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Abstract The interactions among associating (macro)mol-

ecules are dynamic, which adds to the complexity of

molecular recognition. While ligand flexibility is well

accounted for in computational drug design, the effective

inclusion of receptor flexibility remains an important

challenge. The relaxed complex scheme (RCS) is a

promising computational methodology that combines the

advantages of docking algorithms with dynamic structural

information provided by molecular dynamics (MD) simu-

lations, therefore explicitly accounting for the flexibility

of both the receptor and the docked ligands. Here, we

briefly review the RCS and discuss new extensions and

improvements of this methodology in the context of ligand

binding to two example targets: kinetoplastid RNA editing

ligase 1 and the W191G cavity mutant of cytochrome

c peroxidase. The RCS improvements include its extension

to virtual screening, more rigorous characterization of local

and global binding effects, and methods to improve its

computational efficiency by reducing the receptor ensem-

ble to a representative set of configurations. The choice of

receptor ensemble, its influence on the predictive power of

RCS, and the current limitations for an accurate treatment

of the solvent contributions are also briefly discussed.

Finally, we outline potential methodological improvements

that we anticipate will assist future development.
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Abbreviations

GA Genetic algorithm

KREL1 Kinetoplastid RNA editing ligase 1

MD Molecular dynamics

RCS Relaxed complex scheme

RMSD Root-mean-square deviation

W191G W191G cavity mutant of cytochrome

c peroxidase

Introduction

A full understanding of molecular recognition presents a

problem of intense interest to the field of computer-aided

drug design and molecular sciences in general. The inter-

actions between ligand molecules and their corresponding

receptors are dynamic and complex. Techniques that best

Rommie E. Amaro and Riccardo Baron contributed equally to this

work.

R. E. Amaro (&) � R. Baron (&) � J. A. McCammon

Department of Chemistry and Biochemistry, University of

California at San Diego, La Jolla, CA 92093-0365, USA

e-mail: ramaro@mccammon.ucsd.edu

R. Baron

e-mail: rbaron@mccammon.ucsd.edu

R. E. Amaro � R. Baron � J. A. McCammon

Center for Theoretical Biological Physics, University of

California at San Diego, La Jolla, CA 92039-0365, USA

J. A. McCammon

Department of Pharmacology, University of California at San

Diego, La Jolla, CA 92093-0365, USA

J. A. McCammon

Howard Hughes Medical Institute, University of California at

San Diego, La Jolla, CA 92093-0365, USA

123

J Comput Aided Mol Des (2008) 22:693-705

DOI 10.1007/s10822-007-9159-2



address these issues must account for the conformational

flexibility of both the ligand and the receptor and do so in

an accurate and efficient manner. While the ability to

explore ligand flexibility is well established, computer-

aided drug design methodologies have only recently begun

to take receptor flexibility into account when searching for

and optimizing functional inhibitors. Since it is widely

accepted that ligands may bind to receptor conformations

that occur infrequently in the receptor’s dynamics, and that

the local motions of active site residues can drastically alter

the binding and specificity of ligands to their target, the

ability to efficiently sample these rare dynamics and fur-

thermore, to incorporate the resulting conformations into

the drug design protocol, remains an important challenge

(reviewed in references [1–5]).

A closely related challenge is the development of effec-

tive methods to predict the binding propensity for series

of compounds or flexible peptides to a given receptor [6–11].

Approaches based on scoring functions or compound

libraries require large amounts of data to be available a

priori. These methods include computational virtual

screening [12–18], docking [18–23], and similarity search-

ing [24, 25]. More advanced treatments of receptor–ligand

binding can be achieved using molecular dynamics (MD)

simulations. Free energy changes can then be estimated

based on coupling-parameter approaches, such as thermo-

dynamic integration (TI) and free energy perturbation (FEP)

[11, 26–36], which describe a higher physical complexity of

the binding process and include an extensive sampling of

receptor, ligand, and solvent phase spaces. Importantly, the

latter methods provide not only binding free energy esti-

mates, but also a reliable measure of their accuracy. Yet,

they are typically too computationally expensive to be

applied to extensive sets (*105) of compounds, which is the

usual scenario for newly discovered biological targets.

Hybrid methods, which are faster but more approximate,

have been developed with the aim of reducing a large

initial set of potential binders (*103 or more), to a reduced

set of promising molecules (*101), for which the binding

properties can then be investigated in a second phase that

uses more rigorous methods to predict binding free ener-

gies (Fig. 1). Examples of these hybrid methods are linear

interaction energy (LIE) [37–39], single-step perturbation

[40–45], docking to MD structures [44, 46], docking to

relevant normal modes structures [47–49], induced-fit

docking (IFD) [50], the dynamic pharmacophore model

[51, 52] and the relaxed complex scheme (RCS) [53–55].

