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Abstract

Systematic scaling analysis of model equations can be valuable as a tool for

developing computationally tractable simulations of physical systems. The

scaling analysis methods in literature pose difficulties in the calculation of

scale and reference values, when nonlinear terms are involved in the model

equations. Further, existing methods involve trial and error procedures in

the scaling process. In this paper, a systematic approach for handling non-

linear terms is suggested, which results in appropriate scale and reference

values that render the dimensionless variable variations to be of order one.

Further, trial and error procedures are avoided through a new approach

wherein a set of nonlinear algebraic equations are solved to identify the

scale and reference values. The proposed scaling approach is common to

any given model equations with fixed parameters. However, it is to be

noted that the proposed procedure may not handle situations when model
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equations exhibit steady state multiplicity and have dynamic multi-mode

regimes. The proposed scaling procedure is illustrated through various ex-

amples of different complexities. A 1D model of WGS reactor as a case

study shows the effectiveness of the obtained scale and reference values in

obtaining simplified model which represents the steady state and dynamic

variations of the variables.

Keywords: Scaling analysis, Model simplification, Water gas shift reactor

1. Introduction

Scaling analysis is a systematic approach that can be used to identify

phenomena occurring at various scales. This information can be used to

simplify a given set of equations by neglecting phenomena, which occur

at scales that are different from the scale of interest. In this approach, a

given set of equations is made dimensionless, resulting in several dimension-

less groups of varying magnitudes. These dimensionless groups represent

the relative effects of phenomena or mechanisms and therefore help identify

dominant phenomena/mechanisms in the scale of interest. A number of au-

thors have used scaling analysis for model simplification and identification.

For example, Dahl et al. (2004) have used scaling analysis to get insights into

the behavior of fluid aerosol reactor without performing actual simulations.

Kopaygorodsky et al. (2004) have used scaling analysis to identify key dif-

ferences between the modeling assumptions for conventional pressure swing

adsorption and ultra-rapid pressure swing adsorption. Kaisare et al. (2005)

have used scaling analysis to identify phenomena occurring at varying scales

in a reverse flow reactor. Balaji et al. (2008) have used scaling analysis for

reverse flow reactor and have shown ways of simplifying the model equa-

tions. Rao et al. (2010) have used scaling analysis for pulsed pressure swing
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adsorber to identify useful correlations in terms of dimensionless numbers.

Rezvanpour et al. (2012) have studied electro-hydrodynamic atomization

process using scaling analysis to simply the model and to find a correlation

relating efficiency with a single dimensionless number involving the parame-

ters of the process. Baldea and Daoutidis (2007) have used scaling analysis

for auto-thermal reactors to identify a non-stiff model by separating fast

and slow time scales. Krantz (2007) have described the method of scaling

analysis in a book for various transport and reaction process.

There are two important gaps in all these works that use scaling analysis.

In the scaling methodology described by Krantz (2007), all dependent and

independent variables in the equations are made dimensionless by choos-

ing appropriate scale(s) and reference factor(s). This results in a minimum

parametric representation of the model equations. Thus the solution of these

equations can be expressed in terms of dimensionless groups. The form of

these dimensionless groups and the methods used for obtaining scales usually

involve trial and error methods. In Krantz et al. (2012), it is mentioned that

one has to know the controlling mechanism while forming a unique dimen-

sionless equation which varies in the order of 1. Identifying this controlling

mechanism is not obvious and in most cases this usually involves a trial and

error process. Further, in all these works on scaling analysis, the scaling of

nonlinear terms in the equations is addressed in an empirical manner. The

scale for nonlinear terms are usually taken to be some characteristic maxi-

mum (Balaji et al., 2008; Krantz, 2007), but obtaining this maximum is not

obvious without simulating the corresponding equations. We address these

gaps in the literature by: (i) proposing an approach that avoids the trial-

and-error method for deriving scales, and (ii) we focus on nonlinear terms

and suggest a systematic way to obtain appropriate scales for these terms.
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The proposed method for scaling analysis is general and straight-forward

to apply to any given set of equations. The proposed method is described

in several steps and explained though examples of varying complexity. We

apply the techniques developed in this paper and calculate scale and refer-

ence values for a 1D model of water gas shift (WGS) reactor system, which

involves complex nonlinear terms and differential algebraic equations. The

obtained scale and reference values are shown to be appropriate in making

the corresponding dimensionless variables to vary in the order of 1. Anal-

ysis of obtained scale and reference values through relevant dimensionless

groups results in a simplified model. The performance of the simplified

model based on these scales is evaluated by comparing the simulation re-

sults with a detailed model and bench-marking the respective computational

performances.

2. Model simplification using current method of scaling analysis

Systematic scaling analysis of model equations can identify phenomena

with varying importance thereby providing a rational approach for model

simplification through elimination of terms and elimination of equations with

minimal impact on the simulation results. Scaling analysis involves identi-

fying appropriate scale and reference values to make the entire dependent

and independent variables in a model to be dimensionless and vary in the

order of 1, i.e. these dimensionless variables vary from zero to near one.

This type of representation for a model is termed as minimum parametric

representation. In this representation, it is easy to identify terms (which

corresponds to some physical phenomenon) of least importance and one can

discard them to obtain a simplified model.
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In this section we first provide a general description of the scaling anal-

ysis and point out the deficiencies in the existing procedures at appropriate

places. The method of scaling analysis followed in the literature is described

below through several steps using a simple example.

Step 1: Consider the following system of equations

dy1
dx

= f11(y1, y2, x) + f12(y1, y2, x) (1)

dy2
dx

= f21(y1, y2, x) + f22(y1, y2, x) (2)

The initial conditions for the above equations are given by

y1(x = 0) = y10; y2(x = 0) = y20; (3)

Step 2: Define dimensionless quantities (involving scale and reference val-

ues) for dependent and independent variables and introduce them into the

equations

y∗1 ≡
(y1 − y1,r)

y1,s
; y∗2 ≡

(y2 − y2,r)

y2,s
; x∗ ≡ x

xs
(4)

In the above definition, variables with subscript ’s’ and ’r’ represent scale

and reference values respectively and variables with superscript ’∗’ repre-
sent dimensionless quantities. Reference and scale values are introduced so

that resulting dimensionless variable starts from zero and vary in order of 1

respectively. This means reference value is required only for variables which

are not starting from zero. Hence in the above example, reference value

is not introduced in the definition for dimensionless independent variable.

