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ABSTRACT: A shearlag modelis formulated to predict the stresses in a unidirectional fi-
ber reinforced composite. The model is based on assumptions consistent with the finite ele-
ment method and the principle of virtual work by assuming that the matrix displacements
can be interpolated from the fiber displacements. The fibers are treated as one-dimensional
springs and the matrix is modeled as three-dimensional finite elements. The resulting finite
element equations for the system are transformed into differential equations by taking the
discretization length to approach zero. The governing ordinary differential equations are
solved using Fourier transformations and an influence function technique. The technique is
used to solve for the stresses around a single fiber break in an infinite square or hexagonal
arrav of fibers. The results arc compared with previous shear lag models and finite element
results. The model predicts stress concentrations that are in good agreement with more de-
tailed finite element analyses.

INTRODUCTION

Shear lag models have been used extensively for composite microstress
analysis. Hedgepeth [1] and Hedgepeth and van Dyke [2], (HVD), calculated
stress concentrations around clusters of broken fibers utilizing shear lag method-
ology. The two-dimensional analysis of Reference [1}, representing layered com-
posites. has been shown to be in good agreement with continuum elasticity solu-
tions bv Beyerlein et al. [3]. On the other hand, the three-dimensional model of
Hedgepeth and van Dyke [2] does not agree with some more detailed finite efe-
ment calculations done by Nedele and Wisnom [4,5].
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Cox [6] introduced the shear lag concept by formulating a model to determine
the stresses in a broken fiber embedded in a composite. Hedgepeth and van Dyke
[2]., (HVD), extended the model to account for the stresses in all other fibers in
the composite. Sastry and Phoenix [7] then used the two-dimensional version of
the model [1] to develop the break influence superposition techniques (BIS).
which altows the stresses to be determined at any location in a composite given
the locations of multiple fiber fractures. Beyerlein and Phoenix [8] have used
BIS to study the fracture and strength properties of two-dimensional layered
composites.

The shear lag models of HVD assume an infinite array of fibers. Fora three-
dimensional system, the array can be square or hexagonal. The fibers are ap-
proximated as one-dimensional. axial load carrying entities. The fibers are al-
lowed to displace only in the axial direction and transverse displacements are
not considered in the model. The matrix is assumed to carry no axial load, and
its only role is to transfer load between fibers via shear stresses. In the HVD
model. the matrix is approximated by a continuous distribution of linear shear
springs connecting any given fiber to its nearestneighbors only. For square and
hexagonal arrays this implies that there are four and six connections per fiber
respectively. Equilibrium of forces in each fiber yields an infinite set of cou-
pled, linear, ordinary differential equations governing the axial displacements
of the fibers. A Fourier series transformation is applied to these equations to
yield a single ordinary differential equation. The resulting differential equa-
tion is solved in transformed space and then the inverse Fourier transformation
is applied to yield the influence function required to evaluate the stresses in the
fibers in real space.

A difficulty with the HVD model lies in the representation of the matrix. The
original HVD paper makes use of a quantity //d which is essentially undefined,
but purports to represent the ratio of fiber thickness. 4. to fiber spacing, d. Hedge-
peth and van Dyke claim that the effective matrix shear stiffness per unit thickness
is G.hid, where G, is the axial shear modulus of the matrix. In reality, the axial
shear stiffness per unit thickness of a slab of elastic matrix with a square plan form
isalways G, and therefore, the quantity //d mustbe equal to unity for consistency.
The results show that the quantity 4/d has no effect on the stress concentrations in
the HVD model but it does influence the lengths of fiber segments over which
stress concentrations appear. Our deduction is that /1 /d should be set to unity to
provide physically consistent spring stiffnesses to represent a square section of
matrix with axial shear modulus G,.. The HVD model also neglects direct interac-
tions of fibers with their next nearest neighbors. This assumption does have pro-
found effects on the magnitudes of stress concentrations in fibers neighboring a
break. In the remainder of this paper we will present a model that improves upon
these features in a fashion that is consistent with the finite element method and the
principle of virtual work.
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COMPOSITE WITH FIBERS IN A SQUARE ARRAY

Consider a unidirectional composite with fibers arranged in a perfectly square
array. The spacing between the centers of nearest neighbor fibers is w. The
Young’s modulus of the fibers is £;, and their diameter is D. The axial shear modu-
lus of the matrix is G, Since it is assumed that the matrix does not carry axial
forces, the axial Young’s modulus of the matrix is zero.