Alternatively, the receptor ensemble can be gathered from

a collection of independent X-ray or NMR experimentally

derived structures [56, 57]. These hybrid approaches

encompass different levels of accuracy, predictive power,

and level of a priori knowledge required. For example, LIE

and single-step perturbation can be considered ‘‘non-

empirical’’ in that they are derived from free energy type

approaches and based on more complex physical models of

the binding process. Yet, in practice they need precise

information on the location of the binding site to be

available a priori. Conversely, docking-based techniques

are appealing for screening purposes because they do not

necessarily require any information on the location of the

binding site, and can therefore be employed to predict

binding site locations. In principle, these docking-based

approaches should also be more easily extendable to bio-

logically relevant systems with increasing size and

complexity, such as protein–nucleotide and protein–protein

association. However, they cannot supply accurate esti-

mates of free energy changes upon binding.

The RCS is a promising computational methodology

that combines the advantages of docking algorithms

with dynamic structural information provided by MD

Fig. 1 The problem: how to

distill a few good binders and

characterize their binding

propensity out of a vast database

of compounds
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simulations, explicitly accounting for the flexibility of

both the receptor and docked ligands. This procedure is

appealing as a large variety of conformational changes

may characterize ligand binding processes of biochemical

and medical interest and, more generally, molecular rec-

ognition. The RCS has been developed in combination

with various MD software packages and AutoDock for the

ligand docking. Although other docking programs can be

considered, all RCS applications to date have employed

AutoDock, a widely distributed and tested docking pro-

gram that has been shown to be successful in a variety of

docking studies [20–22]. The RCS was first applied to the

FKBP binding protein [53] and tested using improved re-

scoring functions based on MM-PBSA models [54].

Applications of the RCS identified a novel-binding trench

in HIV integrase [55]. In this work, we sketch the phi-

losophy underlying the RCS, describe new improvements,

and present recent applications to exemplify the type of

problems that can be tackled with this computational

scheme.

Materials and methods

Relaxed complex scheme: short overview

In the typical RCS (Fig. 2), all-atom MD simulations are

carried out for the target biomolecule of interest, with a

substrate or inhibitor bound in the active site, starting from

the crystal structure with a bound ligand (i.e., the holo

complex). Typical simulation lengths range from 2 ns to

tens of ns, and snapshots of the biomolecule are extracted

at a predetermined time interval (e.g., every 10 ps). RCS

calculations based on explicit solvent MD simulations of

two different systems are presented in this work. First, the

kinetoplastid RNA editing ligase 1 (KREL1), which uses

the NAMD2.6 MD software [58] (freely available at http://

www.ks.uiuc.edu/Research/namd/) with the Charmm27 force

field [59]. Second, the W191G cavity mutant of cytochrome c

peroxidase (W191G), based on simulations performed with

the GROMOS05 software for biomolecular simulation [60]

(available at http://www.igc.ethz.ch/gromos/) using the 45A4

Fig. 2 An overview of the RCS. Improvements to the RCS are shown

in gray background and those specifically presented in this paper are

outlined in red. In the ‘‘Receptor Ensemble’’ box (top left), the

structures can be generated with classical MD, or a variety of simula-

tion techniques could be considered in order to enhance the sampling

of the receptor configurational space, including: Generalized-Born

MD (GB-MD), steered MD (SMD), high temperature MD (High T

MD), targeted MD (TMD), and accelerated MD (Accl. MD). In the

‘‘Ligand Ensemble’’ box (top right), commercially or publicly

available ligands can be found in the Zinc Is Not Commercial

(ZINC), National Cancer Institute (NCI), and Available Chemicals

Database (ACD), among others. AutoDock is then used to dock the

ligand database into the receptor ensemble. In the ‘‘Post-Processing’’

stage, the docked complexes can be rescored or reevaluated using

more rigorous protocols than the AutoDock version 4.0 scoring

function (AD4), including molecular-mechanics Poisson–Boltzmann

surface area (MM-PBSA), single step perturbation, LIE, and FEP or

TI techniques
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parameter set [61] of the GROMOS force field [62]. Details

of the MD for each system are described in References [63]

and [64], respectively. The resulting set of structures, gen-

erated with a physically based MD force field, represents the

receptor ensemble and can be conceptually thought of as a set

of structures defining approximately its thermodynamic

equilibrium state in solution. This receptor ensemble is sub-

sequently used in the docking experiments, in which a

reduced set of small molecules are docked into the active site

and the corresponding binding affinities are evaluated.

