future work are made in 
Section V. 

II.  IMPROVED RANDOM FORESTS FOR TEXT 
CLASSIFICATION 

In this section, we first introduce a feature weighting 
method for subspace sampling, then a tree selection 
method is presented. By integrating these two methods, a 
novel improved random forest algorithm is proposed. 

A.  Feature Weighting Method 
In this subsection, we will give details of the feature 

weighting method for subspace sampling in random 
forests. Consider an M-dimensional feature space 
{A1,A2,… ,AM}. We present how to compute the weights 
{w1,w2,…,wM} for every feature in the space. These 
weights are then used in improved algorithm to grow 
each decision tree in random forest. 

(1) Feature Weight Computation 
To compute the feature weight, we measure the 

informativeness of each input feature A as its correlation 
to the class feature Y. A large weight indicates that the 
class labels of objects in training data are correlated with 
the values of feature A. Therefore, A is informative to the 
class label of objects and has a strong power in prediction 
of class labels of new objects. Amaratunga used a two-
sample t-test as the feature weight so this method can 

only be used in two class data [10]. To solve multi-class 
problems, we propose to use chi-square methods to 
compute feature weights. 

Given the class feature Y which has q distinct values or 
classes, denoted as yj (for j=1,…,q). The feature A can 
take p values, denoted by ai (for i=1,…,p). If A is 
numerical, it is discretized with a supervised 
discretization method. Let D be a data set consisting of 

1 1

q p
ijj i
λ

= =∑ ∑  data samples. The number of samples in D 
where A=ai and Y=yj is denoted by λij. All these λij's form 
a contingence table [13] of A and Y as shown in Table I. 

Given the contingency table of feature A and the class 
feature Y of a data set D, the chi-square statistic based 
correlation is computed as 

2
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Where λij is the observed frequency given in the 
contingency table and tij is the expected frequency that 
can be computed as  
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The larger the corr(A,Y) measure is, the more 
informative the feature A is with respect to the class 
feature Y, and the higher weight is assigned to feature A. 

(2) The Normalized Weights 
In practice, feature weights are normalized for feature 

subspace sampling. Supposing the correlation between a 
feature Ai and the class label feature Y is corr(Ai,Y) for 
i=1,…,N. We define  

                        
1

( , )

( , )
i

i N
ii
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w
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=
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∑

                         (3) 

The extraction of square root of the correlation is a 
common technique for smoothing. It can be easily seen 
that the normalized weight wi measures the relative 
informativeness of feature Ai. This weight information 
will be used in feature subspace sampling when designing 
our algorithm. 

TABLE I.   
THE CONTINGENCE TABLE OF A AND Y 

 Y = y1 … Y = yj … Y = yq Total 

A= a1 λ11 … λ1j … λ1q 
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B.  Tree Selection Method 
The key problem of tree selection method is how to 

evaluate the accuracy of each tree. In [12], we used the 
out-of-bag accuracy as a measure to evaluate the 
importance of a tree. In the random forest construction 
model proposed by Breiman, the bagging method is used 
to generate a series of training data subsets, which are 
then used these training subsets to build trees. In each tree, 
the training data subset used to grow the tree is called in-
of-bag (IOB) data, and the data subset formed by the 
remaining data is called out-of-bag (OOB) data. Since 
OOB data is not used to build trees, it can be used to test 
the OOB accuracy of each tree and furthermore, this 
OOB accuracy can be used to evaluate the importance of 
the tree. 

Given a tree classifier hk(IOBk) built from the kth 
training data subset IOBk and assuming there are n 
instances in the whole training dataset D. For each di∈D, 
we define the OOB accuracy of the tree hk(IOBk) as 

1

1

( ( ) ; )

( )

n
k i i i ki

k n
i ki

I h d y d IOB
OOBAcc

I d IOB
=

=

= ∉
=

∉
∑

∑
           (4) 

where I(.) is an indicator function. According to formula 
(1), the larger the OOBAcck is, the better a tree is.  

