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Deep learning (DL) is widely used in ship detection, but there are still some problems in the effective classification, such as
inaccurate object feature extraction and inconspicuous feature information in deep layers. To address these problems, we
propose a YOLOv7-residual convolutional block attention module (YOLOv7-RCBAM) by combining the convolutional
attention mechanism and residual connections to the YOLOv7. First, to accelerate the training speed, the parameters in the
backbone network of the pretrained model are frozen by using transfer learning, and the model is fine-tuned for training.
Second, to enhance the information relevance of channel dimensional features, an attention mechanism with residual
connectivity is adopted. Finally, a feature fusion attention mechanism is introduced to improve the effective feature extraction.
The effectiveness of the proposed method is fully validated on the SeaShips dataset. The results show that the YOLOv7-
RCBAM model achieves better performance with a 97.59% in mAP and effectively extracts object feature in deep layers.
Meanwhile, the YOLOv7-RCBAM model can accurately locate ship in complex environments with darkness and noise with the
mAP reaching 96.13% to achieve effective ship classification detection.

1. Introduction

With the development of image recognition technology, video
surveillance has been applied in the field of maritime supervi-
sion and service. It plays a key role in tasks such as ship traffic
flow statistics and ship collision prevention. Real-time detec-
tion and intelligent tracking of moving ship in complex envi-
ronments are the significant basis for promoting the
efficiency of maritime supervision. However, traditional
methods generally have problems, such as slow training speed
and weak interference resistance, which make it hard to detect
and track moving ship with high accuracy [1, 2].

Recently, with the rapid development of DL in various
fields [3–5], it has made significant breakthroughs in image

detection, gradually solving the problems of slow training
speed and low detection accuracy of object detection. Detec-
tion algorithms based on DL are divided into two categories:
(1) the two-stage algorithm based on the candidate area, that
is, the selection of the candidate area, and then the positioning
and classification of the object in the candidate area. The typ-
ical algorithms are R-CNN [6], Faster RCNN [7], R-FCN [8],
Mask R-CNN [9], etc. (2) The one-stage algorithm based on
regression classification combines the selection of candidate
regions with positioning and classification to improve the
training speed. The typical algorithms include SSD [10] and
YOLO [11]. Compared with the two-stage algorithm, the
one-stage algorithm fuses the detection steps of generating
and optimizing the bounding box. It can accelerate the
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training speed while maintaining stable detection accuracy.
Therefore, we use the one-stage algorithm to achieve ship clas-
sification detection.

However, traditional detection algorithms still have
many problems. It is difficult for the model to focus on the
object information in the interference of complex environ-
ment. The object feature information is not obvious after
being disturbed [12], leading to inaccurate positioning and
classification. And deep feature extraction is easily led to
the loss of feature information [13].

With the development of YOLOv7 [14], it has better
advantages in faster speed and higher accuracy. It intro-
duced reparameterized [15, 16] module that replaces the
original module to reduce parameters and improve inference
speed. And it introduced efficient long-range attention net-
work [17] (ELAN) module instead of CSP module for the
backbone network, which can enhance the extraction fea-
tures and improve the use of parameters and calculations.
The trainable bag-of-freebies [14] was proposed, so that
the detection accuracy can be improved without increasing
the inference cost. With the advantages of YOLOv7, it is
more suitable for our method.

Based on analyzing the disadvantages of the YOLOv7, we
introduce transfer learning [18], residual connection [19],
convolutional block attention module (CBAM) [20], and fea-
ture fusion [21]. Transfer learning can freeze part of the model
parameters to improve the training speed and extract richer
features by fine-tuning. CBAM is capable of adaptively weight-
ing feature values to enhance important features of the ship
and restrain interference from the background. By combining
a reasonable combination of residual connectivity and CBAM
[22], multiple feature recalibrations are prevented from lead-
ing to reduced deep feature responses. Feature fusion is able
to improve the representation ability of the object. Based on
the above methods, YOLOv7-RCBAM is proposed, which
effectively improves ship detection accuracy. Specifically, the
contributions of this article are summarized as follows:

(1) A convolutional attention mechanism block com-
bined with residual connections is proposed. The
improved method effectively extracts object feature
information and focuses on foreground information

(2) An improved YOLOv7 model based on double trans-
fer learning is proposed, which introduces a feature
fusion attention mechanism to improve the richness
of feature extraction and solve the problem of the fea-
ture disappearance caused by too deep network

(3) Image enhancement is performed to simulate ship
detection in the dark night, rainy, and foggy environ-
ments. It can still verify that the method has strong
interference resistance ability

The experimental results show that RCBAM outper-
forms the other attention mechanisms, with an average
mAP improvement of 0.53% on the dataset. YOLOv7-
RCBAM outperforms other classical YOLO methods with
a mAP of 97.59%, which improves classification detection.
Under the complex environment, the ship detection accu-

racy still reaches 96.13%, which verifies the strong interfer-
ence resistance ability of YOLOv7-RCBAM.

The rest of this paper is organized as follows. Section 2
presents the current related works on ship detection. Section
3 introduces the design of the model, including CBAM,
transfer learning, and the network architecture of
YOLOv7-RCBAM. Section 4 conducts related experiments.
Section 5 presents the conclusion and future works.

2. Related Works

Most of the traditional ship detection methods are based on
synthetic aperture radar (SAR) images [23, 24], which is an
active microwave earth observation device with all-weather,
all-day operation and a certain penetration capability to
the ground. It can obtain images of ship similar to optical
photographs. The development of DL has also supplied
effective assistance for ship detection in SAR images, so
many methods based on SAR images are put forward.