AutoDock is used to carry out the docking experiments

and full ligand flexibility is employed. One of the major

advantages of AutoDock is its use of a hybrid genetic algo-

rithm (GA) to perform an efficient and effective global

search for the ligand [65]. Genetic algorithms are optimi-

zation schemes that use the language of natural genetics and

evolution, and in the case of AutoDock, the optimization

problem is molecular docking between a ligand and a

receptor. Typically, the receptor is fixed and the translation,

orientation, and conformation of the ligand are explored.

Genetically derived terms such as the AutoDock ‘‘chromo-

some,’’ which describes the ligand state, define its

‘‘genotype’’ and the atomic coordinates of the ligand, which

describes its ‘‘phenotype,’’ undergo genetic events such as

‘‘selection, crossover, and mutation’’ during the optimiza-

tion procedure.

The AutoDock chromosome consists of a string of real-

valued genes containing three cartesian coordinates for

ligand translation, four variables defining a quaternion that

specifies the ligand orientation, and one real-value for each

ligand torsion [65]. The global search is carried out on the

genotype level and performed with the GA, which allows

selection, crossover, and mutation. The ligand-receptor

fitness is evaluated based on a semi-empirical scoring

function including an empirical estimate for the ligand

configurational entropy [66]. The global search is followed

by an adaptive-stepping local search that performs energy

minimizations on the atomic coordinates. Afterwards, the

optimized phenotype is fed back to the genotype, in

accordance with ‘‘Lamarckian’’ genetics, from which the

algorithm derives its name. Ultimately, solutions better

suited to specific interactions have a better score, therefore

reproduce and persist, whereas poorer suited ones die off.

The re-docking of the ligands across the ensemble of

receptor structures results in a range of predicted binding

affinities for each ligand, based on the AutoDock scoring

function. The resulting ‘‘binding spectrum’’ for each ligand

is then used to reorder the ligands and better predict rela-

tive affinity. Various post-processing options can be

considered beyond the initial affinity estimate provided by

AutoDock, including the application of MM-PBSA, single-

step perturbation, LIE, FEP, or TI (Fig. 2). Although more

rigorous free energy estimates increase the confidence in

the predicted binding energies, they can be prohibitively

computationally expensive.

Improved relaxed complex scheme

A first set of improvements involves the docking algorithm

itself as implemented in AutoDock version 4.0: (i) a more

complete thermodynamic cycle, where the unbound (gas

phase) ligand enthalpy is computed, (ii) an improved des-

olvation term that accounts for a larger number of atom

types than in the previous versions, and (iii) a charge model

that allows fast calculation of the charge distribution [67]

and compatibility of partial charges between the ligand and

the receptor structures [66]. The studies presented here

employed this new and improved version of AutoDock

(freely available at http://www.autodock.scripps.edu/).

A second set of improvements involves the RCS meth-

odology itself, as described in the following, based on

recent applications. The first extension to the RCS we

present here is the application of the method for virtual

screening, which involves an essential enzyme for the

protozoan parasite Trypanosoma brucei. The discovery of

several new inhibitors was the result of a streamlined RCS

method, providing a concrete example of its success when

trying to discover new inhibitors from a large database of

compounds [68]. The second methodological advancement

for RCS involves accounting for both local-induced and

global effects of ligand binding. This is shown with the

well-characterized binding of a set of heterocyclic cation

ligands to the W191G cavity mutant of cytochrome c

peroxidase [69]. The third improvement attempts to define

two general algorithms to reduce the number of MD tra-

jectory snapshots for the docking experiments, which

increases computational efficiency by orders of magnitude

without decreasing its accuracy. First, the KREL1 appli-

cation uses the QR factorization method available in the

MultiSeq plugin in VMD [70]. Second, the W191G cavity

mutant of cytochrome c peroxidase (W191G) uses an

atom-positional root-mean-square deviation (RMSD)

clustering algorithm [71] as implemented in the rmsdmat2

and cluster2 programs of the GROMOS++ analysis soft-

ware [60]. Last, we discuss the importance and the

difficulties of including explicit water molecules within the

binding sites in the RCS docking experiments.

New applications

RCS as a tool for enhanced virtual screening

Given a novel protein target, the goal of identifying a new

set of potential inhibitors with drug-like properties can be

achieved using virtual screening type approaches. Typically
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these large-scale virtual screens are carried out by evalu-

ating the predicted affinities of thousands of molecules

against a single static crystal structure [15, 72]. Here we

report on the success of porting the RCS into a virtual

screen type application in the search for inhibitors against

an essential kinetoplastid RNA editing ligase 1 (KREL1)

in T. brucei, the parasite responsible for the devastating

tropical disease African sleeping sickness [68]. KREL1 is

required for survival of both the insect and bloodstream

forms of the parasite [73], and it is a particularly attractive

drug target as there are no known human homologues. The

high-resolution crystal structure [74] provides an excellent

platform for computer-aided drug design as well as for MD

simulations and the RCS application.