We then sort all the trees by the descending order of 
their OOB accuracies, and select the top ranking 70% 
trees to build the random forest. Such tree selection 
process can generate a population of “good” trees. 

C.  Algorithm 
In this subsection, we present our improved random 

forest algorithm which integrates feature weighting and 
tree selection methods. The framework of our methods is 
introduced in Algorithm 1. 

 
In this algorithm, input parameters are the training data 

set, the feature space, the class feature, the number of 
trees in the random forest and the size of subspaces. The 
output is a random forest model. Steps 1-5 are the loop 
for building K decision trees. In the loop, Step 2 samples 
the training data with the bootstrap method to generate an 
in-of-bag data subset for building a tree classifier, and 
generate an out-of-bag data subset for testing the tree 
classifier on out-of-bag accuracy. Step 3 calls the 
recursive function createTree() to build a tree classifier. 
Step 4 uses out-of-bag data subset to calculate the out-of-
bag accuracy of the tree classifier. After the loop, Step 6 
sorts all built tree classifiers in their out-of-bag accuracies 
descending order. Step 7 selects the top 70% trees with 
high out-of-bag accuracy values and combines the 70% 
tree classifiers into an improved random forest model. In 
practice, 70% is sufficiently enough to obtain good 
results. 

  Function createTree first creates a new node. Then, 
it tests the stop criteria to decide whether to return to the 
upper node or to split this node. If splitting this node, it 
uses the feature weighting method to randomly select m 
features as a subspace for node splitting. These features 
are used as candidates to generate the best split to 
partition the node. For each subset of the partition, 
createTree is called again to create a new node under the 
current node. If a leaf node is created, it returns to the 
parent node. This recursive process continues until a full 
tree is generated. 

  Compared with Breiman’s method, there are two 
changes for building a random forest model. The first 
change is the way to select the feature subspace at each 
node. Breiman uses simple random sampling method. For 
very high dimensional text data, the subspace must be set 
large in order to contain informative feature. This will 
increase computation burden. With the feature weighting 
method, we can still use Breiman’s formula 

2log ( ) 1M +⎢ ⎥⎣ ⎦  to specify the subspace size. The second 
change is that tree selection method is added. This 
method is further optimizing random forest model. 

III.  EVALUATION METHODS 

In this paper, we use three measures, i.e., out-of-bag 
estimate for error bound c/s2, test accuracy and F-measure 
metric, to evaluate the performance of the improved 
random forest algorithm. The ratio c/s2 is the upper bound 
for the generalization error of a random forest. The test 

Algorithm 1. Improved Random Forest Algorithm 
Input: 
- D: the training data set, 
- A: the feature space {A1, A2,...,AM}, 
- Y: the feature space {y1, y2,...,yq}, 
- K: the number of trees, 
- m: the size of subspaces. 
Output: A random forest μ 
Method: 

1: for i=1 to K do 
2:   draw a bootstrap sample in-of-bag data subset IOBi and 

out-of-bag data subset OOBi from the training data set D;
  3:   hi(IOBi) = createTree(IOBi); 

4:   use out-of-bag data subset OOBi to calculate the out-of-
bag accuracy OOBAcci of the tree classifier hi(IOBi) by 
Equation (4); 

  5: end for 
  6: sort all K trees classifiers in their OOBAcc descending 

order; 
7: select the top 70% trees with high OOBAcc values and 

combine the 70% tree classifiers into an improved 
random forest μ; 

 
Function createTree() 

1: create a new node η; 
2: if stopping criteria is met then 
3:   returnη as a leaf node; 
4: else 
5:   for j=1 to j=M do 
6:     compute the informativeness measure corr(Aj,Y) by 

Equation (1); 
7:   end for 
8: compute feature weights {w1, w2,...,wM} by Equation (3);
9: use the feature weighting method to randomly select m 

features; 
10: use these m feature as candidates to generate the best 

split for the node to be partitioned;   
11: call createTree() for each split; 
12: end if 
13: return η; 
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accuracy measures the performance of a random forest 
from the test data set that is not used in growing the 
random forest. The F-measure metric is a commonly used 
measure of text classification performance. 

