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Abstract: The Kalman filter (KF) is used extensively for state estimation. Among its requirements are the process

and observation noise covariances, which are unknown or partially known in real-life applications. Uncertain and biased

values of the covariances result in KF performance degradation or divergence. Unlike previous methods, we are using

the idea of the recursive estimation of the KF to develop two recursive updating rules for the process and observation

covariances, respectively designed based on the covariance matching principles. Each rule has a tuning parameter that

enhances its flexibility for noise adaptation. The proposed adaptive Kalman filter (AKF) proves itself to have an improved

performance over the conventional KF and, in the worst case, it converges to the KF. The results show that the AKF

estimates are more accurate, have less noise, and are more stable against biased covariances.
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1. Introduction

The Kalman filter (KF) is among the most popular and famous estimation techniques. That is because it

incorporates the observer theory and the Bayesian approach. It is a statistically optimal estimator that estimates

the instantaneous state(s) of a dynamic system perturbed by noise using noisy observation(s) that are related

to the state(s) [1]. Basically, the KF depends on two models: the plant dynamic model, which describes the

system behavior over time, and the stochastic models, which describe both the process and observation noises

properties .[2,3]. For the best performance of the KF, both the system dynamic model and the noise statistic

model parameters must be known. However, in many applications, the stochastic model parameters may be

unknown or partially known. As a result, the KF performance degrades or may even diverge [4,5].

The KF algorithm uses noise statistics to influence the KF gain that is applied to the error between the

available process information and the most recent obtained measurements. The filter gain projects this error to

the process information to get the best estimate. Thus, noise characteristics have a significant importance on

KF performance, which motivates the research of developing and improving KF, such that it can adapt itself to

the uncertainty in the noise statistical parameters, thus reducing their effects. This type of KF is well known

as the adaptive Kalman filter (AKF).

The most often used AKF schemes in the literature can be categorized as innovation-based adaptive

estimation (IAE), multiple model adaptive estimation (MMAE), and a scaled state covariance method. A

summary of the first two methods can be found in [6].
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The IAE method estimates the process noise covariance matrix Q and/or the measurement covariance

matrix R assuming that the innovation sequence of KF is white noise. In this method, one of the covariance

matching, correlation, and maximum likelihood techniques is used. In the covariance matching technique the

sample covariance of the state error is computed based on a moving window or using past data, and Q is

estimated using the calculated sample covariance. In the same way, R is computed, but using the sample

covariance of the KF innovation [7–10]. In the correlation techniques, the covariance matrices are estimated

based on the sample autocorrelations between the innovations by exploiting the relations between the estimation

error covariance and the innovation covariance [11–14]. The drawbacks of this method are that it does not

guarantee the positive definiteness of the matrices, the estimated covariances are biased [15], and the above

techniques require a large window of data, which makes them impractical. Maximum likelihood methods

estimate the covariances by maximizing the likelihood function of the innovations [16], but these methods need

heavy computations and they can be implemented offline. A modified one using the expectation-maximization

algorithm (EM) was reported in [17].

The MMAE method considers a bank of different models, assuming that one of them is the correct one.

The Bayesian probability is computed for each model as it is the true model using the measurement sequence,

and then the output to be considered is either the output of the model that has the highest probability or a

weighting sum of all models [18]. However, the assumption that one of the models is the correct one makes it

unsuitable for uncertain dynamic systems [19]. An optimization-based adaptive estimation [20] was developed

to handle the model uncertainty.

Introducing a scaling method was reported to improve the filter stability and convergence performance

[8,21], where a multiplication factor to the state error covariance matrix is introduced. The factor calculation

is either empirical or based on the filter innovations.

Avoiding the aforementioned problems of using a moving window, excessive computations, exact models,

and scaling the state error covariance matrix is the main aim of this paper in designing the AKF. Moreover, the

AKF core concept is to be able to adapt itself to the biased initial covariances and parameter changes smoothly

while running, to increase the estimation accuracy, and to stabilize the filter if the used noise covariance values

cause filter divergence.