The KREL1 crystal structure revealed a deep active site

pocket with several water molecules coordinated to the

ATP substrate and the protein. Two 20 ns simulations in

explicit solvent were carried out with KREL1, both with

and without the bound ATP in order to generate the

receptor ensembles [63]. A screen of the crystal structure

against the NCI diversity set (containing 1,900 compounds)

using AutoDock version 4.0 was performed, and the top

twenty-five compounds that obeyed most of Lipinski’s

‘‘rules of 5’’ [75] were selected for application of the RCS

method. The top 25 ligands were then re-docked into the

full receptor ensemble as well as a reduced representative

set (discussed in further detail below) and these compounds

were then re-ranked based on their average binding energy

of the most populated cluster.

The results of the RCS virtual screen with KREL1 are

particularly promising. Several new inhibitors have been

identified with the RCS and an in vitro inhibition assay of

the first step in the binding reaction, the adenylation step,

was used to verify the computational predictions. These

experiments confirmed two of the eight tested compounds

found in the initial screen were inhibitory [68]. Impor-

tantly, the RCS method resulted in a reordering of the

twenty-five compounds that identified inhibitors that would

not have otherwise been tested, based on their rank from

the static crystal structure screen. Specifically, the best hit

as experimentally verified was initially ranked fifteenth,

and after RCS reordering became first. In the case of

limited resources and low-throughput experimental proce-

dures, where only a handful of the best compounds

identified in the screen could be experimentally tested, the

application of the RCS method provided a measurable and

important enrichment of the initial ranked set.

Accounting for induced fit and the global effects

of ligand binding

In nature, a great number of protein–ligand recognition

processes are only possible when accompanied by local

(i.e., the reorganization of residues upon induced-fit bind-

ing) or global (i.e., larger scale conformational changes

occurring also in remote structural elements of the receptor

upon binding) effects. Our current structural knowledge of

biomolecular association phenomena is predominantly

based on X-ray crystallography ensemble-averaged struc-

tures. Although these experiments provide critical binding

information, they typically capture only one state involved

in the binding process, which may be a dominant configu-

ration, but not necessarily exclusive. Dynamic information

at the atomistic level, as provided by MD simulations, is of

fundamental importance and may reveal binding modes and

relevant biophysical information otherwise inaccessible to

standard experimental techniques.

A relevant example of the importance of predicting

receptor-flexibility effects resulted from the application of

RCS to HIV integrase. MD simulations of the integrase

protein bound to a known inhibitor revealed a new cavity

adjacent to the active site [55]. RCS docking of ligands into

this newly discovered pocket indicated favorable binding

of ligands to this area. This new structural insight was

exploited in the development of raltegravir (MK-0518), the

first of a new class of antiretroviral agents active against

the enzyme integrase that has recently been approved by

the FDA [76].

As the binding propensity defining a given molecular

association reflects the relative stabilities of the possible

conformations of the receptor, effective drug-design pro-

tocols should be based on a distribution of receptor

conformations. In this respect, RCS has the advantage of

requiring the generation of only one MD ensemble per

receptor macro-state (e.g., the open or closed state of a loop

gating the binding pocket). This has recently been sys-

tematically investigated in the case of the W191G cavity

mutant of cytochrome c peroxidase by analyzing the

docking of small ligands into alternative ensembles of

receptor conformations [69].

The binding of heterocyclic cation ligands into the

W191G engineered cavity has been characterized experi-

mentally [77–81]. Mutation of this key tryptophan in the

active site creates a ligand-binding cavity and also appears

to increase local flexibility, which opens a loop-gated

pathway for ligands to reach the buried cavity. Recently,

MD simulations suggested the importance of induced-fit

effects in the W191G cavity for binding of 2-amino-5-

methylthiazole (2a5mt) [64]. X-ray crystallography

experiments have elucidated the structures of several

ligand-protein complexes, including those for which the

loop rearrangement is more pronounced and causes a shift

between the closed- and open-gate structural ensembles.

Benzimidazole (bzi) was suggested to produce a full

opening of the cavity [78]. MD simulations starting

from different initial configurations characterized the
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conformational sampling and dominant configurations of

the closed and open alternate states (Fig. 3a).

RCS calculations were performed on different gating-

loop and binding states: the closed-gate apo, the closed-

gate holo (i.e., the complex with the best binder), and the

open-gate apo structure, allowing the investigation of the

correlation between each compound’s binding affinity and

the closed/open state of the gating loop (Fig. 3b) [69].