A.  Out-of-bag Estimate for Error Bound c/s2 
The reason of using out-of-bag estimate for error 

bound c/s2 is that the out-of-bag strength and correlation 
estimates give the foundation of understanding how well 
a random forest works. Strength gives estimates of how 
accurate the individual classifiers are. Correlation gives 
estimates of the dependence between component 
classifiers. The ratio of correlation over the square of 
strength c/s2 indicates the general error bound of the 
random forest model.  

We use Breiman’s method described in [1] to calculate 
the error bound c/s2. Following Breiman’s notations, we 
use s to denote Strength and ρ  to Correlation. Let D be a 
training data and Y be the class labels. Let hk(IOBk) be the 
kth tree classifier grown from the kth training data IOBk 
sampled from D with replacement. Assume the random 
forest contains K trees. Given di∈D, the out-of-bag 
proportion of votes for di on class j is 

( ) ( )1

1

( ) ,
,

( )

K
k i i kk

i K
i kk

I h d j d IOB
Q d j

I d IOB
=

=

= ∉
=

∉
∑

∑

              

  (5) 

Q(di, j) represents the number of trees, which are trained 
without di and classify di into class j, divided by the 
number of training datasets not containing di. 

The out-of-bag estimate for the average strength s is 
computed as 

1

1 ( ( , ) max ( , ))
i

n

i i j y i
i

s Q d y Q d j
n ≠

=

= −∑                  (6) 

where n is the number of objects in D and yi indicates the 
true class of di. 

The out-of-bag estimate for the average correlation ρ  
is computed as 
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where 

ˆ( , ) arg max ( , )
ii j yj d Y Q d j≠=                     (10) 

is estimated for every instance d in the training set with 
Q(di, j). 

Breiman defined the c/s2 ratio to measure the upper 
bound of the generalization error of the random forest 
ensemble 

                           2
2c s s

ρ=                           (11) 

The c/s2 ratio gives a direction of reducing the 
generalization error of random forests. The smaller the 
c/s2 ratio is, the better a random forest is. 

B.  Test Accuracy Estimate 
The test accuracy measures the classification 

performance of a random forest on the test data set. Let 
Dt be a test data and Yt be the class labels. Given di∈Dt, 
the number of votes for di on class j is 

                    
1

( , ) ( ( ) )
K

i k i
k

N d j I h d j
=

= =∑                   (12) 

The test accuracy is calculated as 

               
1

1 ( ( , ) max ( , ) 0)
i

n
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i
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=
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where n is the number of objects in Dt and yi indicates the 
true class of di. 

C.  F-measure Estimate 
To evaluate the performance of text categorization 

methods on an unbalanced class distribution data, we use 
the F-measure metric introduced by Yang and Liu [14]. 
This measure is the harmonic mean of recall (α) and 
precision (β). The overall F-measure score of the entire 
classification result can be computed by micro-average 
and macro-average.  

Micro-averaged F-measure is computed globally over 
all category decisions, and it emphasizes the performance 
of a classifier on common categories. α and β are defined 
as follows: 

1

1
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         (14) 

where q is the number of class labels or categories. TPi 
(True Positives) is the number of text documents 
correctly predicted as class i, FPi (False Positives) is the 
number of documents that do not belong to class i but are 
classified into class i, and FNi (False Negatives) is the 
number of documents with class label i that are not 
correctly predicted. Micro-averaged F-measure is 
computed as: 

                      2
( )

Micro F αβ
α β

− =
+

                        (15) 

Macro-averaged F-measure is first computed locally 
over each category, and then the average over all 
categories is taken. It emphasizes the performance of 
classifier on rare categories. α and β are defined as 
follows: 

                i
i

i i
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α =
+

 , i
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i i
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β =
+

                (16) 

F-measure from each category i and the macro-
averaged F-measure are computed as: 

              2
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The larger Micro-F and Macro-F values are, the higher 
classification performance of text classifier is. 