In this paper, a new method to design an AKF to achieve the above advantages is proposed. It adopts the

idea of the recursive estimation of the KF to add two recursive unbiased updating rules for the noise covariances

Q and R . The derivation of these rules is based on the covariance matching method. The rule is a scaled

value of the previous covariance matrix and a correction covariance error term. This error is calculated at each

sample time using the available information about the state covariance error and the most recent measurements

and innovations. The updating rules have the capability of tuning the matrices Q and R to get the best

performance.

The rest of the paper is organized as follows: Section 2 introduces some preliminaries and states the

problem. The proposed AKF algorithm, modeling, derivation, and stability proof are given in Section 3.

Section 4 presents the testing results. The paper is concluded in Section 5.

2. Preliminaries and problem statement

Consider the discrete-time linear state space model

xk = Axk−1 +Buk−1 + υk−1

yk = Hxk + vk
, (1)
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where, xk ∈ Rn is an n-dimensional state vector with initial state value x0 that has Gaussian distribution

of mean m0 and covariance P0 (i.e. x0 ∼ N (m0, P0)), A ∈ Rn×n is the state matrix, B ∈ Rn×m is the

input matrix, u ∈ Rm is the system input, υ ∈ Rn is the Gaussian process noise with zero mean and constant

covariance Q (i.e. υ ∼ N (0, Q)), v ∈ Rd is the Gaussian measurement noise with zero mean and constant

covariance R (i.e. v ∼ N (0, R)), y ∈ Rd is a d-dimensional measurement vector, H ∈ Rd×n is the output

matrix, and k is the time index. For this system, the matrices A,B, and H are considered to be known at the

time instant k , and a random initial state mean m0 and covariance P0 are given before applying the KF. The

state estimation is carried out under the following assumptions:

Assumption 1: The process and measurement noises are assumed to be independent and mutually

uncorrelated with the given means and covariances.

E (υk) = E (vk) = E
(
υkv

T
i

)
= 0

Q = δkiE
(
υkυ

T
i

)
;R = δkiE

(
vkv

T
i

)
δki =

{
1 i = k

0 i ̸= k

} , (2)

where E (·) stands for the expectation of (·).

Assumption 2: The inputs are considered to be piecewise constant over the sampling time interval T ,

i.e. u (t) = uk−1, tk−1 ≤ t < tk = tk−1 + T .

Assumption 3: The noise covariances are considered to be constant.

Assumption 4: The process and measurements have the same sampling time.

Then for the given system in Eq. (1), the conventional KF algorithm is composed of the prediction step

as time invariant:

x̂−
k = Ax̂k−1 +Buk−1

P−
k = APk−1A

T +Qk−1

, (3)

and the measurement update step:

Kk = P−
k HT

(
HP−

k HT +Rk

)−1

x̂k = x̂−
k +Kk

(
zk −Hx̂−

k

)
Pk = (I −KkH)P−

k

. (4)

In Eq. (3) and Eq. (4) the following notation is employed. (.)
−

and (.) stand for the prior and posterior

estimates, respectively. P is the estimation error covariance matrix and K is the Kalman gain. I is the

identity matrix, x̂ is the estimated state, and z is the measurement vector with the same dimension as y .

The values of Q and R have an important effect on KF estimates; the estimated state x̂k will be biased

if the value of Q is too small with respect to the correct value, and x̂k will oscillate around the true value if the

value of Q is too large with respect to the correct value [20]. In this work, a real-time update for both Q and

R is carried out. Time update rules for both of the matrices are derived as shown in Section 3.1 and Section

3.2.
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3. Adaptive Kalman filter

In this part the proposed AKF is explained. It is based on developing two recursive updating rules, R1 and R2,

for both of the noise covariances R and Q , respectively. As mentioned earlier, these rules are derived using the

IAE method and in particular based on the covariance matching principles. Consider that Assumptions 1–4

hold for the discrete-time linear state space model given in Eq. (1); then, for given initial value matrices R0

and Q0 , there are constants 0 < α1 < 1 and 0 < α2 < 1, positive constants NR and NQ , and noise covariance

errors ∆Q and ∆R such that the KF performance is improved by updating the observation and the process

covariance matrices as in the algorithm in Eqs. (12) and (20), respectively. For proof simplification, we will

consider that NR = NQ = N .