Additional in silico experiments evaluated the benefits of

using non-standard MD trajectories to enhance the con-

formational sampling (e.g., simulations at high temperature

using atom-positional restraining potentials) or simulate an

unphysical generalized-ligand interaction encompassing

the characteristics of all potential binders [69]. In the case

of 2a5mt, the optimal binding spectrum occurs when

docked into the receptor conformations from the holo

ensemble. Although both the holo and apo receptor

ensembles generate ligand-binding poses (i.e., the geome-

try of a docked ligand into the binding site) that are similar

to those determined experimentally, the 2a5mt binding

affinities are closer to the experimental results for the holo

ensemble (Fig. 3c). This illustrates that the holo ensemble

is the best choice to perform RCS calculations for the

2a5mt ligand, and suggests the same is likely the case for

other ligands with similar chemical and electrostatic

properties [69].

A different picture emerges when bzi binds to the same

cavity. In this case, the best agreement between RCS

affinities and the experimental free energies is found when

using the apo-open receptor ensemble. This agrees with the

experimental observation that bzi shifts the propensity of

the gating-loop configurations towards the open-gate state.

Fig. 3 (a) The W191G cavity mutant of cytochrome c peroxidase

and its two dominant configurations extracted using an RMSD

conformational clustering analysis for the gating-loop and MD

simulations of the separate states. The closed (blue) and open

(yellow) gate states are highlighted, together with Asp 235, the

residue determining the orientation of the binders in the cavity. The

heme cofactor is shown in red. (b) Binding propensities of the best

binder (2a5mt) and of the binder suggested to induce the full opening

of the gating loop (bzi) are shown [69]. For each of the two

conformational states of the gating loop the probability distributions

of the binding affinities from RCS calculations are shown as based on

the apo (black), holo (red), and apo open-gate (green) receptor

ensemble simulations. The dashed-vertical lines correspond to the

experimental free energies of binding. Docking poses for 2a5mt (c)

and bzi (d) are displayed from corresponding crystal structures

(yellow) and the RCS calculations based on MD simulations of the

apo (black), holo (red), and apo open-gate (green) receptors
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Again, the ligand-binding poses (i.e., the relative orienta-

tion of the docked ligand into the W191G artificial cavity)

are very similar between the RCS method and the crys-

tallographic complexes (Fig. 3c). Although a false negative

is found when docking bzi to the ensemble of apo receptor

structures, bzi binds favorably and with a binding mode

similar to experiment when using the closed-gate holo

ensemble (Fig 3d). These promising results suggest that it

may be possible to capture different binding propensities

depending on both local and global receptor rearrange-

ments upon binding.

Effective reduction of the receptor ensemble

In the original RCS, the computational docking experi-

ments were carried out using snapshots extracted at equal

time intervals from the MD trajectories. As the simulations

are carried out for several nanoseconds, this typically sums

up to *104 to 105 receptor structures, many of which may

be conformationally redundant. Two recent studies have

investigated alternative methods to distill the structural

information to a reduced, yet meaningful set.

A novel method to distill the ensemble of structures to a

non-redundant set is the so-called ‘‘QR factorization’’

method. This technique was originally developed to

remove inherent bias in structure databases and distill, from

a vast quantity of redundant information, a minimal basis

set of protein structures that accurately spans the evolu-

tionary phase space of a particular protein [82]. It has also

been applied to an ensemble of NMR structures in order to

determine a small, representative subset of structures from

a larger experimental dataset [83] and to create non-

redundant sequence alignments [84]. This technique has

most recently been incorporated into the RCS, where a

multiple structural alignment of the receptor ensemble is

performed with STAMP [85]. This alignment algorithm

operates progressively: all possible pair-wise alignments

are computed, followed by a hierarchical clustering anal-

ysis based on a structural similarity measure to build the

multiple structural alignment. The measure of structural

similarity applied here is QH, which essentially measures

the distance between all pairs of Ca atoms among all

aligned structures. Although the development of QH was

motivated by the need to include gaps in order to build a

similarity measure for more distantly related proteins, in

the case of aligning the receptor ensemble, the gap term is

unnecessary as structures of the same protein are aligned.

The structural alignment is stored in a multidimensional

matrix of dimension maln 9 nreceptor structures 9 d, where d

encodes the rotated Ca atoms coordinates. In this matrix,

each receptor structure is represented in a column and

the rows represent the multiple alignment. Finally, a

multi-dimensional QR factorization algorithm is applied to

the encoded alignment of receptor structures, which results

in a reordering of the structures based on increasing linear

dependence. This reordering subsequently allows the

construction of non-redundant sets of structures at some

user-defined cutoff, representing a certain dynamical con-

figuration space.