Now consider a finite element representation of this composite as drawn in
Figure 1. All nodes in the model are located at the fiber centers with the matrix
represented by three-dimensional, anisotropic, eight noded, brick elements.
Each of these elements has only eight degrees of freedom since the transverse
displacements are assumed to be unimportant. Note here that this technique can
naturally include the effects of transverse displacements (and stresses) if this as-
sumption is not used. In this wotk the transverse displacements are neglected in
order to keep the model and the governing equations as simple as possible. Let
the direction parallel to the fibers be x, and the displacements in this direction be
U. The transverse dimensions of the element are w by w and the length of the ele-
ment in the x direction is Ax. For the simple geometry considered the stiffness of
a matrix element can be derived from the finite element formulation in closed
form. The interpolation uses a trilinear function in coordinates x, y, and z to de-
termine the distribution of U within each finite element consistent with the val-
ues of U at the nodes [9]. The fibers are represented by one-dimensional axial
spring elements with stiffness

Figure 1. The mesh and element numbering for the square fiber array.
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and these springs connect neighboring nodes along the fiber line. This geometry
provides a finite element model which has axial spring elements connecting nodes
along a single fiber and three-dimensional matrix elements connecting fibers to
their nearest and next nearest neighbors. The finite element equation representing

this set up for the typical node shown in Figure 1 is
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where the subscripts m, n and i represent the discretized node numberings in the y,
zand x directions as shown in Figure 1, and K;, is the force on node i when node / is
displaced by a unit distance and all other nodes. including node 7, have zero dis-
placement. Using the finite element formulation described in Reference [9] the K,
for the brick element including the spring elements are

E,(zD*) 2
b=+ 26, Ax (2a)
16Ax 9
. . 1
Kp=Ky=Kg=Ku=K;=Ky=K;=Ky= _igorrzAx (2b)

.
Kn:Klg:Kw:st:Ky:Kc»a=K36=K45:"3—6(’ Ax (2¢)

E/(JTD“) 1
Kis =Ky =Kg =K67:_W+§G"’AX (2d)
i
KIG:KZSZKB:KM:-EG",AX (26)
1
Kl7=K28=K35=K46=—EGmAx (21

Note that the stiffness per unit length of an element is G,, when it is subjected to a
uniform shear deformation.

It is now possible to make this model continuous in the x direction by dividing
Equation (1) by Ax, and taking the limit as Ax = 0. In this limit

U W, U d'u

moan i+l mni mmni=1

man 33
Ax? dx? (32)

and any U that is not divided by Ax? has the simplification

Um.n,Hl + Um,n./ + Umﬂ,l‘l = wm,n (3b)

This procedure transforms the set of finite element equations into a set of coupled,
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linear, ordinary differential equations governing the axial displacements, U, of the
fibers. The governing equations for a representative fiber is then

d:(/m.u 4 Gm ’ .
dY: g; F D: ((Jm*l,n-#l + ljnwlﬂ + Uf!r+l_r:—] + [Jm,/rH
- v 7
+ (Jm.n—l + (jm—l,rHI + (‘/mfl,/r + (]m—l.fhl - &jm,n ) = 0 (4)

Equation (4) indicates that the matrix surrounding a given fiber is represented by 8
equivalent shear springs connecting the fiber to its 8 immediate neighbors. The
stiffness per unit length of these shear springs is exactly G,/3. This result is only
valid for the uniform square array of fibers and is a consequence of the assumption
that the displacement field in a square matrix element can be interpolated (using a
bilinear function) from the displacements of the surrounding fibers. In a manner
following the original HVD work, Equation (4) can be put into non-dimensional
form by letting

(5a)

and

4 1G MU
U= - — (5b)
3n\VE, ¢ D

where ¢ is the strain applied to the composite at x =+ co. The resulting form of
Equation (4) is

dZZ(IN.N
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(6)
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The normalized axial stress in a fiber is then given by
— Om,u — dum,n (7)
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The boundary conditions for a composite extended to strain & with a single fiber
break located at m =0, n=0, and & = 0 are

S0 (E=0)=0 (8a)
”,,,_,,(E = O): O for m and n % O (Sb)
5,,(E=o)=1for all mand » (8¢)

As in the HVD paper the influence function technique is used to solve this mixed
boundary value problem. The influence function is determined by solving a com-
plimentary problem where a unit opening displacement is applied at the break. For
this problem the boundary conditions are