The AKF algorithm is given in Eqs. (5)–(20).

Initial values ω̄0,ē0, x̂0, P0, NR, NQ, Q0 > 0, R0 > 0, (5)

x̂−
k = Ax̂k−1 +Buk−1, (6)

P−
k = APk−1A

T +Qk−1, (7)

ek = zk −Hx̂−
k , (8)

α1 =
NR − 1

NR
, (9)

ēk = α1ēk−1 +
1

NR
ek, (10)

∆Rk =
1

NR − 1
(ek − ēk) (ek − ēk)

T − 1

NR

(
HP−HT

)
k
, (11)

Rk = |diag (α1Rk−1 +∆Rk)| , (12)

Kk = P−
k HT

(
HP−

k HT +Rk

)−1
, (13)

x̂k = x̂−
k +Kkek, (14)

Pk = (I −KkH)P−
k , (15)

ω̂k = x̂k − x̂−
k , (16)

α2 =
NQ − 1

NQ
, (17)

ω̄k = α2ω̄k−1 +
1

NQ
ω̂k, (18)

∆Qk =
1

NQ

(
Pk −APk−1A

T
)
+

1

NQ − 1
(ω̂k − ω̄k) (ω̂k − ω̄k)

T
, (19)

Qk = |diag (α2Qk−1 +∆Qk)| . (20)

The differences between this AKF and the sequential filter in [7] can be stated as follows: the sequential filter

requires to store NQ and NR samples, which are used to calculate the noise covariances. Moreover, at each time

a shifting operation is carried out to update the stored samples to include the most recent one. In the AKF,

however, the updating rules require neither sample storage nor shifting operation so that they are different.
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3.1. Observation covariance matrix update rule (R1) proof

Since the true values of the states are unknown, the observation covariance cannot be estimated using the

observation-state relation in Eq. (1). Therefore, the estimation innovation ek = zk −Hx̂−
k and its covariance∑

in Eq. (21) are used for this purpose. ∑
= HP−

k HT +Rk. (21)

For the sake of proof only, let us assume that a number of samples N is available in a buffer as shown in Figure

1. Before arriving to the new sample, the samples are ordered from the oldest available sample in the buffer

index i= 1 to the most recent sample stored at the end of the buffer with a buffer index i = N , or, in terms

of time instants, they are ordered from the time index k−N for the oldest sample to the time index k for the

most recent sample. When a new sample arrives, it is stored in i = N or time index k and each of the samples

in the buffer is delayed by one unit delay, and hence the sample that was at i= 1 or k−N becomes k−N − 1

and it is neglected. As stated in [7], the expected value of the sample covariance
∑

s is the mean of Eq. (21).

In mathematical terms, the value of
∑

s for the samples up to k is

Figure 1. Samples’ buffer.

∑
s,k

=
1

N − 1

k∑
i=k−N

(ei − ē) (ei − ē)
T
, (22)

where

ē =
1

N

k∑
i=k−N

ei (23)
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is the innovation mean, and the covariance mean
∑̄

k is

∑̄
k
= E

∑
s,k

 =
1

N

k∑
i=k−N

(
HP−HT

)
i
+Rk. (24)

Then, based on Assumption 3 and Eqs. (22) and (24), the estimated value of the observation noise can be

written as [7]:

Rk =
1

N − 1

k∑
i=k−N

(ei − ē) (ei − ē)
T − 1

N

(
k∑

i=k−N

(
HP−HT

)
i

)
. (25)

The samples are divided into two groups; the first one contains all the samples up to sample N − 1, which

arrived at the time instant k− 1, and the other group contains only the most recent sample that arrived at the

time instant k . After some mathematical manipulation, Eq. (25) can be restated as