However there are situations (for example, for fluid flow problem involving

annulus pipe) where independent variables does not start from zero and in

those situations one need to have reference values. Introducing these defini-
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tions in Eq. (1), Eq. (2) and Eq. (3)

y1,s
xs

dy∗1
dx∗

= f11(y
∗
1y1,s + y1,r, y

∗
2y2,s + y2,r, x

∗xs) + f12(y
∗
1y1,s + y1,r, y

∗
2y2,s + y2,r, x

∗xs)

(5)

y2,s
xs

dy∗2
dx∗

= f21(y
∗
1y1,s + y1,r, y

∗
2y2,s + y2,r, x

∗xs) + f22(y
∗
1y1,s + y1,r, y

∗
2y2,s + y2,r, x

∗xs)

(6)

y∗1(x
∗xs = 0) =

(y10 − y1,r)

y1,s
; y∗2(x

∗xs = 0) =
(y20 − y2,r)

y2,s
(7)

In the above equations, (f11, f12, f21, f22) can represent linear or nonlinear

terms involving dependent and independent variables. For these terms, once

appropriate dimensionless variable definitions are introduced, one should be

able to separate them into terms involving only scale and reference val-

ues and terms involving only dimensionless variables. For example, after

scaling the term f11, this needs to be written as a product of two terms

f11,s = f11(y1,s, y1,r, y2,s, y2,r, xs, xr) and f∗
11 = f11(y

∗
1, y

∗
2, x

∗). This separa-

tion becomes difficult for most of the nonlinear terms and there is hardly any

work in the open literature that provides a rational approach to handling

them. For example, consider the nonlinear first order kinetic term

rA = k0e
− Ea

RT CA (8)

For the above nonlinear term, on introducing the dimensionless variable

definition for the variables CA and T , it becomes

rA = k0e
− Ea

R(T∗Ts+Tr) (C∗
ACA,s + CA,r) (9)

In the above nonlinear term, it is difficult to separate the expression for reac-

tion scale involving (CA,s, CA,r, Ts, Tr) and the expression for dimensionless

reaction term involving (C∗
A, T

∗). In the literature (Balaji et al., 2008;
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Krantz, 2007; Krantz et al., 2012), it is suggested that some characteristic

maximum be used as the scale, but obtaining this characteristic maximum

is not obvious and clear. In this paper, we address this issue of finding scales

for such nonlinear terms.

Step 3: Once dimensionless variable definitions are introduced, dimen-

sionless equations can be formed by dividing the equation by the dimen-

sional coefficient of any particular term in the equation. For each of the

above equations (Eq. (5) and Eq. (6)), one has three possibilities to form a

dimensionless equation. For example, for Eq. (5)

dy∗1
dx∗

=
xsf11,s
y1,s

f∗
11 +

xsf12,s
y1,s

f∗
12 (10)

y1,s
xsf11,s

dy∗1
dx∗

= f∗
11 +

f12,s
f11,s

f∗
12 (11)

y1,s
xsf12,s

dy∗1
dx∗

=
f11,s
f12,s

f∗
11 + f∗

12 (12)

In Eq. (10), Eq. (11) and Eq. (12), we have divided the dimensional coeffi-

cient of first, second and third terms, respectively. The dimensional coeffi-

cient has to be selected such that the resulting dimensionless equation is of

order 1. This usually involves a trial and error method where each of these

possibilities may need to be evaluated.

Step 4: After identifying particular form of dimensionless equation,

then next step is to calculate scale and reference values involved in these

equations. This is again done by a trial and error method by assuming that

a particular dimensionless group is dominant in the equation and making it

equal to 1. For example, by considering Eq. (10) and similar dimensionless

equation for Eq. (6), scales for the dependent variables can be found by as-

suming dimensionless group in first term in these equations to be dominant.

Scale for independent variable can be found from its maximum value and
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equating the corresponding dimensionless variable to 1.

xsf11,s
y1,s

= 1;
xsf21,s
y2,s

= 1;
L

xs
= 1 (13)

The scales y1,s, y2,s and xs can be found by solving Eq. (13) where L is the

maximum value for the independent variable.

Step 5: Reference value for a variable is found from the dimensionless

initial condition by equating it to zero. Thus from Eq. (7), one can calculate

y1,r and y2,r from,

y∗1(x
∗xs = 0) =

(y10 − y1,r)

y1,s
= 0;=⇒ y1,r = y10 (14)

y∗2(x
∗xs = 0) =

(y20 − y2,r)

y2,s
= 0;=⇒ y2,r = y20 (15)

Once appropriate scale and reference values are found, they can be sub-

stituted in other dimensionless groups. If the resulting values of dimension-

less groups are in the order of 1 or much less than 1, then the calculated

scales are retained. If the values are much greater than 1, then either the

chosen dominant dimensionless group or the chosen form of dimensionless

equation is incorrect and needs to be changed. As one can see, step 3 and

step 4 involves trial and error. After identifying appropriate dimensionless

equation, simplification of corresponding equations can be undertaken by

examining the values of dimensionless groups. In the next section, we pro-

pose an improved version of scaling methodology described in the literature

for efficient handling of nonlinear terms and for efficient calculation of scale

and reference values.

3. Proposed improvements in scaling analysis

In the scaling analysis described in the literature, we see that handling

of nonlinear terms during scaling analysis is not clear and not general. Also
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during scaling analysis, one need to follow a trial and error procedure dur-

ing selection correct form of dimensionless equation and during calculation

of scales. In this paper we propose an systematic approach where scaling

analysis is general and intuitive to any given model equations. This new

approach is explained through following steps

Step 1: Given a set of model equations with corresponding initial and

boundary conditions, introduce the definition of dimensionless variable in-

volving scale and reference values, for all dependent and independent vari-

ables. To make the procedure more general, introduce reference value for

all the variables regardless for whether they start from zero or not.

Step 2: In addition to the variables, introduce dimensionless quantity

definition involving only scale values, for all the terms which are formed from

the linear or nonlinear combination of dependent and independent variables.

Step 3:Introduce these definitions into model equations and correspond-

ing initial and boundary conditions and form dimensionless equations.

Step 4: Next step is to form algebraic equations for the calculation of

scale and reference values. Following ideas help in forming such equations

1. In the dimensionless equation formed above, equate all the dimension-

less variables and dimensionless terms to take the value of 1. The

reason for this equation is that we need value of all the dimensionless

variables to vary in the order of one, hence we can safely assume these

variables to take the value of 1. This will result in algebraic equation

involving only scale and reference values.

2. The dimensionless variables in inlet conditions (i.e. boundary condi-

tions corresponding to initial value of independent variables) can be

assumed to take the value of zero. This is to make all the dimensionless
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variables to start from zero.

3. The dimensionless variables in outlet condition (i.e. boundary con-

ditions corresponding to final value of independent variables) can be

assumed to take the value of 1. This is to make all the dimensionless

variables to take the value of 1 at the outlet condition. For initial

value problems, one will not have this outlet condition, whereas this

is present for boundary value problems.

