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ABSTRACT: A shear lag rnodel is forn.rulated to pre dict the stfesses in a r.rnidirecl ional f i -

ber reinlbrced composite. 
' fhe 

model is bascd on assumptions consistent u' i th the t ini te cle-

ment  mcthod and the  pr inc ip le  o f  v i r tua l  work  b1 'assuming tha t  the  mat r ix  d isp laccments

can bc inte rpolated l iom thc f iber displacements. ' [he f rbers arc treated as one-cl ime nsional

spr ines  and the  mat r ix  i s  mode led  as  th re  e  -d imens iona l  i ln i te  e lements .  I  he  resu l t ing  f in i t c

elentcnt equations for thc svstem are transformed into dif ferential equations by taking thc

d iscre t iza t ron  length  to  approach zsro .  The govern ing  ord inar l 'd i f fe ren t ia l  equat ions  are

so l r  cd  us ing  Four ie r  t rans format ions  and an  in f luence func t ion  techn ique.  
- fhe  

techn ique is

uscd to solr,e lbr the stresses around a single t iber brcak in an inl lni te square or hexagonal

arrav ol f ibers. The results arc comparcd rvith previous shear lag moclels and f ini te elemcnt

results. l -he model predicts st less conccntrat ions that are in good agreement rvit l r  rn<lre cle-

ta i l cd  t ln i te  e lement  ana l l  scs .

INTRODUCTION

Shear  lag  mode ls  have been used ex tens ive ly  fo r  compos i te  mic ros t ress

ana ly 's is .  Hedgepeth  [ ]  and Hedgepeth  and van Dyke [2 ] ,  (HVD) ,  ca lcu la ted

s t ress  concent ra t ions  around c lus te rs  o fb roken f lbers  u t i l i z ing  shear  lag  method-

o logy ' .  1 'he  two-d imens iona l  ana lys is  o f  Reference [1 ] ,  represent ing  layered com-

posites. has been shown to be in good agreement lvi th continuum elastici ty solu-

t ions  by ,Beyer le in  e t  a l .  [3 ] .  On the  o ther  hand.  the  th ree-d imens iona l  rnode l  o f

Hedeepeth and van Dyke [2] does not agree with some more detai led f ini te ele-

ment  ca lcu la t ions  done by  Nede le  and Wisnom [4 ,5 ] .

* i \ l r lhor  lo  *hom cor respondence shou ld  be  addressed.

Journa l  o /Coveost re  MATE.RIALS.  l ' o l  33 ,  \o .7 t1999

002 l  -9983/99/07 0661 -11 $ I 0.00/0
O 1999 l 'cchnornrc I 'ubl ishing Co., Inc

661



668 C. N1. I , . , rNOIS. iV, I ,  A,  MCGI,CICKI.ON ^ND R. N4'  NICMEEKING

Cox [6]  in t roduced the shear lag concept  b; ,  for rnulat ing a model  to  determine

the st resses in  a broken f iber  entbeddcd in a corr lposi te.  t ledgepeth and van D1'ke

t2] ,  (HVD).  extended the model  to  account  for  the st resses in  a l l  o ther  f ibers in

the composi te.  Sastry 'and Phoenix [7]  then used the t ' ,vo-d i rnensional  vers ion of

the model  ! l  to  develop the break in f l t rence superposi t ion techniques (BIS) .

rvh ich a l lows the st resses to be deterrn ined at  any locat ion in  a composi te g iven

the locat ions of  mul t ip le f lber  f ractures.  Beyer le in and Phoenix [8]  have Lrsed

BIS to s tudy the f l 'acture and st rength propert ies of  t rvo-d i r rensional  layered

conrposl tes.
The shear lag mode ls  of  H VD assul .ne an in f in  i te  arrav of  f  ibcrs.  For  a three-

dintensional  system. the array can be square or  hexagonal .  The f ibers are ap-

p rox ima ted  as  one -d imens iona l .  ax ia l  l oad  ca r r y i ng  en t i t i es .  The  f i be rs  a re  a l -

l owed  to  d i sp lace  on l y  i n  t he  ax ia l  d i r ec t i on  and  t ransve rse  d i sp lacemen ts  a re

no t  cons ide rec l  i n  t he  mode l . ' f he  rna t r i x  i s  assumed  to  ca r r y  no  ax ia l  l oad ,  and

i ts  only  ro le is  to  t ransfer  load betrvcetr  f ibers v ia shear s t resses.  In  the HVD