Rk =
N − 1

N
X +∆Rk, (26)

where

X =
N

(N − 1)
2

k−1∑
i=k−N

(ei − ē) (ei − ē)
T − 1

N − 1

k−1∑
i=k−N

(
HP−HT

)
i
, (27)

and

∆Rk =
1

N − 1
(ek − ēk) (ek − ēk)

T − 1

N

(
HP−HT

)
k
. (28)

The term ēk is unknown and the term X in Eq. (27) depends on the samples up to sample k – 1. As mentioned

before we divided them into two groups. Taking the sample covariance of the first group as

∑
s,k−1

=
1

N − 2

k−1∑
i=k−N

(ei − ē) (ei − ē)
T
, (29)

and comparing Eq. (29) with the first term in X in Eq. (27), it is obvious that if the value of N
/
(N − 1)

2
can

be approximated by 1/N − 2, then this term is the observation noise covariance of all the samples up to the

previous arrived sample k – 1. Let us define the error ε as

ε =
N

(N − 1)
2 − 1

N − 2
, (30)

and then this error converges to zero as the number of samples increase, i.e. lim
N→∞

ε → 0 as shown in Figure 2.
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Figure 2. The approximation error.

Then, for large values of N , Eq. (27) can be approximated by

X ≈ 1

N − 2

k−1∑
i=k−N

(ei − ē) (ei − ē)
T − 1

N − 1

k−1∑
i=k−N

(
HP−HT

)
i
, (31)

which is the observation covariance for the N − 1 samples ordered from i = k −N to k – 1, i.e. Rk−1 . Then

by referring to Eq. (25), Eq. (31) yields:

Rk−1 ≈ 1

N − 2

k−1∑
i=k−N

(ei − ē) (ei − ē)
T − 1

N − 1

k−1∑
i=k−N

(
HP−HT

)
i
. (32)

The same method is used to compute ēk as follows:

ēk =
1

N

k∑
i=k−N

ei =
1

N

k−1∑
i=k−N

ei +
1

N
ek, (33)

and this yields:

ēk = α1ēk−1 +
1

N
ek, (34)

with

α1 =
N − 1

N
. (35)

This finalizes the proof of R1.

3.2. Process covariance matrix update rule proof

The true values of the states are unknown; the best known values are the estimated and updated values of the

states. Considering the estimated and updated state x̂ and the estimated but not updated state x̂− as defined

in Eq. (3), the state error can be written as

ω̂k = x̂k − x̂−
k . (36)
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By using the state error covariance, and following the same procedure for proving R1, one can write Qk as [7]:

Qk =
1

N − 1

k∑
i=k−N

(ω̂i − ω̄) (ω̂i − ω̄)
T
+

(
1

N

k∑
i=k−N

Pi −APi−1A
T

)
, (37)

When the same approximation in R1 is used here too, and the result is a proof R2, it ends up with Eq. (20).

3.3. Stability of AKF

In the observer theory and for an observable system, the exponential behavior of the AKF is determined based

on the exponential convergence of the dynamic error between the state x and the estimated state x̂ . Therefore,

to analyze the exponential behavior of the AKF, we first derive the error ε between x and x̂ . Then we recall

the exponential stability of linear discrete time systems as stated in Definition 1. After that, we propose our

theorem of the AKF stability and its proof.

Let the error ε be defined by εk = xk − x̂k , where

xk = Axk−1 +Buk−1, (38)

and

x̂k = Ax̂k−1 +Buk−1 +Kk

(
Hxk −Hx̂−

k

)
. (39)

Then after mathematical manipulation, this error ε can be expressed as

εk = (A−KkHA) εk−1. (40)

Calling the eigenvalues of (A−KkHA) as λi, i = 1, · · · , n , then the system is exponentially stable if ∥λi∥ < 1,

i.e. they are inside the unit circle in the z-plane.

The exponentially stability is proven here based on Lyapunov function theory and follows the same

approach as in [22,23]. The following definitions and lemmas are employed for the sake of completeness and

proof.