The application of this method to the receptor ensemble

of RNA editing ligase 1 resulted in the initial set of 400

structures (extracted every 50 ps from a 20 ns simulation)

being reduced to 33, with essentially no loss of binding

spectrum information (Fig. 4a). When docking a large set

of ligands, as is required in a virtual-screen type applica-

tion, the reduction of receptor structures for the

computational dockings can make a significant difference

in computational cost. For example, for RNA editing

ligase, the number of dockings was reduced from 11,200 to

924, resulting in a 90% reduction of computational cost

[68].

An alternative method is clustering based on a matrix of

all pair-wise RMSD of the aligned structures in the

receptor ensemble. If the binding region of the receptor is

known a priori the clustering algorithm can focus on this

particular subset of residues that constitute the binding site.

The employed algorithm was originally developed to cap-

ture the dominant configurations of an ensemble of

structures for flexible peptides [71] and its application has

been further extended to flexible molecules [86, 87] and

protein surface loops [64]. After removing overall rotation

and translations, the atoms of the binding region are

superimposed using their Ca atoms coordinates. A matrix

that contains all pair-wise RMSD values among all the

structures in the trajectory is created. Next, the matrix is

divided into batches corresponding to similar structures

using the RMSD values, with a clustering algorithm [71]

and a user-defined cutoff. This clustering allows docking

trials to be performed on a reduced number of significant

conformations, while retaining the dominant characteristics

of the entire spectrum of binding modes.

In the case of the W191G cavity mutant of cytochrome c

peroxidase, re-docking into the entire ensemble of struc-

tures would require docking to 104 snapshots. However,

when these trajectory snapshots were clustered into groups

of similar configurations with a RMSD similarity criterion

of 0.1 nm for the cavity residues, the resulting two most

dominant clusters of trajectory structures represented 36

and 16%, 81 and 10%, 48 and 23% of the structures for the

apo, holo, and apo-open ensembles, respectively (Fig. 4b).

This RMSD clustering resulted in a 99% reduction of

computational cost for the RCS docking stage [69].

In addition to improving the computational efficiency of

the RCS, clustering analyses can also supply useful infor-

mation about the flexibility of the receptor, by analyzing
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Fig. 4 Reducing redundancy in the receptor ensemble. (a) Left

panel: Multidimensional QR factorization of KREL1 determines the

distance relationship among all pairs of proteins (according to RMSD)

and then reorders them based on increasing linear dependence,

allowing the distillation of a reduced, representative set of structures

for docking. At any particular QH threshold (indicated by red dotted

line at QH 0.86), at each point of intersection of a branch, the most

linearly independent structure is chosen from the group to the right of

the dotted line (each red open circle drawn at the branch intersection

indicates the choice of one structure to represent all structures to the

right of the node). For clarity, the structure tree shown here is reduced

(not all KREL1 structures are shown). Right panel: the initial (top) set

of structures with the corresponding binding spectrum and the

reduced set (bottom) is shown. The similarity between the full and

reduced binding spectrums indicates that there is virtually no loss of

information. (b) Dominant configurations of the W191G cavity region

as extracted from RMSD conformational clustering. For each separate

MD ensemble the corresponding reference crystal configuration is

displayed (red thin lines) superimposed on the central member

structures of the first (yellow licorice) and second (green licorice)

most populated clusters.
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the number of structures representing a certain QH or

RMSD threshold cutoff (in the QR factorization method) or

the cluster population versus the number of clusters pop-

ulated (in the RMSD clustering method). This type of

information gives quantitative insight about the local and

global flexibility of the receptor. The computational gain

due to these types of clustering schemes seems particularly

useful when screening large compound databases.

Choice of MD receptor ensemble and RCS predictive

power

One of the major challenges for hybrid docking techniques

is the possibility to screen large compound databases and

extract potential binders based on very limited a priori

knowledge of the binding process itself. In this context, the

W191G cytochrome c peroxidase system is used as a

platform to investigate how the choice of MD receptor

ensemble for RCS calculations affects the predictive power

of this methodology [69]. To reflect the different amounts

of knowledge that may be available on the binding process,

different typical scenarios in drug discovery were consid-

ered, including cases in which: (i) no information is

available on the location of the binding site, (ii) X-ray

structures of the protein–ligand complexes and knowledge

on potential binders is not available, and (iii) the X-ray

structures known for the protein–ligand complex do not

define unique ligand-binding poses. Corresponding to the

above scenarios: (i) the RCS technique using the holo-

receptor ensemble finds true positives using a docking grid

that encompasses the entire W191G cytochrome c peroxi-

dase structure; (ii) the number of true positives and true

negatives can be significantly increased versus the number

of false positives and false negatives by employing an

MD receptor ensemble containing a generalized type of

unphysical ligand that reflects the main structural proper-

ties of the compounds in the database, when compared to

equivalent docking calculations performed on the apo MD

receptor ensemble; and (iii) the multiple binding orienta-

tions characterizing the true positives do not necessarily

correspond to non-accurate docking results when compared

to the raw electron density data from X-ray crystallogra-

phy. The quality of the binding poses can be judged by a

combined evaluation of (i) the distribution of the docked-

ligand cluster populations versus the cluster number, (ii)

RMSD from the corresponding experimental complex after

superimposing the structures as described above, and (iii)

the comparison of the different poses for a same ligand.