mode l .  t he  ma t r i x  i s  app rox i rna tec i  by  a  con t i nuous  d i s t r i bu t i on  o f  l i nea r  shea r

spr ings connect ing an;-  g iven f iber  to i ts  nearest  neighbors only.  For  square and

hexagonal  arrays th is  impl ies that  there are four  and s ix  connect ions per  f iber

respec t i ve l y .  Equ i l i b r i um o f  f o r ces  i n  each  f i be r  y i e l ds  an  i n f i n i t e  se t  o f  cou -

p led ,  l i nea r .  o rd ina ry  d i f t e ren t i a l  equa t i ons  gove rn ing  the  ax ia l  d i sp lace lnen ts

of  the f ibers.  A Four ier  ser ies t ransfbr tnat ion is  appl ied to these equat ions to

y ie ld a s ingle ord inary d i f ferent ia l  equat ion.  The resul t ing d i f ferent ia l  equa-

t ion is  so lved in t ransformed space and then the inverse Four ier  t ransformat ion

is  appl ied to y ie ld the in f luence f i rnct ion requi red to evaluate the st resses in  the

f ibers in  real  space.
A d i f f icu l tv  wi th the I - lVD rnodel  l ies in  the representat ion of  the matr ix .  The

or ig inal  IJVD paper makes use of  a quant i ty  l i r l rvh ich is  essent ia l ly  undef ined,

but purports to represent the ratio offiber thickness. ft. to fiber spacing, d. Hedge-

peth and van Dyke claim tl.rat the effective matrix shear stiffness per unit thickness

i s G , , , h l d . w h e r e C , , , i s t h e a x i a l s h e a r m o d u l u s o f t h e m a t r i x ' l n r e a l i t y ' t h e a x i a l
shear stiffhess per unit thickness of a slab of elastic matrix with a square plan form

is a lways G, , ,  apd therefore,  the quant i ty  f t /d  must  be equal to uni tv  forconsistencv.

The resglts show that the quantity hldl 'ras no effect on the stress concentrations in

the HVD ntodel but it does influence the lengths of f iber segments over which

stress concentrations appear. Or-rr deduction is that /r idshould be set to unlty to

provide physical ly  consistent  spr ing st i f f i resses to represent  a square sect ion of

ntat r ix  wi th ax ia l  shear tnodr"r lus G, , , .  The HVD rnodela lso neglects d i rect  tn terac-

tions of f ibers with their next nearest neighbors. This assr.rrnption does have pro-

founcl effects on the lnagnitudes of stress concentrations in fibers neighboring a

break.  In  the remaindel 'o f  th is  paper we wi l l  present  a model  that  in lproves upon

these features in a fashion that is consistent with the finite element method and thc

principle of vinual work.
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COMPOSITE WITH FIBERS IN A SQUARE ARRAY

Consider a unidirectional composite with fibers arranged in a perfectly square

array. The spacing between the centers of nearest neighbor fibers is w. The

Young's modulus of the fibers is Ei. and their diameter is D. The axial shear modu-

lus of the matrix is G,,. Since it is assumed that the matrix does not carry axial

forces. the axial Young's modulus of the matrix is zero

Now consider  a f in i te  e lement  representat ion of  th is  composi te as drawn in

Figure 1.  Al l  nodes in the model  are located at  the f iber  centers wi th the matr ix

represented by three-dimensional ,  anisotropic ,  e ight  noded,  br ick e lements.

Each of these e lements has only e ight  degrees of f reedom since the t ransverse

displacements are assumed to be uni rnpor tant .  Note here that  th is  technique can

natura l ly  inc lude the ef fects of t ransverse d isplacements (and st resses)  i f th is  as-

sumpt ion is  not  used.  In  th is  wotk the t ransverse d isplacements are neglected in

order  to keep the model  and the governing equat ions as s imple as possib le.  Let

the d i rect ion paral le l  to  the f ibers be x,  and the d isplacements in  th is  d i rect ion be

U. The t ransverse d imensions of  the e lement  are n,  by w and the length of  the e le-

ment  in  the x d i rect ion is  Ar .  For  the s imple geometry considered the st i f fness of

a matr ix  e lentent  can be der ived f rom the f in i te  e lement  forrnulat ion in  c losed

form. The interpolat ion uses a t r i l inear  funct ion in  coordinates -v ,  y ,  and z to de-

termine the d is t r ibut ion of  U wi th in each f in i te  e lement  consistent  wi th the val -

ues of  U at  the nodes [9] .  The f ibers are represented by one-dimensional  ax ia l

sDr ins e lements wi th s t i f fness

I

dx
I
i

Figurc 1. The mesh and element numbering for the square f iber array
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- n l  t r