4. For certain cases, because of the nature of the problem, actual variables

might take a value of zero at outlet condition and in those cases,

corresponding dimensionless variable can also be assumed to take a

value of zero.

Step 5: Solving the resulting algebraic equations from above step gives

appropriate scale and reference values which makes the dimensionless vari-

ables to vary in the order of 1.

Step 6: Once the scale and reference values are found, then it is easy

to form appropriate dimensionless groups involving these values and asses

their relative importance in the equation.

It is to be noted that the above scaling approach may not be applicable

to model equations which exhibits steady state multiplicity. In such cases,

one might be able to do scaling analysis corresponding to each steady state

separately, but this needs to be explored. Also the proposed approach may

not work for the case where equations exhibit multi regimes which could

shift dynamically. One might have to work with parameter ranges at the

time of preliminary scaling to more comprehensively address this issue and

this needs further exploration.
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3.1. Details of the proposed steps through an example

Considering a set of equations, Eq. (1), Eq. (2) and Eq. (3), as given in

the previous section, one need to introduce dimensionless variable definition

for dependent variables (y1 and y2), independent variable x and dimension-

less term definition for nonlinear (or linear) functions (f11, f12, f21, f22). The

definition of dimensionless variables for the independent and dependent vari-

ables are the same as in Eq. (4). The definition for the dimensionless terms

is as follows

f∗
11 =

f11
f11,s

; f∗
12 =

f12
f12,s

; f∗
21 =

f21
f21,s

; f∗
22 =

f22
f22,s

(16)

Introducing these definitions into model, results in following set of equations

dy∗1
dx∗

=
xsf11,s
y1,s

f∗
11 +

xsf12,s
y1,s

f∗
12 (17)

dy∗2
dx∗

=
xsf21,s
y2,s

f∗
21 +

xsf22,s
y2,s

f∗
22 (18)

f∗
11f11,s = f11(y

∗
1y1,s + y1,r, y

∗
2y2,s + y2,r, x

∗xs + xr) (19)

f∗
12f12,s = f12(y

∗
1y1,s + y1,r, y

∗
2y2,s + y2,r, x

∗xs + xr) (20)

f∗
21f21,s = f21(y

∗
1y1,s + y1,r, y

∗
2y2,s + y2,r, x

∗xs + xr) (21)

f∗
22f22,s = f22(y

∗
1y1,s + y1,r, y

∗
2y2,s + y2,r, x

∗xs + xr) (22)

Introducing the definitions into inlet conditions

x∗xs + xr = 0 (23)

y∗1y1,s + y1,r = y10; y∗2y2,s + y2,r = y20 (24)

Similarly at outlet condition, this becomes

x∗xs + xr = L (25)
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Now assume dimensionless variables and dimensionless terms in Eq. (17)

to Eq. (22) to take the value of 1. Similarly, assume the dimensionless vari-

ables in Eq. (23) and Eq. (24) to take the value of zero and the dimensionless

variable in Eq. (25) to take the value of 1. This results in following algebraic

equations for the calculation of scale and reference values:

1 =
xsf11,s
y1,s

+
xsf12,s
y1,s

(26)

1 =
xsf21,s
y2,s

+
xsf22,s
y2,s

(27)

f11,s = f11(y1,s + y1,r, y2,s + y2,r, xs + xr) (28)

f12,s = f12(y1,s + y1,r, y2,s + y2,r, xs + xr) (29)

f21,s = f21(y1,s + y1,r, y2,s + y2,r, xs + xr) (30)

f22,s = f22(y1,s + y1,r, y2,s + y2,r, xs + xr) (31)

y1,r = y10; y2,r = y20; (32)

xr = 0 (33)

xs + xr = L (34)

Once scale and reference values are calculated by solving above algebraic

equations, it is easy to form dimensionless groups, which can provide infor-

mation about phenomena occurring at various scales. This information can

be subsequently used in possible simplification of the equations.

4. Examples of varying complexity to illustrate the proposed idea

for scaling analysis

In this section, we illustrate the proposed idea using various examples

of different complexity. The first example consider model equations with

single independent variable and the second example consider equations with

12



two independent variables. In both the examples, we use Dirichlet type

boundary conditions and in third example, we use Neumann type boundary

condition. Finally, we consider an example involving DAEs with two inde-

pendent variables and involving Neumann type boundary conditions. In all

these examples, various steps explained in previous section are indicated at

appropriate places.

4.1. Example 1: Steady-state plug flow reactor

The mathematical model of steady plug flow reactor is given by following

differential equations

dcA
dz

= −rA; dT

dz
= B1rA; rA = k0e

−Ea
RT CA (35)

The boundary conditions corresponding to inlet are given by

CA(z = 0) = CA0; T (z = 0) = T0; (36)

The boundary condition corresponding to the outlet is given by z = L.

Step 1 & 2: Define dimensionless quantities for the variables and terms

involved in the equations

z∗ ≡ z − zr
zs

; C∗
A ≡

CA − CA,r

CA,s
; T ∗ ≡ T − Tr

Ts
; r∗A ≡

rA
rA,s

(37)

Step 3: Introducing the definitions into the model equations

CA,s

zs

(
dCA

dz

)∗
= −rA,sr

∗
A (38)

Ts

zs

(
dT

dz

)∗
= B1rA,sr

∗
A (39)

rA,sr
∗
A = k0e

− Ea
R(T∗Ts+Tr) (C∗

ACA,s + CA,r) (40)
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And introducing the definitions into the boundary conditions

C∗
ACA,s(z

∗zs + zr = 0) + CA,r = CA,0 at inlet (41)

T ∗Ts(z
∗zs + zr = 0) + Tr = T0 at inlet (42)

z∗zs + zr = L at outlet (43)

Step 4:Assuming dimensionless variables taking the value of 1 in the model

equations, we have the following algebraic equations

cA,s

zs
= −rA,s;

Ts

zs
= B1rA,s; rA,s = k0e

−Ea
R(Ts+Tr) (CA,s + CA,r) (44)

From the inlet conditions (assuming C∗
A = T ∗ = z∗ = 0)

CA,r = CA,0; Tr = T0; zr = 0 (45)

From the outlet condition (assuming z∗ = 1) we have zs = L.

The solution of the above algebraic equations provides appropriate scales

and reference values that will make the corresponding dimensionless variable

to vary in the order of 1.

4.2. Example 2: Unsteady-state plug flow reactor

In the unsteady plug flow reactor model, we have partial differential

equations (PDEs) due to the presence of two independent variables, space

and time. These PDEs can be converted to ordinary differential equations

using method of lines and scale and reference values can be found as in

previous example. In such case we will have as many scale and reference

values for a variable as number of discretization points used in the method

of lines procedure. Alternatively, we can also restrict the number of scale

and reference values to one for each variable and calculate the corresponding
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values. In this example, we illustrate a later case where we consider a single

scale and reference value for each variable.