S e (E=0)=1 (%)
"m,,,(f =0)=0for mand n# 0 (9b)
8, , (=)= 0 for all mand n (9¢)

Then by using the Fourier series transformation

WEDP) = S Du,, Ee e (102)

m=—0 jr=—2x
with the inverse transform

1

4

u,, (&)=

s f—’T f;_r Z_I(E 9 ¢)e//r(!el,rl¢d9d¢ (IOb)

the transformed equation and boundary conditions become

; ~
(_ l:(+(2cos(9+2cos¢+4cos€)cos¢>—8)11:O (11a)
1(0,0,¢) =1 (11b)
(0,0, ¢)= 0 (11¢)

The solution is
u(E,0.¢)= exp(=af) (12a)

where

a=\/8—2c059—Zcos¢—4c059c05(p (12b)



674 C. M. LanDis. M. A. MCGLOCKTON AND R. M. MCMEEKING

Table 1.
Stress Concentrations Nearest Neighbor Next Nearest Neighbor
HVD Square 1.14622 1.02453
This work 1.08103 1.07642

Then the influence function that gives the fiber stress at location (m. 1, & Ydue to a
unit opening /oad applied at (0,0,0) is given by

—fr fv aexp(—a&)cos nf cos mpddp
G (&) = —— e (13)
fo fo adfdep

Notice that this influence function is defined differently than the one given by
HVD. The non-dimensional stress at a location (m,n.& ) for the problem of a com-
posite which has a single break and which is loaded remotely is

S,,,_,,(E) = l + qm.n(g) (]4)

A comparison of this work versus HVD for stress concentrations near a single
break in a composite with fibers in a square array are given in Table 1.

COMPOSITE WITH FIBERS IN A HEXAGONAL ARRAY

Two different hexagonal “meshes™ with six-fold symmetry were solved. The
first, shown in Figure 2(a), is a “good” finite element mesh in that it fills space. The
second mesh, shown in Figure 2(b), does not fill space but rather assumes that the
“springs™ connecting fibers to their nearest and next nearest neighbors are always
given by the stiffness associated with the six pointed star. The first mesh will be re-
ferred to as the “true” mesh and the second will be the “false” mesh. In each mesh,
each finite element is an 8-noded brick with its plan having the shape of a rhombus
as shown in Figure 2. The finite element interpolation is carried out in the manner
used for isoparametric elements [10]. The stiffness terms, K,,. for the prismatic
element are given in the Appendix.

The “true” mesh can be solved in closed form but the expressions are quite
lengthy. The repeating unit in the “true™ mesh consists of three fibers instead of
one. The Fourier series transformation of the infinite set of equations results in
three coupled ordinary differential equations. The solution procedure requires the
solution of the eigenvectors and eigenvalues of a 3 by 3 matrix. The procedure has
been discussed by Rossettos and Sakkas [11].
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The “false” mesh is attractive because, like the square mesh, only one equation
needs to be solved. It is expected that the results for the “false™ mesh will be rea-
sonably close to those for the “true” mesh. The governing equation for a represen-
tative fiber in the “false™ mesh is

d -(]m,n 5 (me
d.\': 9\/5.7[ EfD: (4L/m+l,n + 4L/m+]_rr—] + 4Um,m—l + 41];71 1
+ 4(/;"—],” + 4(Jm~l,n+l + brm-HJH»] + L/V}7+LN-Z
+ Um+2.lr—l + U'mf]./\r-—l + Um—l.m—.’l + (jmfl‘/rfl - 30(/’/171,)1 ) =0 (]5)

with the numbering system for fibers in the m and » directions shown in Figure
2(b). In similar fashion to the square array, the equation is non-dimensionalized by
letting

(16a)

(a) (b)

Figure 2. (a) The “true” mesh with the shaded fibers as the repeating celland (b) The “false”
mesh with the single shaded fiber as the repeating cell.
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Stress Concentrations

Nearest Neighbor

Next Nearest Neighbor

True Mesh 1.085068 1.02863
False Mesh 1.08347 1.0282
HVD Hexagonal 1.10458 1.01436
and
5 G, 1U
U= - — (16b)
WiTVE, ¢ D
The resulting solution and influence function are
u(E,0.p) = exp(~Ea) (17a)

with

30 — 8cos 0 — 8cos ¢ — 8cos (8 — ¢)
a= (17b)
— 2cos(A+¢)—2cos (B —2¢)— 2cos (20— ¢)

and the influence function for the fiber stress is

—-fjj f_: aexp(—a&)e”™ e didp
[ advdsp

q,,,(E)= (18)

Table 2 compares our results from the “true”” and “false” meshes to the HVD hex-
agonal model. It can be seen that the “true™ and “false” meshes give quite similar
results.