4Ar

and these springs connect neighboring nodes along the fiber l ine. This geometry
provides a f in i te  e lement  model  which has ax ia l  spr ing e lements connect ing nodes
along a single fiber and three-dimensional matrix elements connecting fibers to
their nearest and next nearest neighbors. The finite element equation representing
this set up for the typical node shorvn in Figure I is

8K, ,U, , . , ,  *  [K, .  + Kr l  + K.6 + K7s)(U, , t , . , . ,  *U,  , . , , . , )

+ [Krs + K,6 + Kr ,  + ( {8 ] (U, , . , *  t . ,  *  Un, . , . \ , )

+ [Kr l  + K, ]  + K.8 + K 611(U, , . , , . i , '  *  U. . , . '_ ' )

+ [K,2.  + K68 ] (U, , , * r  , , t ,  I  U._, . , . ,_ , )

+  [K r ]  +  K  r . , l (U  ^ * , , . , _ ,  *  U__ , , . , * ,  )

+ [K,u + K 111(LI ,*\,*t. i * U,,_r.,-t.,)

*  [Kr ,  + KrS ] (U, , , *1. , - r , i  *U, , , t . ,+ , , , , )  ( l )

*  [Kru + K $](U, , , * r . ,+r  *  U, , ,_r , ,_r  )

+  [K , *  +  K .1 ] (U , , , , * , . , _ ,  *U , , , _ , , * , )

*  K r r (U, , r r , , r t . , - t  *  U, , -1, - t ,+t  )

+ K"8 (L ' , , ,_r . , * r ,_r  *  U, ,+r . ,_r . ,+r)

+  K  3s (L |  , , ,  t . , r t , + t  *  U , ,+ t , ' - t , '  t )

*  K  ou (U  r , * r . , n t . r + t  *  U r , r , r r r . , - r  )  =  0



An Improved Shear Lag Modelfor Broken Fibers in Composite lvlaterials 611

where the subscripts m, n andi represent the discretized node numberings in the.y,

z and x directions as shown in Figure I , and K,, is the force on node i when node/ is

displaced by a unit distance and all other nodes. including node i, have zero dis-

placement. Using the finite element formulation described in Reference [9] the K;,

for the brick element including the spring elements are

E , ( n D ] )  t
4 , ,  =  - -  - .  +  ^ C , , A r"  1 6 A 1  9

K r r =  K r o  =  K s u  =  K r ,  =  K , , =  K r u  =  K r ,  =  K o ,

(2a)

K , r , l  = K , ,  =  K n =  K r r =  K r o : K u n  = K r u  =  K u ,  = - 4 , r " , 4 "  ( 2 c )

dtU,,, ,

d x -

I o,,ar (2b)

(2d)

(2e)

(2'

(3 a)

K,. = K,, = Kr, = Ku., = -t+?+ jc,,, lt

K , u  =  K r r =  K r ,  =  K o ,  =  - : O , , , O ,

K,, = Kr, = K,s = Kou = -fro,,o-,

Note that the stiffness per unit length of an element is G,, when it is subjected to a

uniform shear deformation.
It is now possible to make this model continuous in the -r: direction by dividing

Equation ( I ) by Ax, and taking the l imit as Ar - 0. In this l imit

U r , . , , . t+ l  
-  D  r , , r . i  *  U  u , , , , , , - t

Ax '

and any t / that is not divided by Ar' has the sirnplif ication

U n.n. i+t  *  U r , . r . ,  *  U r . r . i ' � t  = T, , , , ( ib)

This procedure transforms the set of f inite element equations into a set of coupled,
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I inear ,  ord inary d i f ferent ia l  equat ions governing the ax ia l  d isp lacements,  U,  of  the
fibers. The governing equations for a representative fiber is then

t l ' L  , , , , ,  4  G
I -  ( l '  I  I :  I  t '  ,  t '

r  I  -  ^ ' l u - r . l ' p l  T U " , - t ' ,  f U , " . t r  I  t U r , , + l
d . \ -  ) n  t  r D -