Definition 1 [24] The origin of the difference Eq. (40) is an exponentially stable equilibrium point if there is

a continuous differentiable positive definite function V (εk) such that

c1 ∥εk∥2 ≤ V (εk) ≤ c2 ∥εk∥2 ,∆V (εk) ≤ −c3 ∥εk∥2 , (41)

for positive constants c1, c2, and c3 with ∆V as the rate of change of V and defined by

∆V = V (εk)− V (εk−1) . (42)

For the sake of completeness, the exponential stability for discrete time systems is defined by the inequality

∥εk∥ ≤ β ∥ε0∥Υk for all k ≥ 0 with β > 0 and 0 < Υ < 1 [24].

Definition 2 The observer in Eq. (39) is an exponential observer if Eq. (40) has an exponentially stable

equilibrium at 0.
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Lemma 1 [25] The matrix inequality lemma: For given nonsingular matrices Γ and Λ with suitable dimen-

sions, and assuming that Γ−1 + Λ is also nonsingular, then

(
Γ−1 + Λ

)−1
= Γ− Γ

(
Γ + Λ−1

)−1
Γ. (43)

Definition 3 If A is an invertible matrix, and for the positive definite matrices P−
k and Pk , then

P−1
k ≤ (I −KkH)

−T
A−T

(
P−1
k−1 − P−1

k−1

(
P−1
k−1 +ATQ−1

k−1A
)−1

P−1
k−1

)
A−1 (I −KkH)

−1
. (44)

Proof Rewriting Eq. (15) as in [2]:

Pk = (I −KkH)P−
k (I −KkH)

T
+KkRkK

T
k , (45)

then we have

Pk ≥ (I −KkH)P−
k (I −KkH)

T
. (46)

Inverting Eq. (46) results in

P−1
k ≤ (I −KkH)

−T (
P−
k

)−1
(I −KkH)

−1
, (47)

The expression of
(
P−
k

)−1
is obtained by rearranging Eq. (7) as

P−
k = A

(
Pk−1 +A−1Qk−1A

−T
)
AT , (48)

and inverting Eq. (48) yields

(
P−
k

)−1
= A−T

(
P−1
k−1 − P−1

k−1

(
P−1
k−1 +ATQ−1

k−1A
)−1

P−1
k−1

)
A−1. (49)

As a result from Eq. (49), Eq. (47) is expressed by:

P−1
k ≤ (I −KkH)

−T
A−T

(
P−1
k−1 − P−1

k−1

(
P−1
k−1 +ATQ−1

k−1A
)−1

P−1
k−1

)
A−1 (I −KkH)

−1
, (50)

which completes the proof.

The Stability Theorem The given system in Eq. (1) with the proposed AKF is exponentially stable if there

are positive real numbers a, p, p̄, q > 0 such that

pI ≤ Pk−1 ≤ p̄I, (51)

∥A∥ ≤ a, (52)

where q is the minimum eigenvalue of the update rule in Eq. (20).

Proof The proof is similar to [22]. Consider the positive definite Lyapunov function

V (εk−1) = εTk−1P
−1
k−1εk−1, (53)
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with V (0) = 0. Eqs. (51) and (53) imply that

1

p̄
∥εk−1∥2 ≤ V (εk−1) ≤

1

p
∥εk−1∥2 . (54)

Then for V (εk) we obtain

V (εk) = εTk P
−1
k εk. (55)

From Eq. (44), Eq. (55) can be written as:

V (εk) ≤ εTk−1A
T (I −KkH)

T
(I −KkH)

−T
A−T

×
(
P−1
k−1 − P−1

k−1

(
P−1
k−1 +ATQ−1

k−1A
)−1

P−1
k−1

)
×A−1 (I −KkH)

−1
(I −KkH)Aεk−1

. (56)

After some mathematical manipulation, the rate of change in the Lyapunov function is:

∆V = V (εk)− V (εk−1) ≤ −εTk−1P
−1
k−1

(
P−1
k−1 +ATQ−1

k−1A
)−1

P−1
k−1εk−1. (57)

Applying the bounds in Eqs. (51) and (52), Eq. (57) is expressed as

∆V = V (εk)− V (εk−1) ≤ − 1

p̄2
(

1
p + a2

q

) ∥εk−1∥2 , (58)

which satisfies Eq. (41), and thus the origin of Eq. (40) is exponentially stable. This concludes that the AKF

is an exponentially stable observer and ∥λi∥ < 1, i = 1, · · · , n is satisfied.