The mathematical model of unsteady plug flow reactor is given below

∂CA

∂t
= −v1∂CA

∂z
− rA (46)

∂T

∂t
= −v2∂T

∂z
+B2rA (47)

rA = k0e
− Ea

RT CA (48)

Boundary conditions corresponding to initial value of independent variables,

i.e. inlet conditions and initial and conditions are given by

CA(z = 0) = CA,0; T (z = 0) = T0; CA(t = 0) = f1; T (t = 0) = f2 (49)

Where f1 & f2 represent the initial profile of dependent variables at t = 0.

Boundary conditions corresponding to final value of independent variables

are given by

z = L; t = tend (50)

Step 1 & 2: Define dimensionless quantities for the variables and term

involved in the equation

z∗ ≡ z − zr
zs

; t∗ ≡ t− tr
ts

; C∗
A ≡

CA − CA,r

CA,s
; T ∗ ≡ T − Tr

Ts
; r∗A ≡

rA
rA,s

(51)

Step 3: Introducing the definitions into the model equations

CA,s

ts

(
∂CA

∂t

)∗
= −v1CA,s

L

(
∂CA

∂z

)∗
− rA,sr

∗
A (52)

Ts

ts

(
∂T

∂t

)∗
= −v2Ts

L

(
∂T

∂z

)∗
+B2rA,sr

∗
A (53)

rA,sr
∗
A = k0e

− Ea
R(T∗Ts+Tr) (C∗

ACA,s + CA,r) (54)
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And introducing the definitions into the boundary conditions

C∗
ACA,s(z

∗zs + zr = 0) + CA,r = CA,0; T ∗Ts(z
∗zs + zr = 0) + Tr = T0

(55)

C∗
ACA,s(t

∗ts + tr = 0) + CA,r = f1; T ∗Ts(t
∗ts + tr = 0) + Tr = f2 (56)

z∗zs + zr = L; t∗ts + tr = tend (57)

Step 4: Assuming dimensionless variables take the value of 1 in the model

equations, we have the following algebraic equations

CA,s

ts
= −v1CA,s

zs
− rA,s (58)

Ts

ts
= −v2Ts

zs
+B2rA,s (59)

rA,s = k0e
−Ea

R(Ts+Tr) (CA,s + CA,r) (60)

From the initial and inlet conditions assuming C∗
A = T ∗ = z∗ = t∗ = 0

CA,r = CA,0; Tr = T0; zr = 0; tr = 0 (61)

We can either assign the above values as the reference variables for CA,r & Tr

or utilize an average value from the initial conditions as given below,

CA,r = F1; Tr = F2 (62)

F1 and F2 represent the average value obtained from the initial distribution

of the dependent variables over the domain(0, L). From the other boundary

condition, by assuming z∗ = t∗ = 1 , we have

zs = L; ts = tend (63)

Solution of the above nonlinear algebraic equation will give appropriate

scales and reference values.
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4.3. Example 3: Boundary value problem with Neumann-type boundary con-

dition

In previous examples, reference values are found using boundary condi-

tions and scales for dependent variables are found by solving algebraic equa-

tions. In this example we demonstrate how the reference values are found

from the algebraic equations when Neumann-type boundary conditions are

involved. The equations and the corresponding boundary conditions are

given below

d2T

dx2
= f(T );

dT

dx
(x = 0) = y1;

dT

dx
(x = L) = y2 (64)

Above equation can be rewritten as following two ODEs and corresponding

boundary conditions

dT

dx
= a;

da

dx
= f(T ); a(x = 0) = y1; a(x = L) = y2 (65)

Step 1,2 & 3: Introducing dimensionless variable definitions corresponding

to T and a,

Ts

L

(
dT

dx

)∗
= a∗as + ar;

as
L

(
da

dx

)∗
= f(T ∗Ts + Tr) (66)

Boundary conditions become

a∗as(x∗xs + xr = 0) + ar = y1; a∗as(x∗xs + xr = L) + ar = y2 (67)

Step 4: Algebraic equations can be formed as before using the assumption

of dimensionless variable taking the value of 1 or 0:

Ts

L
= as + ar;

as
L

= f(Ts + Tr) (68)

From the boundary conditions

ar = y1; as + ar = y2; xr = 0; xs = L; (69)

The solution to the above algebraic equations will provide both scale and

reference values for the variable T and a.
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4.4. Example 4: Unsteady mathematical model of water gas shift reactor

In this example, we consider an unsteady model of water gas shift (WGS)

reactor which involves DAEs with 9 dependent variables, Neumann-type

boundary condition and two equilibrium reactions with nonlinear kinetics.

This example represent the case where actual value of one of the variables

at outlet condition is zero and in such cases we make corresponding dimen-

sionless variable also to take value of zero. For this example, numerical

value of scales and reference values are calculated from the given values of

parameter and boundary condition. This example will be extended later

in this paper to show the possible simplifications that are possible from

the assessment of resulting dimensionless groups. The unsteady model for

WGS reactor and corresponding reaction kinetic equations are adopted from

Mobed et al. (2014). This model contains hyperbolic type PDE for species

balance and parabolic type PDE for energy balance. Later in this paper, we

show that simplification of model equations based on dimensionless groups

result in only hyperbolic type PDEs. Following two reactions are assumed

to take place in the WGS reactor. Schematic of WGSR with corresponding

boundary conditions is shown in Fig. 1

CO +H2O ⇐⇒ CO2 +H2 =⇒ Water Gas shift reaction

COS +H2O ⇐⇒ CO2 +H2S =⇒ Hydrolysis reaction

L Z=0 Z=L 

Ci,in 

Tin 

Pin 

CO + H2O             CO2 + H2 

COS + H2O             CO2 + H2S 

Ci,out 

Tout 

Pout 

Figure 1: Schematic of WGSR with corresponding BCs
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Species balance (i = 1 to 6):

∂Ci

∂t
= −GRTg

P

∂Ci

∂z
−Ci

GRTg

P

(
1

Tg

dTg

dz
− 1

P

dP

dz

)
+(rwgsγwgs,i+rhydγhyd,i)

1− ε

ε
(70)

C1 = CCO; C2 = CH2O; C3 = CCO2 ; C4 = CH2 ; C5 = CCOS ;

C6 = CH2S

Pressure drop equation:

dP

dz
= − ρg

dcat

(
GRTgε

P

)2(1− ε

ε3

)(
1.75 +

150μP (1− ε)

dcatεGRTgρg

)
(71)