* U.,*,  * U__t., ,*t  * Ll .  , , , ,  * (J,, , t ,- t  -  W,,, . , ,)  = 0

Equation (4) indicates that the rnatrix surrounding a given fiber is represented by g
equivalent  shear spr ings connect ing the f iber  to i ts  8 i rnmediate neighbors.  The
stiffness per unit length of these shear springs is exactly G,,/3. This result is only
valid for the uniform square array offibers and is a consequence ofthe assumption
that the displacement field in a square matrix element can be interpolated (using a
bil inear function) from the displacernents of the surrounding fibers. In a manner
fo l lowing the or ig inal  HVD work,  Equat ion (4)  can be put  in to non-dimensional
forrn by letting

(5a)

(4 )

ir

D

and

(sb)

t m. The resulting form of

o dtt- 
D] il

c  =  / 1 \" n t t  -  
,  "  

-  
s E  \ t )
U S

s
I +

! t

where e is the strain applied to the cornposite at _r :
Equat ion (4)  is

cl t u ,,,.,,

N  
+  ( l / r , + 1 , / + r  +  l t n t + t . t t *  l l n t + t . t - t  *  L t u , , , + t

*  t t , , , . , * ,  +  l lnb t . r+ t  *  l t ,  t , , ,  *  t l , , - t . r t  -  9 t t , , , . , , )  =

The normalized axial stress in a fiber is then given by

(6)

G,,

E f
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The boundar l  condi t ions for  a composi te extended to s t ra in € wi th a s ingle f iber

break located a l  m -  0. r  = 0,  and € :  0  are

(8a)

(8b)

(8c )

As in  thc HVD paper the in f luence funct ion technique is  used to solve th is  mixed

boundary value problem. The influence function is deterrnined by solving a com-

pl imentary problem where a uni t  opening d isplacement  is  appl ied at  the break.  For

this problem the boundary' conditions are

. s , , 0 ( { = 0 ) = 0

t r , , , , , (E :0 )=  0  f o r  m  and  n  *  0

s, , , , , (€  = *) :  I  for  a l l  r r  and n

.  l o .o  ( {  =  0 )=  I

t , , , . , , (E= 0)= 0 for  nr  and n *  0

,s , , , , , (€  = - )= 0 for  a l l  r i  and n

Then by using the Fourier series transforntation

t t ( ( .H.Q1 = t  i , , , , , , , (E)e-" ' ( ' �  n"" 'P

with the inverse transfbrrn 

n'=-6 'E-a

I  ^ -

u,,, ,,(E) = 
; J , J ,. tt(( - 0. rf )e""' e""4 do dQ

the transforrned equation and boundary conditions becorne

( l 0 a )

i t  i l- j +  ( l c o s €  +  2 c o s @ * 4 c o s  0 c o s r f  -  8 ) a =  0  ( l l a )
ac

(ea)

(eb)

(9c)

( r0b )

( i l b )

( l l c )

( l 2 a t

( r 2 b )

The solut ion is

rvhere

u ( 0 , 0 ,  Q 1  =  1

t r (a ,0 .Q)  =  0

" l e  , a d )  =  e x p ( - a € )

4cos 0 cos rp



674 C. M. La,NoIs.  iVI ,  A.  MCGLOCKTON AND R. IVI .  MCMEEKING

Table 1.

Stress Concentrat ions Neares t  Ne ighbor Next Nearest Neighbor

HVD Square
This work

1 14622
1 .08103

1.02453
1.07642

l'hen the inflr-rence function that gives the fiber stress at location (n. n. E ) due to a
unit opening load applied at (0.0.0) is given by

c1,,, ,,(E ) =
- l :  

i l  aexp(-a€)cos n0cos nrpct1ctrp
( 1 3 )

fi fi "aea,p

Not ice that  th is  in f luence funct ion is  de{ lned d i f f 'erent ly  than the one g iven by
HVD. The non-din iensional  s t ress at  a locat ion (m,n.E )  for  the problem of  a com-
posi te which has a s ingle break and rvhich is  loaded remotely  is

. f , , , , , ( c ' ) =  l +  q , , , , , ( (  ) (  l 4 )

A compar ison of  t l i is  rvork versus HVD for  s t rcss concentrat ions near a s ingle
break in  a composi te rv i th  f ibers in  a square array are g iven in Table l .