In terms of states and degree of stability, using Eqs. (58) and (54) we can write:

V (εk) ≤

1− p

p̄2
(

1
p + a2

q

)
V (εk−1) , (59)

and since

V (εk−1) ≤

1− p

p̄2
(

1
p + a2

q

)
V (εk−2) , · · · , (60)

we can obtain

V (εk) ≤

1− p

p̄2
(

1
p + a2

q

)
k

V (ε0) , (61)

and then,

∥εk∥ ≤
√

p̄

p

√1− p

p̄2
(

1
p + a2

q

)
k

∥ε0∥ , k ≥ 0. (62)
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Recalling Definition 1, we have

β =

√
p̄

p
> 0, (63)

and

Υ =

√
1− p

p̄2
(

1
p + a2

q

) , 0 < Υ < 1. (64)

3.4. Implementation considerations

In numerical applications, the updated values of Rk and Qk may become negative and may violate Assumption

1; this explains why we are taking the absolute value of the diagonal in the AKF algorithm in Eq. (12) and Eq.

(20).

N is the tuning parameter; its value is user defined based on the system noise characteristics. For very

big values of N , the AKF tends to be close to the KF. Basically, for a noisy system, it is much better to give

more weight to the previous known values (Rk−1, Qk−1) than the current noisy reading, and this is achieved

by selecting a big N . In the same context, a small N gives more weight to the current reading (∆Rk,∆Qk)

for less noisy systems.

4. Numerical results

In this part, the updating rules behavior of the KF performance is studied. For this analysis the following model

is used:

xk =

[
x1,k

x2,k

]
=

[
1 −T

0 1

]
xk−1 +

[
T

0

]
uk−1 + υk−1

yk = [1 0]xk + vk

. (65)

This model is used to estimate the gyroscope bias x2 and the rotation angle x1 via integrating the gyroscope

signal. The input u is the measured angular velocity from the gyroscope, and T is the integration time interval.

The output is the angle that is considered available through some measurements or sensor fusion techniques.

The Gaussian noise is generated by the MATLAB Simulink Gaussian noise generator. In this simulation, the

simulation parameters, initializations, and constant true values Qtrue and Rtrue along with the corresponding

number of samples NQ for R2 and NR for R1 are listed in Table 1. Note that the values of NQ and NR are

different from each other since they do not have to be the same in practice. The notation Qsmall indicates

that the used process covariance noise in the KF is smaller than the true process covariance noise QTrue and

Qbig indicates that the used process covariance noise in the KF is larger than the true process covariance noise

QTrue . The same definition holds for Rsmall and Rbig . These notations are used with the KF while Qinitial

and Rinitial refer to the use of the AKF. In is an n× n identity matrix.

We chose the true value of x2 to be a function of time t as in Eq. (66) to show the effect of its changing

on the KF and the AKF performances.

x2 =


0.5 0 ≤ t ≤ 20

1 20 < t ≤ 50

0 else

 . (66)
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The aim of the new AKF is to improve the performance in terms of better convergence, stability, and noise

adaptation, and to reduce the effect of biased initializations of noise covariance matrices. The results of the

AKF are compared with the results of the KF running in the same conditions; in other words, the values of x0 ,

P0 , RTrue , and QTrue are the same for both filters. The mean square error (MSE) is used as a performance
measure.

Table 1. Model parameters and initializations.