Gas phase energy balance:

∂Tg

∂t
=

1

ρgCpg

(
−CpgG

∂Tg

∂z
+

hfac
ε

(
Tcat − Tg

))
(72)

Catalyst phase energy balance:

∂Tcat

∂t
=

1

ρcatCpcat

(
Kcat

∂2Tcat

∂z2
− hfac
1− ε

(
Tcat−Tg

)
+rwgsΔHR,wgs+rhydΔHR,hyd

)

(73)

Reaction kinetic equation:

Water Gas Shift reaction:

rwgs = −Ωkwgs

(
P

101325

)(0.5− P
50662500

)
RTcat

P

(
CCO − CCO2CH2

Keq,wgsCH2O

)
(74)

kwgs = k01e
−Ea1
RTcat ; Keq,wgs = e

(
4577.8
Tcat

−4.33

)
(75)

Hydrolysis reaction:

rhyd = −khyd
(

10−3(RTcatCCOS)

1 + 10−3(Keq,hydRTcatCH2O)

)
(76)

khyd = k02e
−Ea2
RTcat ; Keq,hyd = e

(
10010
Tcat

−15.89
)

(77)
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Initial and boundary conditions:

z = 0; Ci = Ci,in; Tg = Tg,in; Tcat = Tg,in; P = Pin (78)

z = L;
dTcat

dz
= 0 (79)

Equation for catalyst phase energy balance can be rewritten as following

two differential equations

Tcat

z
= Tcat,z (80)

∂Tcat

∂t
=

1

ρcatCpcat

(
Kcat

∂Tcat,z

∂z
− hfac

1− ε

(
Tcat − Tg

)
+ rwgsΔHR,wgs + rhydΔHR,hyd

)

(81)

Boundary condition corresponding to new variable Tcat,z is given below

z = L; Tcat,z = 0 (82)

In the above model, in addition to reaction kinetic terms, one can find

various terms involving combinations of dependent variables and these terms

are listed below

N1 =
GRTg

P
; N2 =

CiGR

P
; N3 =

CiGRTg

P 2
; N4 = (Tcat − Tg) (83)

Step 1 & 2: Dimensionless quantities are defined for the dependent and

independent variables and for the terms involving these variables as given

below

z∗ ≡ z − zr
zs

; t∗ ≡ t− tr
ts

(84)

C∗
i ≡

Ci − Ci,r

Ci,s
; T ∗

g ≡
Tg − Tg,r

Tg,s
; T ∗

cat ≡
Tcat − Tcat,r

Tcat,s
; (85)

P ∗ ≡ P − Pr

Ps
; T ∗

cat,z ≡
Tcat,z − Tcat,z,r

Tcat,z,s
(86)
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r∗wgs ≡
rwgs

rwgs,s
; r∗hyd ≡

rhyd
rhyd,s

; N1 ≡ N1

N1,s
; N2 ≡ N2

N2,s
; N3 ≡ N3

N3,s
; N4 ≡ N4

N4,s

(87)

Step 3 & 4: Introducing the above definitions and assuming dimensionless

variables to take the value of 1 following algebraic equations are formed

Algebraic equation for species concentration scale (i = 1 to 6):

Ci,s

ts
= −N1,s

Ci,s

zs
−N2,s

Tg,s

zs
+N3,s

Ps

zs
+(rwgs,sγwgs,i+rhyd,sγhyd,i)

1− ε

ε
(88)

C1,s = CCO,s; C2,s = CH2O,s; C3,s = CCO2,s; C4,s = CH2,s; C5,s =

CCOS,s; C6,s = CH2S,s

Algebraic equation for pressure scale:

Ps

zs
= −1.75ρg(1− ε)N2

1,s

dcatε
− (1− ε)2

ε2
150μN1,s

d2cat
(89)

Algebraic equation for gas phase temperature scale:

Tg,s

ts
= −G

ρg

Tg,s

zs
+

hfac
ερgCpg

N4,s (90)

Algebraic equation for catalyst phase temperature scale:

Tcat,s

ts
=

Kcat

ρcatCpcat

Tcat,z,s

zs
− hfac
ρcatCpcat(1− ε)

N4,s+
ΔHR,wgs

ρcatCpcat
rwgs,s+

ΔHR,hyd

ρcatCpcat
rhyd,s

(91)

Algebraic equation for catalyst phase temperature gradient scale :

Tcat,s

zs
= (Tcat,z,s − Tcat,z,r) (92)

Introducing the definitions in to reaction kinetic terms and to terms in-

volving combinations of dependent variables, following additional algebraic

equations can be formed.

rwgs,s = −Ωkwgs,s

(
Ps + Pr

101325

)(0.5− Ps+Pr
50662500

)
R(Tcat,s + Tcat,r)

Ps + Pr
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(
(CCO,s + CCO,r)− (CCO2,s + CCO2,r)(CH2,s + CH2,r)

Keq,wgs,s(CH2O,s + CH2O,r

)
(93)

kwgs,s = k01e
−Ea1

R(Tcat,s+Tcat,r) (94)

Keq,wgs,s = e

(
4577.8

Tcat,s+Tcat,r
−4.33

)
(95)

rhyd,s = −khyd,s
(

10−3R(Tcat,s + Tcat,r)(CCOS,s + CCOS,r)

1 + 10−3Keq,hyd,sR(Tcat,s + Tcat,r)(CH2O,s + CH2O,r

)

(96)

khyd,s = k02e
−Ea2

R(Tcat,s+Tcat,r) (97)

Keq,hyd,s = e

(
10010

Tcat,s+Tcat,r
−15.89

)
(98)

N1,s =
GR(Tg,s + Tg,r)

Ps + Pr
; N2,s =

(Ci,s + Ci,r)GR

Ps + Pr
; (99)

N3,s =
(Ci,s + Ci,r)GR(Tg,s + Tg,r)

(Ps + Pr)2
; N4,s = (Tcat,s + Tcat,r − Tg,s − Tg,r);

(100)

From the inlet boundary conditions, we have

Ci,r = Ci,in; Tg,r = Tg,in; Tcat,r = Tg,in; Pr = Pin; zr = 0; tr = 0 (101)

zs = L; ts = tend (102)

As the catalyst phase temperature gradient variable takes the value of

zero at outlet, we can make the corresponding dimensionless variable to take

the value of zero at the outlet. This results in a reference value for catalyst

temperature gradient to be zero, Tcat,z,r = 0.
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5. Numerical calculation of scale and reference values for the given

parameters for WGS reactor example

In this section, scale and reference values are calculated using given pa-

rameters and boundary conditions for the WGS reactor model (step 5 in the

proposed scaling analysis). The parameters and boundary condition values

for WGS reactor model are given in Table 1 and these are introduced into the

above algebraic equation(Eq. (88) − Eq. (100) and Eq. (102)) to calculate

the appropriate values. The reference values are obtained from the corre-

sponding boundary condition values, based on Eq. (101). The calculated

scale values are given in Table 2. One can note that scales for the variables,

decreasing along the length of the reactor (reactants concentration, pressure

etc.) take negative values, so that corresponding dimensionless variables

vary from 0 to near positive 1. The calculation of scale and reference values

does not involve forming ’appropriate dimensionless equation’ and identify-

ing ’appropriate dominant term’ as followed in the literature and hence no

trial and error procedure is involved.