IV.  EXPERIMENTS 

In this section, two experiments are conducted to 
demonstrate the effectiveness of the improved random 
forest algorithm for classifying text data. Text data sets 
with various sizes and characteristics are used in the 
experiments. The first experiment is designed to show 
how our proposed method can reduce the generalization 
error bound c/s2, and improve test accuracy when the size 
of selected subspace was not too large. The second 
experiment is used to demonstrate the classification 
performance of our proposed method comparing with 
other text classification method. 

A.  Data Sets 
In the experiments, we use six real world text data sets. 

These text data sets are selected due to their diversities in 
number of features, data volume and number of classes. 
Their dimensionalities vary from 2000 to 8460, the 
numbers of documents vary from 918 to 18772, and the 
minority category rates vary from 0.32% to 6.43%. In 
each text data set, we randomly select 70% of documents 
as training data, and the remaining data as test data. 
Detailed statistics of the six data sets is listed in Table II. 

The Fbis, Re0, Re1, Oh5, and Wap datasets are 
classical text document classification benchmark data 
which have been carefully selected a preprocessed by 
Han and Karypis [15]. The data set Fbis is from the 
Foreign Broadcast Information Service data of TREC-5 
[16]. The data sets Re0 and Re1 are from Reuters-21578 
text categorization test collection Distribution 1.0 [17]. 
The data set Oh5 is from OHSUMED-233445 collection 
[18]. The data set Wap is from the WebACE project 
(WAP) [19]. The classes of these data sets were 

generated from the relevance judgment provided in these 
collections. 

Newsgroups data set is a popular text corpus for 
experiments in text applications of machine learning 
techniques. It was obtained from 20 different Usenet 
newsgroups and contains 18772 documents divided into 

20 different classes [20]. We preprocess this data by 
removing stop terms, and therefore, kept 5000 most 
informative terms as distinct features of the dataset.  

B.  Performance Comparisons between Random Forest 
Methods 

The purpose of this experiment is to compare three 
random forest methods, i.e., our proposed improved 
random forest methods with both feature weighting and 
tree selection methods (WTRF), Breiman’s Random 
forest (BRF), and the random forest with only tree 
selection method (TRF). The comparisons are made for 
these three random forest methods with different sizes of 
subspaces on the six text data sets by using two 
evaluation measures: (1) error bound c/s2 and 
classification accuracy. For each text data set, different 

TABLEII 
SUMMARY STATISTIC OF THE DATA SETS 

Data set #Term #Document #Classes %Minority class

Fbis 2000 2463 17 1.54 

Re0 2886 1504 13 0.73 

Oh5 3012 918 10 6.43 

Re1 3758 1657 25 0.6 

Newsgroups 5000 18772 20 3.34 

Wap 8460 1560 20 0.32 

 
Figure 1.  c/s2 changes against the number of features in the subspace on the six text data sets. The plot of squares is the result of Breiman’s method 

(BRF), the plot of rounds is the results of the tree selection method (TRF), the plot of triangle is the result of the new method (WTRF). 
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type random forests (i.e., BRF, TRF, WTRF) are 
generated with different subspaces, whose sizes range 
from 5 to a certain percentage of features in data, with 5 
features size interval. In each subspace, 80 random 
forests are generated, each of which consists of 300 trees. 
The error bound c/s2 is the average of 80 random forests. 
As trees of a random forest are grown from a bagging 
training data, out-of-bag estimates are used to calculate 
the ratio c/s2, and test data is used to compute test 
accuracy. Experimental results of using two measures on 
three random forests (i.e., BRF, TRF, WTRF) are shown 
in Figure 1 and Figure 2. 