COMPOSITE  WITH F IBERS IN  A  HEXAGONAL ARRAY

Two di f ferent  hexagonal  "nteshes" wi th s ix- fb ld symmetry rvere solved.  The
f i rs t ,  shown in F igure 2(a) .  is  a "good" f in i te  e lernent  rnesh in that  i t  f i l ls  space.  The
second mesh,  shown in F igure 2(b) ,  does not  f i l lspace but  rat l ier  assurnes that  the
"spr ings"  connect ing f ibers to thei r  nearest  and next  nearest  neighbors are a lways
given by the stiffness associated with the six pointed star. 

-I 'he 
first mesh wil l be re-

ferred to as the " t rue"  rnesh and the second rv i l l  be the " fh lse"  mesh.  In each mesh.
each f in i te  e lement  is  an 8-noded br ick rv i th  i ts  p larr  having the shape of  a rhombus
as shown in F igure 2.  The f in i te  e lement  in terpolat ion is  carr ied o l l t  in  the manner
used tbr  isopararnetr ic  e lements |0] .  The st i f fness ternrs.  K, , .  for  the p l isnrat ic
e lernent  are g iven in the Appendix.

The "true" r.nesh can be solved in closed forrn br-rt the expressions are quite
lengthy ' .  The repeat ing uni t  in  the " t rue"  rnesh consists  of  three f ibers instead of
one.  The Four ier  ser ies t ransformat ion of  the in f in i te  set  of  equat ions resul ts  in
three coupled ord inary d i f ferent ia l  equat ions.  The solut ion procedure requi res the
solut ion of the e igenvectors and e igenvalues ofa 3 by,  3 ntat r ix .  T 'he procedure has
been d iscr . rssed by Rosset tos and Sakkas I  l ] .
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The "false" mesh is attractive because, l ike the square mesh. only one equation
needs to be solved. It is expected that the results for the "false" mesh wil l be rea-
sonably close to those for the "true" mesh. The governing equation for a represen-
tative fiber in the "false" mesh is

t!+ * -L- !+ t.u,,.,.,, * 4u.*,,-,* 4uu,.,*t + 4u,,-,
d.\ ')\l j:T L I U

+ 4U, -1 . ,  +  4U. - � t . , * t  *  U , ,+ r , ,+ t  *  U . * t . , * t

I  Ur*2 , * t  *  L " ,  , . ) - ,  *  Uu, - t . , *2  *  U,  t .u , -  30 [ '1 . , , )=  0

with the numbering system for f ibers in the l l l  and r directions shown in Figure
2(b). In similar fashion to the square array, the equation is non-dimensionalized by
let t ing

( l 6 a )

(a) (b)

Figure 2. (a) The "true" mesh with the shaded f ibers as the repeating cell and (b) The "f alse"
mesh with the single shaded tiber as the repeating cell.

0 5 )

l-
IU " ,  J

\ E t  D

w

5
-

9Jiz
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Table 2.

Stress Concentrat ions Neares t  Ne ighbor Next Nearest Neighbor

True Mesh
False Mesh
HVD Hexagona l

1 .085068
1 08347
1  . 1 0 4 5 8

1.02863
1 .0282
1 . 0 1 4 3 6

and

The resul t ing solut ion and inf luence funct ion are

t t $ ,O , rp )=  exp ( -64 )

wi th

and the inflr.rence function for the fiber stress is

( t 6 b )

( l 7 a )

( l 7 b )

(  l 8 )
-  l '_ f  

-  
_rr  exp(-rr€ \e" i l  , "- 'JcJQ- 
I'� J'�._,.o,ta

Table 2 compares our  resul ts  f iorn the " t rue"  and " fa lse"  meshes to the HVD hex-
agonal  model .  l t  can be seen that  the " t rue"  and " fa lse"  meshes g ive qui te s imi lar
results.

D ISCUSSION AND CONCLUSION

Nedele and Wisnom [4]  per formed fu l l  three-d imensional  f in i te  e lement  calcu-
lat ions.  In  the model  only  the broken f iber .  nearest  neighbor f ibers,  and matr ix  ma-
terial between these fibers are nrodeled explicit l l , and the ntaterial outside of a
srnall region beyond the nearest neighbors is represented as homogeneous trans-
versely isotropic material. In Reference [5], Nedele and Wisnom analyze an axi-
symmetr ic  f in i te  e lernent  model  of  a s imi lar  system. model ing the nearest  and next
nearest neighbor fibers by two distinct f iber rings. Of the finite element calcula-

5
----t=*

9Jiz

8 c o s 0 -  8 c o s @ -8cos  (0  -  rp )