These results open new possibilities for enhancing the

predictive power of RCS calculations in so-called ‘‘blind’’

test cases (when information is missing concerning the

binding process), and they also suggest that the best

possible choice of MD ensemble may depend on the

amount of knowledge available case by case. Additional

scenarios can be considered as well, for example including

homology-modeling type of approaches to generate the

initial receptor structural configuration.

Accurate description of solvent contributions

An effective representation of the solvent during the

docking trials is a major factor limiting the accuracy of

docking calculations. Until recently, RCS calculations have

been performed using only the receptor structure and

ligand, even when the MD trajectory structures were gen-

erated in combination with explicit water models.

Accounting for the specific role of conserved water mole-

cules is highly relevant as they may perturb the flexibility

of a bound ligand, significantly alter the electrostatic

environment experienced by a small molecule, and even

occlude potential areas of binding. The explicit inclusion of

these contributions will certainly improve the accuracy of

the ligand-binding description, similarly to what recently

reported for protein–protein docking [88]. Here, we present

two new applications of the RCS that tested docking of the

ligands into MD generated receptor structures with and

without cavity water molecules. What emerges from both

examples is the important (thermo)dynamic role of specific

waters for the binding process.

In the case of the RNA editing ligase, the KREL1 crystal

structure suggested three buried water molecules in the

deep end of the ATP binding pocket. Explicitly solvated

MD simulations of the holo complex (i.e., ATP bound)

allowed us to predict the dynamics of the crystal water

molecules. The simulations indicated that these water

molecules have different exchange rates, and that one of

the water molecules in particular, the one directly inter-

acting with both the protein and ATP, persists in its

original location for the duration of the 20 ns simulation

[63]. In terms of the receptor structure, this single coordi-

nated water molecule acts as a structural scaffold that

prevents the localized collapse of surrounding residues

while interacting with the bound ATP. By extracting the

water molecules from the structure before ligand docking,

an additional small cavity was open to the ligand. The RCS

dockings were performed both with and without the three

conserved water molecules. Interestingly, the best inhibi-

tors were identified when the water molecules were not

included in the RCS dockings. The predicted docking poses

and binding affinities differ significantly depending on

whether the three explicit conserved water molecules are

included in the dockings or not (data not shown). Impor-

tantly, at least two of the experimentally verified inhibitors

were predicted to substitute a functional group into the
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location where one of the crystal water molecules was

located (Fig. 5a) [68].

In the W191G cytochrome c peroxidase application,

several docking calculations were performed to investigate

the influence of the crystallographic water sites on Auto-

Dock binding affinities and ligand poses. The tests were

performed with rigid-protein docking calculations on dif-

ferent receptor models, alternatively including or excluding

water site 308, which was suggested to be a highly con-

served location for a bound water based on X-ray structures

for a large group of compounds [81]. The results from the

docking calculations are in agreement with what was pre-

viously suggested by similar tests based on AutoDock

version 3.0, which showed that the introduction of even a

single water molecule can significantly perturb the binding

propensity of most of the ligands [89].

While the effect on the predicted binding affinities and

poses is at variance with the specific ligand, a systematic

consequence of the introduction of one water molecule into

the W191G cavity is the significant reduction of the con-

figurational space available to the ligand during the

docking trials. MD simulations of the W191G cavity pre-

dict the location of the highly favorable water sites (within

X-ray crystallography resolution and refinement assump-

tions) compared with the available experimental data

(Fig. 5b). Additionally, MD simulations reveal a larger

number of favorable water sites, and allow the description

of the dynamic behavior of the solvent, including the

swapping of water molecules between highly favorable

regions [64]. Based on these observations we suggest that

the significant effects of including explicit water in the

static dockings may be an artificial consequence of the

introduction of bound (static) water molecules in the cav-

ity, whereas locally disordered (dynamically swapping

among the favorable sites) water molecules should be

considered instead. We note that an accurate sampling of

receptor, ligand, and solvent phase spaces is, in principle,

reached by more expensive free energy calculations [11,

26–36].