Figure 1 shows the ratio c/s2 over different number of 
features in the selected subspace m on all six data sets. 
From this figure, we can observe that our proposed 
method (WTRF) has lowest error bounds in all the six 
data sets when the select subspace m is not too large. This 
result implies that when the number of features in the 
subspace is small, the proportion of the strong 
informative feature in the select subspace m is large in the 
new method. There will be a high chance that informative 
features are selected in the trees. So the overall 
performance of individual trees is increased. However, in 
Breiman's method and tree selection method, many 
randomly selected subspaces may not contain enough 
informative features that affect the trees’ quality. 
Specially, when the selected subspace m=log2(M)+1, the 
lowest c/s2 values of the triangle plots occurred, while the 
lowest c/s2 values of the square plots and the round plots 
occurred in uncertain subspace size. These results 
indicate that Breiman's proposal for m=log2(M)+1 is not 
suitable for high dimensional text data because of its 
inadequate inclusion of informative features in the 
subspace when the random forests built by Breiman’s 
method (BRF) and tree selection method (TRF). However, 
the formula m=log2(M)+1 is effective when the built 
random forest by the new method (WTRF). 

Figure 2 shows the accuracies of the three type of 
random forest model (i.e., BRF, TRF, WTRF) with 
subspaces of varying sizes. We can clearly see that the 
random forest with the new method (WTRF) outperforms 
the random forest with Breiman's method (BRF) and the 
random forest with tree selection method (TRF) in all the 
six data sets. It can be seen that the new method is more 
stable in classification performance than other methods. 
In all of these figures, it is observed that the highest test 
accuracy is often obtained when the select subspace 
m=log2(M)+1. This implies that in practice, large size 
subspaces are not necessary to grow high-quality trees for 
random forest. 

From Figure 1 and Figure 2, we see that BRF and TRF 
get the lowest error bound c/s2 and best test accuracy as 
long as the selected subspace size is enough. So we use 
the best accuracies of BRF and TRF as compared objects, 
and use the accuracy of WTRF when the selected 
subspace m= log2(M)+1 as compared object. Moreover, 
we use the corresponding micro-averaged F-measure 
value and the corresponding macro-averaged F-measure 
value as compared objects. 

C.  Performance Comparisons with Other Popular Text 
Classification Methods 

We conduct an extensive experimental comparison 
against other three widely used text categorization 
methods, i.e., support vector machines (SVM), Naïve 
Bayesian (NB), k-nearest neighbor (KNN), on the six text 
data sets.  In this experiment, we use three measures, i.e., 
test accuracy, micro-averaged F-measure, and macro-
averaged F-measure, to evaluate popular text 
classification methods, i.e., SVM, NB, KNN, BRF, TRF 
and WTRF on the six text data sets. The support vector 
machine uses linear Kernel with the regularization 
parameter 0.03125, which is often used in text 
categorization. With respect to Naïve Bayesian, we adopt 

Figure2. Accuracy over the number of features in the subspace on the six text data sets. 
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multinomial model that is frequently used for text 
classification [21]. In k-nearest neighbor (KNN) method, 
we set the number k of neighbor to 13. In our 
experiments, we use WEKA’s implementation for SVM, 
NB and KNN [22]. Experiments results were listed in 
Table III, Table IV and Table V. 

Table III lists the accuracy comparison of SVM, NB, 
KNN, BRF, TRF and WTRF for the six text data sets. 
Table IV and V give the classification performance 
comparison in terms of Micro-averaged F-measure and 
Macro-averaged F-measure. It can be observed that our 
proposed method (WTRF) outperforms all other text 
categorization methods. 

V.  CONCLUSIONS AND FUTURE WORK 

We present an improved random forest algorithm by 
simultaneously taking into account of a new feature 
weighting method and the tree selection method to 
categorize text documents. Our algorithm can effectively 
reduce the upper bound of the generalization error and 
improve classification performance. From the results of 

two experiments on various text data sets, the random 
forest generated by our new method is superior to other 
text categorization methods. In the future work we will 
test other feature weighting methods for optimizing the 
random sampling subspace used in random forest. 
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