-  2 c o s  @ + , p ) -  2 c o s ( 0 - 2cos (20 -  Q)
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t ions that  have been done for  s ingle f iber  breaks,  these are the most  appl icable to
this shear lag model because all constituents are assumed to be elastic and the lrber
to matrix stiffness ratio is very high UEt l(l - .f )E,,, = 90).The high stiffness ratio
gives validity to the assumption that the matrix cannot carry axial loads. In Refer-
ence [4] ,  Nedele and Wisnom present  resul ts  for  the st resses at  the center  l ine of  a
nearest neighbor to a broken fiber in a hexagonal array. The calculations show a
peak stress slightly removed from the plane of the break. The value forthis stress
concentra l ion is  I  .058.  For  the ax isymmetr ic  ca lculat ions in  Reference [5]  the av-
erage maximum stress concentration factor in the nearest neighbor fiber ring is
1.061.  Our shear lag model  does d i f fer  f rom th is  resul t  but  is  in  bet ter  agreement
than other existing models. Trvo possible improvenents to our rnodel that might
lead to closer results to those in References [4] and [5] rvould be to include the ef-
fects of axial matrix stiffness and transverse degrees of freedom. In general, the
FIVD model, rvhich only connects fibers directly to their nearest neighbors and not
to the next nearest neighbors, yields values for stress concentrations that are high
for the nearest neighbor and low for the next nearest neighbor. This is especially
pronounced in the square array where the next nearest neighbor is sti l l  relatively
c lose to the broken f iber

The idea of  represent ing the matr ix  by three-di rnensional  f in i te  e lements is  not  a
new one.  Cox et  a l .  [12]  fonnulated what  is  ca l led the b inary model  to  handle the
cornpl icated geometr ies of  rvoven composi tes.  This rnodel  uses one-dimensional
axial spring elernents to represent the fibers. and three-dimensional "effective nte-
dium" elernents to represent the matrix and transverse properties of the fibers. This
model  has been used by McGlockton et  a l .  [  3 ,  l4 ]  to  s tudy fa i lure of  woven cotn-
posi tes and the fa i lure of  unid i rect ional  composi tes.

The model presented here takes the finite element approach one step furlher to
make the model  smooth and cont inuous in the f iber  d i rect ion rather  than p iecewise

continuous. The only assumptions nrade about the matrix are that it does not carrl '
ax ia l  load,  and that  the d isplacements in  the matr ix  can be in terpolated f rom the
displacements of  the f ibers sumounding i t .  Once th is  is  done,  as in  convent ional  f i -
n i te  e lements,  the pr inc ip le of  v i r tual  work is  used to f ind the min imum energv
configuration for the fiber displacements. In the problem presented here, degrees
of freedom are assigned to the fibers. Once the displacements along the fibers are
known the d isplacement  f ie ld in  the matr ix  can be found using the in terpolat ion
funct ions.  Neglect ing any r ig id body t ranslat ion,  th is  d isp lacement  f ie ld g ives r ise
to deformation and stress in the flbers and matrix. The principle of virtual rvork is
used to ensure that the solution to the problern (in tact to any finite elernent prob-
lem) is  the one that ,vre lds the min imum tota l  energy in  the system. For  the s)stent
considered here the total energy includes the strain energv stored in the fibers ancl
matr ix .  and the rvork done by the appl ied loads.

The usefu lness of  th is  model  is  in  i ts  appl icat ions to problems beyond the st ress

concentrat ions around a s ingle f iber  break.  The model  is  a bui ld ing b lock for
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studying the failure of unidirectional f iber composites and the influence functions
presented here are the crit ical component in the break influence superposition
technique (Sastry  and Phoenix,  [7 ] )  which can be used to address such problems.
In subsequent  papers Landis and McMeeking [15]  use the f in i te  e lement  method-
ology to include the effects of interface sliding. axial matrix stiffness. and uneven
f iber  posi t ion ing on st ress concentrat ions around a s ingle f iber  break,  and Landis
et  a l .  [16]  use the fc l tmulat ion presented in th is  paper to s imulate the fa i lure of  rve l l
bonded fiber composites. Furthermore. this methodology presents a conslstent
frarnervork for analyzing composite failure mechanisms at the micro or constitu-
ent  level .
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APPENDIX :  PRISMATIC  ELEMENT ST IFFNESS

The node numbering for the prismatic element is shown in Figure A l. The stiffiresses
for the elernent including the contributions from the fiber spring elements are:
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Figure A1 . The element shape and node numbering used for the hexagonat models
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