DISCUSSION AND CONCLUSION

Nedele and Wisnom [4] performed full three-dimensional finite element calcu-
lations. In the model only the broken fiber, nearest neighbor fibers, and matrix ma-
terial between these fibers are modeled explicitly and the material outside of a
small region beyond the nearest neighbors is represented as homogeneous trans-
versely isotropic material. In Reference [5], Nedele and Wisnom analyze an axi-
symmetric finite element model of a similar system, modeling the nearest and next
nearest neighbor fibers by two distinct fiber rings. Of the finite element calcula-
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tions that have been done for single fiber breaks, these are the most applicable to
this shear lag model because ali constituents are assumed to be elastic and the fiber
to matrix stiffness ratio is very high (f£, /(1 — f)E,, = 90). The high stiffness ratio
gives validity to the assumption that the matrix cannot carry axial loads. In Refer-
ence [4], Nedele and Wisnom present results for the stresses at the center line of a
nearest neighbor to a broken fiber in a hexagonal array. The calculations show a
peak stress slightly removed from the plane of the break. The value for this stress
concentration is 1.058. For the axisymmetric calculations in Reference [5] the av-
erage maximum stress concentration factor in the nearest neighbor fiber ring is
1.061. Our shear lag model does differ from this result but is in better agreement
than other existing models. Two possible improvements to our model that might
lead to closer results to those in References {4] and {5] would be to include the ef-
fects of axial matrix stiffness and transverse degrees of freedom. In general, the
HVD model, which only connects fibers directly to their nearest neighbors and not
to the next nearest neighbors, yields values for stress concentrations that are high
for the nearest neighbor and low for the next nearest neighbor. This is especially
pronounced in the square array where the next nearest neighbor is still relatively
close to the broken fiber.

The idea of representing the matrix by three-dimensional finite elements isnota
new one. Cox et al. [12] formulated what is called the binary model to handle the
complicated geometries of woven composites. This model uses one-dimensional
axial spring elements to represent the fibers, and three-dimensional “effective me-
dium™ elements to represent the matrix and transverse properties of the fibers. This
model has been used by McGlockton et al. [13,14] to study failure of woven com-
posites and the failure of unidirectional composites.

The model presented here takes the finite element approach one step further to
make the model smooth and continuous in the fiber direction rather than piecewise
continuous. The only assumptions made about the matrix are that it does not carry
axial load, and that the displacements in the matrix can be interpolated from the
displacements of'the fibers surrounding it. Once this is done, as in conventional fi-
nite elements, the principle of virtual work is used to find the minimum energy
configuration for the fiber displacements. In the problem presented here, degrees
of freedom are assigned to the fibers. Once the displacements along the fibers are
known the displacement field in the matrix can be found using the interpolation
functions. Neglecting any rigid body translation, this displacement field gives rise
to deformation and stress in the fibers and matrix. The principle of virtual work is
used to ensure that the solution to the problem (in fact to any finite element prob-
lem) is the one that yields the minimum total energy in the system. For the system
considered here the total energy includes the strain energy stored in the fibers and
matrix. and the work done by the applied loads.

The usefulness of this model is in its applications to problems beyond the stress
concentrations around a single fiber break. The model is a building block for
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studying the failure of unidirectional fiber composites and the influence functions
presented here are the critical component in the break influence superposition
technique (Sastry and Phoenix, [7]) which can be used to address such problems.
In subsequent papers Landis and McMeeking [15] use the finite element method-
ology to include the effects of interface sliding, axial matrix stiffness, and uneven
fiber positioning on stress concentrations around a single fiber break, and Landis
etal. [16] use the formulation presented in this paper to simulate the failure of well
bonded fiber composites. Furthermore, this methodology presents a consistent
framework for analyzing composite failure mechanisms at the micro or constitu-
ent level.
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APPENDIX: PRISMATIC ELEMENT STIFFNESS

The node numbering for the prismatic element is shown in Figure Al. The stiffnesses
for the element including the contributions from the fiber spring elements are:

|/

i

Figure A1. The element shape and node numbering used for the hexagonal modeis.
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