Future methodological improvements

The development of computational tools for computer-

aided drug design depends on the critical compromise

between accuracy and computational costs. Ideally, the

most reliable prediction of molecular affinity can be

obtained through rigorous free energy calculations of the

ligand-binding process [11, 26–36]. In practice, however,

the CPU time typically required to perform such free

energy calculations on a few candidates (bottom of the

funnel diagram in Fig. 1) is comparable to that involved in

rough geometrical recognition over a pool of molecules

more than five orders of magnitude larger (top of the funnel

diagram in Fig. 1). Although the theory and methods are

well established for calculating free energy in practice,

they are still prohibitively expensive to be employed in

high-throughput screening of drug-like databases. The

future development of hybrid techniques, and especially

the RCS, is therefore twofold.

First, it will certainly involve the refinement of the

underlying physical models describing ligand-binding

Fig. 5 Solvent contributions in protein–ligand binding. (a) The

KREL1 active site with one of the newly discovered inhibitors in a

predicted docked conformation. KREL1 is shown in orange cartoon,

with the novel inhibitor shown docked in the active site (licorice,

atom type colors). The three crystallographic water sites (not included

in the docking calculation) are shown in licorice with their van der

Waals surface in transparent. Note that the sulfonic acid group of the

inhibitor replaces the location of a crystal water molecule. (b) For the

W191G cavity (gray surface), the crystallographic water sites (solid

red spheres; diameter corresponding to X-ray resolution) are

compared to the highly favorable average density regions of water

molecules in the MD simulations (blue wireframe isosurfaces), for the

best binder 2a5mt (yellow licorice) and from the 1AEN crystal

structure (red licorice)
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(thermo)dynamics in increased detail, especially during the

docking stage. Although the results presented here include

the unbound (gas phase) ligand enthalpy term at the

docking stage [66], a complete description of the thermo-

dynamic cycle of binding is still far from being explicitly

treated in RCS. Previous studies investigated the benefits

of rescoring the docked complexes using a more accurate

(implicit solvent) description of the solvent contributions

[54]. More recently, the role of ligand entropy in the

refinement of protein–ligand docking predictions has been

evaluated [90, 91]. Additionally, accurate configurational

entropy calculations from MD simulations and a complete

quasi-harmonic analysis have demonstrated that the ther-

modynamic role of receptor flexibility is generally

underestimated [92]. Alternative strategies based on MM-

PBSA-type thermodynamic estimates, which involve the

implicit description of the solvation and desolvation ther-

modynamic effects involved in protein–ligand binding, are

being pursued. These terms are currently implemented in

the AutoDock 4.0 scoring functions on empirical basis

only. Using a more generally parameterized MD-type force

field to evaluate and rescore the docked complexes should

lead to more accurate estimates of the binding affinities, as

well as allow for increased transferability of the RCS to a

more diverse set of systems.

Second, concerning the final refinement procedure

(bottom of the funnel in Fig. 1): the application of accurate

(explicit solvent) free energy calculations for a larger

number of ligands and receptors of increasing size will

primarily be influenced by force field accuracy, the ability

to attain extensive sampling, and an improved description

of the enthalpy–entropy compensation thermodynamics.

Although the computational determination of free energy

changes has become a standard procedure for which a

variety of techniques have been developed, absolute

entropies and their differences are still rarely computed.

The rapid development of computer resources accompa-

nied by force field refinement and improved simulation

algorithms will naturally extend the range of problems that

free energy calculations can directly assess.

Conclusions

Accounting for receptor flexibility in computer-aided drug

design is still a major challenge. Recent examples illustrate

the importance of predicting and including induced-fit

effects upon receptor–ligand binding. MD simulations of

receptors in complex with known and potential inhibitors

provide relevant biochemical insights, which are otherwise

not accessible through standard experimental techniques.

Despite this, a general and highly transferable procedure

that reliably and efficiently accommodates receptor flexi-

bility is still lacking. The extensions and methodological

improvements to the RCS presented here take important

steps toward offering such a streamlined procedure. Our

examples indicate that alternative choices of receptor

ensembles can significantly alter the predictive power of

RCS calculations, and that it is possible to reduce the

receptor ensemble to a non-redundant set of configurations

by various techniques without losing relevant binding

information. Furthermore, both example systems indicate

that the role of explicit water molecules in molecular

association remains one of the key components of com-

puter-aided drug design methods to be further investigated.

A summary of the crucial points that we anticipate will

help drive the future development of the RCS was pre-

sented and what emerges is that a clear and pressing

challenge, closely coupled to receptor flexibility, is the

development of methods to better estimate ligand and

receptor entropy. Their subsequent application to molecu-

lar association thermodynamics will allow an increased

accuracy in the description of enthalpy-entropy compen-

sation effects during the ligand binding process.
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