Simulation parameters and
Experiment

AKF initializations KF initializations

common initializations Parameter Value Parameter Value

Parameter Value
Qsmall

Rsmall

Q0 10−8 Q0 10−8

T 0.01 s R0 10−4 R0 10−4

x0

[
0 0

]T
NQ 600 − −

Rtrue 10−2 NR 2000 − -

Qtrue

 10−4 0

0 10−6


Qbig

Rbig

Q0 1 Q0 1

P0 100I2 R0 1 R0 1

ω̄0

[
0 0

]T
NQ 600 − −

ē0 0 NR 2000 − −

− -
Nsmall = 50

Q0 1 − −

− − R0 1 − −

− − Nbig = 100000
Q0 1 − −

− − R0 1 − −

Since the true observation noise is much higher than the process noise, the value of NR is selected to be

much bigger than NQ for the experiment with covariance values Qsmall and Rsmall , and the experiment with

covariance values Qbig and Rbig , as tabulated in Table 1.

For the cases when the noise covariance value is smaller or larger than the true values, the response is as

depicted in Figure 3. The estimated bias x̂2 with small noise covariance Rsmall and Qsmall is shown in Figure

3a; although the AKF starts noisy, it is smoothed as the update rules are converging, and thus both filters

display similar performance. However, this is not the case with large noise covariance Rbig and Qbig . The

KF performance is noisy along the estimation interval while the AKF performance is smoothed as in Figure

3b. The same values of covariances are used in estimating x̂1 as in Figure 3c. The results show that the KF

performance is highly sensitive to the changes in the bias for small covariances; it starts with a relatively low

MSE until the changes in the bias take place. At time instant 20, the MSE increases with an effort by the KF

to adapt its performance slowly; however, this goes less well at time instant 50. On the other hand, and under

the same conditions, this sensitivity is dramatically decreased when using the AKF, as is clear from the values

of the MSE at the same time instants. This shows the faster adaptation to the changes and better convergence

of the AKF. For “big” covariance values, although the KF sensitivity is stable, the AKF still has lower MSE

and thus better performance.

Furthermore, some values for the covariances may slow the KF response or even cause divergence. This

is because the filter gain depends on Q and R . From Eq. (13), the filter gain increases with increasing Q and
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Figure 3. (a) The estimated x̂2 using KF and AKF with small noise covariance values, (b) the estimated x̂2 using KF

and AKF with big noise covariance values, and (c) the MSE for the estimated state x1 using KF and AKF with small

and big noise covariance values.

decreasing R . If the selected value of Q is very small compared to QTrue , then the resultant gain is small.

In terms of convergence, if q → 0 , then the value of Υ → 1 and thus the convergence of Eq. (62) is slowed

down. As an example, selecting Q = 10−10I and R = 10−1 results in gain trajectories for the KF and AKF

as is clear in Figure 4a for the first gain component and Figure 4b for the second gain component. KF gain

(blue) converges to a very small value very fast and thus the estimated bias x̂2 tracking is very slow; however,

the AKF estimated bias follows the true bias, as depicted in Figure 5a. Moreover, the estimated state x̂1 is

diverging using KF, and this problem is solved with the AKF, which keeps the stability of the filter and forces

it to converge, as in Figure 5b. The overall performance of divergence is plotted in Figure 5c and its zoomed

version is given in Figure 5d.
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Figure 4. (a) The first component of the gain for KF and the AKF, and (b) the second component of the gain for KF

and the AKF.
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Figure 5. (a) The estimated x̂2 using KF and AKF with noise covariance values that lead to divergence, (b) the

estimated x̂1 using KF and AKF with noise covariance values that lead to divergence, (c) the MSE for the estimated

state x̂1 using KF and AKF with noise covariance values that lead to divergence, and (d) zoomed version of part (c).