6. Verification of calculated scale and reference values using sim-

ulation for WGS reactor example

In this section, calculated scale and reference values are verified to make

the corresponding dimensionless variables to vary in the order of 1. This

is to show that proposed method of scaling analysis results in scale and

reference values that are appropriate in representing the model equation

and hence can be used for further analysis such as model simplification. For

this verification, first actual dimensional values of variables are obtained

through simulation of WGS reactor model (Eq. (70) − Eq. (79)). Then
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Table 1: Parameters and inlet conditions for the WGS reactor

Parameter Value

Length of the reactor, (L, m) 29

Porosity of bed, ε 0.38

Heat transfer coefficient, (hf ,
W

m2K
) 100

Heat of reaction for WGS, (ΔHwgs,
J

mol ) 3.85× 104

Heat of reaction for Hydrolysis,(ΔHhyd,
J

mol ) 3.1× 104

Average density of gas, (ρg,
mol
m3 ) 20.5

Viscosity of gas mixture, (μg,
N−s
m2 ) 0.25× 10−4

Specific heat of gas, (Cpg,
J

mol−K ) 35

Density of catalyst,(ρcat,
kg
m3 ) 650

Specific heat of catalyst, (Cpcat,
J

kg−K ) 880

Specific area per unit volume of catalyst, (ac,
m2

m3 ) 1.69× 103

Conductivity of catalyst,(K, W
m−K ) 35

Diameter of catalyst, (dcat, m) 0.0035

Inlet condition Values before Values after

step change step change

CCO,in, (
mol
m3 ) 246.34 238.64

CH2O,in, (
mol
m3 ) 488.97 473.69

CCO2,in, (
mol
m3 ) 95.02 92.05

CH2,in, (
mol
m3 ) 234.65 227.32

CCOS,in, (
mol
m3 ) 0.0963 0.0933

CH2S,in, (
mol
m3 ) 4.98 4.82

Tin, (K) 620 640

Pin, (Pa) 5.52× 106 5.52× 106
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Table 2: Values of scales for the variables in the WGS reactor

Scales Value Scales Value

CCO,s -87.487 N2,CO,s 0.149

CH2O,s -119.558 N2,H2O,s 0.350

CCO2,s 42.556 N2,CO2,s 0.133

CH2,s 24.066 N2,H2,s 0.249

CCOS,s -0.0913 N2,COS,s 1.9744× 10−6

CH2S,s -0.578 N2,H2S,s 0.0042

Tg,s 55.358 N3,CO,s 2.035× 10−5

Tcat,s 55.449 N3,H2O,s 4.769× 10−5

Ps −4.1× 105 N3,CO2,s 1.813× 10−5

zs 29 N3,H2,s 3.385× 10−5

ts 2800 N3,COS,s 2.689× 10−10

rwgs,s -0.939 N3,H2S,s 5.713× 10−7

rhyd,s -0.0013 N1,s 0.688

N4,s 0.0912
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these actual values and calculated scale and reference values are substituted

into Eq. (84) to Eq. (87) to obtain values for dimensionless variables.

Actual values are obtained from the simulation of WGS reactor model

by introducing a step change in the steady-state inlet values. In Table 1,

values for the inlet conditions before the step change (steady state inlet

values) and after the step change (values for unsteady simulation) are given.

Unsteady simulation is carried out from an initial time value of 0 second

to 2800 second. The simulated results are plotted in four figures (Fig. 2 -

Fig. 5) for one of the variables CO. In first two figures, steady state results

are plotted for the dimensional CO concentration and for the corresponding

dimensionless variable. In the next two figures, unsteady simulation results

are plotted, using the value of the variable at the exit of the reactor, again for

the dimensional CO concentration and for the corresponding dimensionless

variable. From the plots (Fig. 3 and Fig. 5), it can be observed that all the

dimensionless variables vary between near zero to near 1. This means the

calculated scale and reference values are good enough in representing the

magnitude of variation of the actual variables. Hence these values can be

used for further analysis such as model simplification, developing analytical

solutions to different regions of interest, etc.

From the simulated results one can also observe that for steady state

value (Fig. 3), the dimensionless variable (CO∗) vary from exactly zero

to near 1, whereas for the unsteady values (Fig. 5), CO∗ vary from near

zero to near 1. This is because for steady state, inlet values are taken

to be the reference values and this makes the steady state dimensionless

variables to take the value of zero at inlet. Whereas for unsteady state,

we have two choices for the calculation of reference and scale values as

indicated in the illustrative example 2, of section 4.2. One choice uses the
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Figure 2: Simulated dimensional steady state result for CO concentration (mol/m3)

initial conditions and other choice uses inlet condition. In the former case,

there are many scale and reference values for each variable, corresponding

to number of discretization points and in the later case we have single scale

and reference value. As we have used only the inlet values as reference

values, dimensionless variables at the discretization points other than the

inlet do not take the exact value of zero at dimensionless time equal to zero.

Nevertheless we see that values of dimensionless variables are in the order

of 1 and this means that the calculated scale and reference values form a

representative of the unsteady variations of WGS reactor model. Hence, any

simplifications of model equations using these values will be reasonable and

closely represent the behavior of corresponding detailed model.
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Figure 3: Calculated dimensionless steady state result for CO concentration using scale

and reference values

7. Simplification of the model based on the dimensionless groups

- WGS reactor example

This section focuses on application of scaling analysis in simplifying the

model equations. We analyze the model equations of WGS reactor, using

dimensionless groups formed from the calculated scale and reference values.

Each term in a model equation represent some phenomena and ratio of two

such phenomenon form a dimensionless group. Once scale and reference

values are calculated, value of these phenomenon can easily be calculated

and from which dominant phenomenon (phenomenon with higher value) can

easily be identified. This dominant phenomenon can be divided throughout

the equation to form dimensionless equation involving dimensionless groups.

Thus formation of dimensionless equation does not involve any trial and error

procedure. In the resulting dimensionless equation, whenever the value of

a dimensionless group is much less than 1, then the phenomenon present in
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Figure 4: Simulated dimensional unsteady state result for CO concentration (mol/m3)

numerator of that group can be eliminated while simplifying the model. In

the following paragraph, we list all the phenomena and the corresponding

terms representing these phenomena present in the model equations of WGS

reactor.