The AKF having better tracking can be explained as follows: the AKF gain is changing based on the

estimation performance. This is clear since it depends on both the innovation error e in Eq. (8) and the state

error ω̂ in Eq. (16) through the covariances in Eq. (12) and Eq. (20), respectively. If the tracking is not

satisfied then the gain will not converge to a very small value as with the KF. The reason is that the value of

the noise covariance will increase to change the gain for better performance. In the same context, increasing

the noise covariance increases q , which leads to better convergence, as in Eq. (62). This is clear from checking

the trajectory of R in Figure 6a and the trajectories of Q(1, 1) and Q(2, 2) in Figures 6b and 6c, respectively;

it is obvious that they are increasing before convergence with a larger rate of change and higher values for Q

components than for R . This increases the gain and keeps the tracking ability of the filter. For the same dialog,

we can see that big initial noise covariance values decrease without an overshoot to agree with the required gain

value. As a final note, the noise covariance components converge, too. Thus, we can claim that the proposed

AKF has better stability and convergence performances than the KF shows.

The effect of selecting big and small values of NR and NQ is studied too, as in Figure 7. The responses

of the day AKF and KF are quite close when we select NR = NQ = 105 , which is very big. This is shown in

Figures 7a and 7b for both of the states where the MSE of the KF (blue line) and the MSE of the AKF (red line)

display very similar behaviors. This supports our claim that in the worst case, selecting very big values of NR

and NQ will lead the AKF to converge to the KF. However, when their values are very small, NR = NQ = 50,

it leads to an increase in the MSE, as in Figure 7a, and it even may start diverging as in Figure 7b after 80 s.

As a numerical comparison, for all tested experiments in Table 1, the convergence values of the MSE in

the case of convergence or the last value in case of divergence for both of the states are tabulated in Table 2.

As is clear, for different values of noise covariances, the AKF has a lower MSE than the KF. In the case where
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the MSE is 0.0163 for the AKF, it is still close to the KF MSE value of 0.0159. Moreover, the MSE for the

AKF is stable and smooth for different noise covariance values, while it has a considerable fluctuation in the

case of the KF. The divergence in the KF is shown when the MSE is 16.1040. For the experiment where the

values of NQ and NR are big, Table 2 tells us that both of the filters display the same behavior. However, for

very small values of NQ and NR , the AKF is no longer applicable, especially when the MSE starts increasing

after time instant 80 as mentioned before. The reason for this is that the small values of NQ and NR violate

the approximation assumption in Eq. (30).
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Figure 6. (a) Noise observation covariance trajectory as it is updated with different initial values, (b) the first element

of the process noise trajectory as it is updated with different initial values, and (c) the last element of the process noise

trajectory as it is updated with different initial values.
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Figure 7. (a) The MSE for the estimated x̂1 using KF and AKF with different values of NQ and NR , and (b) the

MSE for the estimated x̂2 using KF and AKF with different values of NQ and NR .

5. Conclusion

A new real-time AKF for systems with constant noise covariances is proposed. This AKF relates the filter

gain to the innovation error through the noise covariance updating rules; this relation changes the gain for

better tracking and performance. In terms of Q , it changes the minimum eigenvalue of Q to achieve better
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Table 2. Numerical performance comparison between AKF and KF.

MSE
Qsmall, Rsmall Qbig, Rbig Q = 10−10, R = 10−1 Nsmall = 50 Nbig = 100, 000

AKF
x̂1 0.0029 0.0030 0.0029 0.0083 0.0052
x̂2 0.0171 0.0163 0.0170 0.0237 0.0158

KF
x̂1 0.0075 0.0051 16.1040 0.0051 0.0051
x̂2 0.0222 0.0159 0.1871 0.0159 0.0159

convergence time. In this AKF, the tuning is not applied to the state covariance matrix. Furthermore, it has

fewer tuning parameters; instead of tuning all of the diagonal elements of the noise covariance matrix, they

can be initialized and then tuned using NQ and NR . Moreover, it requires neither sample storage nor shifting

operation. However, the selection of values of NQ and NR requires some experience, and this motivates to look

for a tuning mechanism as future research. The results show that the AKF has better performance than the

KF as long as the values of NQ and NR are not very small. Moreover, in the worst case, the AKF converges

to the KF for very big values of NQ and NR .
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