In the unsteady species balance for the WGS reactor model, we note the

following phenomena:

• Rate of accumulation of species per unit volume and is represented

by,
Ci,s

ts

• Rate of convection of species per unit volume due to concentration

variation and is represented by ,N1,s
Ci,s

zs

• Rate of convection of species per unit volume due to temperature vari-

ation and is represented by,N2,s
Tg,s

zs

• Rate of convection of species per unit volume due to pressure variation

and is represented by,N3,s
Ps
zs
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Figure 5: Calculated dimensionless unsteady state result for CO concentration using scale

and reference values

• Rate of production/depletion of species per unit volume due to water

gas shift reaction and is represented by, rwgs,sγi

(
1−ε
ε

)

• Rate of production/depletion of species per unit volume due to hy-

drolysis reaction and is represented by, rhyd,sγi

(
1−ε
ε

)

The value for a phenomenon can be found from the scale and reference val-

ues. It is observed that value for convection of species due to concentration

gradient is high compared to other phenomenon in the species balance equa-

tions. Hence, the convection phenomenon is chosen to form dimensionless

groups. In Table 3, we list the magnitude of dimensionless groups formed

from the species balance equations. One can note that dimensionless group

5 & 6 in Table 3 represent Damkohler number and similarly one can identify

other named dimensionless groups.

Based on the values in Table 3, one can make various conclusions. From

the value of dimensionless group 6, one can conclude that contribution of
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Table 3: Values of dimensionless groups for species balance equation of WGS reactor

model

Species Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

balance zs
N1,sts

N2,sTg,s

N1,sCi,s

N3,sPs

N1,sCi,s

rwgs,sγizs(1−ε)
εN1,sCi,s

rhyd,sγizs(1−ε)
εN1,sCi,s

CCO 0.0150 1 0.137 0.1387 0.453 0

CH2O 0.0153 1 0.24 0.243 0.55 7.62× 10−4

CCO2 0.0150 1 0.252 0.253 1.52 2.1× 10−3

CH2 0.0154 1 0.85 0.855 2.74 0

CCOS 0.0151 1 0.174 1.76× 10−3 0 0.98

CH2S 0.0150 1 0.585 0.59 0 0.155

species concentration CH2O and CCO2 from hydrolysis reaction is low and

hence the term involving this reaction for this species balance can be ne-

glected. Similarly from dimensionless group 4, it is observed that the con-

vection of species concentration CCOS due to pressure gradient is low and

this term can be neglected. Further, from the value of dimensionless group

1, one can observe that for all the species balance, rate of accumulation is

smaller than convection and this implies unsteady behavior of the species

balance is significant only for a short duration. This duration can be found

by equating this dimensionless group to 1 and calculating the resulting time

as follows
zs

N1,sδcit,s
= 1⇒ δcit,s = 42 seconds (103)

The shorter time taken by the species balance to reach the steady-state can

also be verified through simulation of WGS reactor under isothermal and
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isobaric condition, i.e. simulating only the species balance equations. From

Fig. 6 one can observe that CO concentration reach steady-state at around

50 seconds and similar trend is also observed for other species.
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Figure 6: Unsteady behavior of species balance equation under isothermal and isobaric

condition - dimensional CO concentration (mol/m3)

In the unsteady-state thermal balance for the gas phase, we note the

following phenomena:

• Rate of accumulation of gas phase energy per unit volume and is rep-

resented by,
ρgCpgTg,s

ts

• Rate of convection of gas phase energy per unit volume and is repre-

sented by,
GCpgTg,s

zs

• Rate of transfer of gas phase energy per unit volume and is represented

by,
hfacN4,s

ε

Similarly, in the unsteady-state thermal balance for the catalyst phase, we

have following phenomena

32



• Rate of accumulation of catalyst phase energy per unit volume and is

represented by,
ρcatCpcatTcat,s

ts

• Rate of conduction of catalyst phase energy per unit volume and is

represented by,
KcatTcat,s

z2s

• Rate of transfer of catalyst phase energy per unit volume and is rep-

resented by,
hfacN4,s

1−ε

• Rate of production of catalyst phase energy per unit volume due to

water gas shift reaction and is represented by,rwgs,sΔHR,wgs

• Rate of production of catalyst phase energy per unit volume due to

hydrolysis reaction and is represented by, rhyd,sΔHR,hyd

In Table 4, we list the magnitude of dimensionless groups formed by divid-

ing each phenomenon in the gas phase energy balance with the convective

flux phenomenon and similarly by dividing each phenomenon in the catalyst

phase energy balance with the phenomenon that represents energy produc-

tion from the water gas shift reaction. From the dimensionless group values

in Table 4, we can observe that rate of accumulation for gas phase energy

is negligible compared to the convective flux of energy and this means un-

steady behavior of gas phase energy is significant only for a short duration.

This is given by:

ρgzs
GδTt,s

= 1⇒ δTRt,s ≈ 1 seconds (104)

Similarly, rate of energy conduction through catalyst phase is negligible

compared to rate of heat generation from water gas shift reaction and also

rate of heat generation from hydrolysis reaction is negligible. Further, from

the comparison of scale and reference values of gas phase and catalyst phase
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Table 4: Values of dimensionless groups for energy balance equation of WGS reactor model

Energy Group 1 Group 2 Group 3 Group 4 Group 5

balance
ρgzs
Gts

hfaczsN4,s

GεCpgTg,s

Tg 3.5× 10−4 1 0.99 − −
Energy Group 1 Group 2 Group 3 Group 4 Group 5

balance
ρcatCpcatTcat,s

rwgs,sΔHR,wgsts

KcatTcat,s

rwgs,sΔHR,wgsz2s

hfacN4,s

(1−ε)rwgs,sΔHR,wgs

rhyd,sΔHR,hyd

rwgs,sΔHR,wgs

Tcat 0.313 6.39× 10−5 0.69 1 1.11× 10−3

Table 5: Values of dimensionless groups for new energy balance equation

Energy Group 1 Group 2 Group 3

balance ρcatCpcat(1−ε)zs
GεCpgTs

(1−ε)rwgs,sΔHR,wgszs
GεCpgTg,s

T 0.455 1 1.45

temperature, one can observe that the values are close, this means that both

the temperatures vary in a similar manner along the length of the reactor.

Hence, both the temperatures can be considered to be equal. Considering

all the simplifications mentioned for energy balance, a new energy balance

equation involving only single temperature variable can be written as:

∂T

∂t
=

1

ρcatCpcat

(−GεCpg
1− ε

∂T

∂z
+ rwgsΔHR,wgs

)
(105)

Based on the new energy balance, new dimensionless groups can be formed

as shown below in the Table 5. From the dimensionless group 1 in Table 5,

one can find the duration of unsteady behavior of new energy balance as
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Table 6: Values of dimensionless groups for pressure drop equation

Pressure Group 1 Group 2 Group 3

drop
1.75ρg(1−ε)N2

1,szs
Psdcatε

zs(1−ε)2150μN1,s

Psε2d2cat

P 1 0.55 0.03

given below

ρcatCpcat(1− ε)zs
GεCpgδTt,s

= 1⇒ δTt,s ≈ 1274 seconds (106)

Comparing the unsteady state duration for species balance (around 50 sec-

onds) and for energy balance (around 1274 seconds), we see that dynamics of

species balance is mostly governed by the dynamics of energy balance. This

means we can easily assume the species balance to be at quasi steady-state

during the simulation of WGS reactor model. Similar analysis can be done

for pressure drop equation and the value of dimensionless groups in Table 6

indicates that all the terms in this equation are important and no further

simplification is possible.

Considering all the simplifications mentioned above, the following sim-

plified model can be derived.

Simplified Species balance:

dCi

dz
= −Ci

(
1

Tg

dTg

dz
− 1

P

dP

dz

)
+

(
rwgsγwgs,i

)(1− ε)P

GRTgε
(107)

C1 = CCO; C2 = CH2O; C3 = CCO2 ; C4 = CH2

dCcos

dz
= −Ccos

(
1

Tg

dTg

dz

)
+

(
rhydγhyd,cos

)(1− ε)P

GRTgε
(108)

dCH2S

dz
= −CH2S

(
1

Tg

dTg

dz
− 1

P

dP

dz

)
+

(
rhydγhyd,H2S

)(1− ε)P

GRTgε
(109)
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Pressure drop equation:

dP

dz
= − ρg

dcat

(
GRTgε

P

)2(1− ε

ε3

)(
1.75 +

150μP (1− ε)

dcatεGRTgρg

)
(110)

Simplified energy balance:

∂T

∂t
=

1

ρcatCpcat

(
−GεCpg

1− ε

∂T

∂z
+ rwgsΔHR,wgs

)
(111)

The inlet conditions and reaction kinetic equations remain same as in de-

tailed model. The simplifications from scaling analysis results in conversion

of parabolic type model to hyperbolic type PDE model. Further, energy

balance equation for gas phase and catalyst phase is simplified to a single

energy balance and this resulted in removing one boundary condition.

8. Simulation and comparison of the detailed and simplified mod-

els

The simplified model obtained through scaling analysis is tested by com-

paring the simulation results with that generated from the detailed model.

The percentage change in the average values of the variables between de-

tailed and simplified model and the computational load are considered as

metrics for comparison. These metrics represents the accuracy of the simpli-

fied model and its computational efficiency compared to the corresponding

detailed model. For example, the average difference in the temperature

during unsteady simulation between two models is given by

Tavg,error =
| 1
tendL

∫ tend

0

∫ L
0 Tdetaileddzdt− 1

tendL

∫ tend

0

∫ L
0 Tsimplifieddzdt |

1
tendL

∫ tend

0

∫ L
0 Tdetaileddzdt

×100

(112)

In the above equation, the integral is calculated numerically based on the

values of the corresponding variables. Computational load is measured in
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Table 7: Comparison of the reduced model vs. the detailed model

Variable/Model Measure Value

Cco Cco,avg.error 0.0057

CH2O CH2O,avg.error 0.0089

Cco2 Cco2,avg.error 0.0953

CH2 CH2,avg.error 0.0189

Ccos Ccos,avg.error 0.7031

CH2S CH2S,avg.error 0.004

Tg Tg,avg.error 0.0154

Tcat Tcat,avg.error 0.0276

P Pavg.error 7.52× 10−4

Detailed Model Computational Load,s 144.2

Simplified Model Computational Load,s 98.9

terms of time taken for unsteady simulation. Table. 7 shows the values for

these metrics and the values shows that error percentage is quite small that

one can consider the simplified model as a good approximation that can

be used in lieu of the detailed model for the given parameter values and

inlet conditions. The computational load is lower and is about only 68%

of the computational load of the detailed model. Fig. 7 and Fig. 8 com-

pares steady state and unsteady state simulation results for CO between

detailed and simplified model. The scaling analysis results in conversion of

a parabolic PDE model to first order hyperbolic PDE model. The parabolic

PDE nature comes from the conduction term in the original energy balance

equation. The scaling analysis reveals that conduction term is insignificant
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and also both gas phase and catalyst phase temperatures can be considered

to be varying similarly. This results in the removal of one of the equations

for the energy balance and reveals the true nature of PDE, which is first

order hyperbolic. This is an important observation, because further simpli-

fication of the model through order reduction depends on the type of PDE

that is being solved. For parabolic type PDEs, proper orthogonal decom-

position is normally used for the order reduction (for example, Shvartsman

et al. (2000)), whereas for the hyperbolic PDEs, method of characteristic is

used as the order reduction method (Munusamy et al., 2013, 2014). Hence

the obtained model can be further simplified through order reduction using

method of characteristics.
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Figure 7: Comparison of steady state results between detailed and simplified model for

CO concentration (mol/m3)
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Figure 8: Comparison of unsteady state results between detailed and simplified model for

CO concentration (mol/m3)

9. Conclusion

Scaling analysis has been systematically applied to model equations in

obtaining a simplified model. In this analysis, two important difficulties,

one in handling nonlinear terms and another in performing trial and error

procedure, are addressed. The proposed improvements in the method of

scaling analysis results in straight-forward handling of nonlinear terms and

avoids trial and error procedure by solving a set of algebraic equations to

obtain the scale and reference values. This method is illustrated through

several examples of varying complexity. The proposed scaling approach is

common to any given model equations with fixed parameters. However, it

is to be noted that the proposed procedure may not handle situations when

model equations exhibit steady state multiplicity and have dynamic multi-

mode regimes. The 1D WGS reactor model is used as a case study to obtain

scale and reference values, using the proposed scaling analysis. The obtained
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values are verified to be appropriate, as this results in making the dimension-

less variables in the 1D model to vary between zero and one. The simplified

model obtained using these values is shown to be a good approximation for

the detailed model with increased computational efficiency. Thus, from this

case study, it is concluded that the proposed scaling analysis is systematic

and effective in identifying appropriate scale and reference values, which can

be used for any further analysis including simplification of the model equa-

tions. Such simplified models can also be used in optimization studies, and

further reduction through techniques such as method of characteristics can

lead to tractable first principles models that can be used for online control.
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