Li et al. [25] proposed a region-based convolutional neural
network (CNN) detection method which effectively extracted
SAR image features at each scale. It replaced the region of inter-
est pooling layer with RoIAlign to reduce the quantization
error. Yang et al. [26] proposed an anchor-free method using
rotatable bounding box on SAR ship detection called CPS-
Det. It helped improve speed and proposed a scheme for calcu-
lating angle loss to improve the accuracy of angle prediction.
He et al. [27] proposed a feature distillation framework to
enhance mid-low-resolution ship detection. Yue et al. [28] pro-
posed a two-stage SAR ship detection network to generate
anchors. It can mainly capture small objects by generating
high-quality anchors and improve the feature pyramid network
by inserting a receptive field enhancement module, which can
help enrich the feature map. However, it is difficult to process
the weight of foreground and background information adap-
tively because of the improper processing of redundant infor-
mation of image data. And the small ship detection is not
easy to be detected based on the SAR images.

To solve the problem of small ship detection, the following
papers were introduced. Chen et al. [29] proposed a method
that combines a generative adversarial network (GAN) and a
CNN-based detection approach, which can solve the problem
of a limited number of small ships. In order to improve the
detection accuracy of small ship objects, Zhou et al. [30]
improved the YOLOv5s algorithm by optimizing the loss
function and expanding the receptive field at the spatial pyra-
mid pooling (SPP) layer. Although they proposed the methods
against the small-scale ship, they cannot process the weight of
background information. By the way, to solve the problem of
feature information redundancy, the following papers intro-
duce the attention mechanism. Li et al. [31] proposed an
improved YOLOv3-tiny network, aiming at the real-time
transport ship classification problem of waterway and river
video surveillance images. It introduced CBAM to adjust the
feature weights of the channel and space dimensions, so that
the model can focus on the image ship object. Han et al. [32]
proposed a ShipYOLO model to strengthen the detection
speed and accuracy. They designed a new backbone network
and amplified receptive field module to improve the
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acquisition of small-scale ship. And they used the attention
mechanism and ResNet’s shortcut idea to improve the feature
pyramid structure. Liu et al. [33] proposed a YOLOv4method,
which applied the reverse depthwise separable convolution
(RDSC) to the backbone network and feature fusion network.
It reduced the number of weights to increase the detection
speed. They solved the difficulties in low detection accuracy
in complex environments.

Based on the above papers, it can be found that the
attention mechanism can be embedded in the DL model to
effectively extract key information, and the network is light-
weight to improve the training speed. However, the above
methods still have the problem that the attention features
are not obvious, and the lightweight model leads to the prob-
lem that the feature extraction is not rich enough. We pro-
pose YOLOv7-RCBAM based on video surveillance images
to improve the richness of feature extraction information,
improve the network training speed, and enhance the anti-
interference ability of the model.

3. The Design of YOLOv7-RCBAM

We propose the method as follows. First, RCBAM is intro-
duced to extract important features for model fine-tuning.
Second, transfer learning is introduced to freezing parame-
ters after pretraining the backbone network. Finally, feature
information is enhanced by feature fusion method instead of
feature disappearance in the deep network. The methods
proposed are based on YOLOv7. YOLOv7 has better advan-
tages in faster speed and higher accuracy. It introduced
reparameterized module to reduce parameters and improve
inference speed. And it introduced ELAN module for the
backbone network, which can enhance the extraction fea-
tures and improve the use of parameters and calculations.
The trainable bag-of-freebies was proposed, so that the
detection accuracy can be improved without increasing the
inference cost. The specific process and the diagram of
YOLOv7-RCBAM are shown in Algorithm 1 and Table 1.

The overall framework of our method is shown in
Figures 1 and 2. YOLOv7-RCBAM network structure
mainly includes backbone feature extraction module,
SPPCSPC, feature fusion module, RCBAM, reparameteriza-

tion (REP) modules, and YOLO detection modules for
regression object information.

As the backbone network, it usually adopts CBS module,
ELAN, and max-pooling (MP) block. CBS is composed of
convolutional layer, batch normalization (BN), and SiLU layer
for feature extraction. The ELAN is composed by stacking a
number of CBS modules for changing the channels and
extracting feature information. And the MP block is com-
posed of MaxPool layer and CBS module for downsampling.
The SPPCSPC module performs downsampling through
max-pooling layer and CBS layers of different sizes, effectively
increasing the receptive field and separating the most salient
contextual features. Then, in the neck part, feature fusion
module includes upsample, ELAN-H layers, and MP-2 layers.
They change the channels by upsample and MP-2 module,
extract the feature by ELAN-H module, and do the job of fea-
ture fusion and communication. And it can convey the seman-
tic and strengthen the extraction ability of multiscale targets.
The RCBAM is added before the REP module to enhance
the feature maps. Finally, in order to extract and smooth the
feature, the REP module is composed of conv layers and BN
layers before the prediction head.

3.1. Residual Convolutional Block Attention Module. In tra-
ditional object detection algorithms, feature extraction is
usually performed on global information. The major short-
coming of the methods is the extraction feature information
loss in the deep layers, which makes it difficult to focus on
key objects. An effective feature map is necessary for the
deep network. To improve the focus of the algorithm on
the object, we introduce a RCBAM to enhance the fore-
ground response of the ship.

The attention mechanism is a special module used to cal-
culate the weights of input data and has been modified into a
variety of attention mechanisms [34–36] used in DL. CBAM
includes two independent submodules, namely, the channel
attention mechanism (CAM) [37] module and the spatial
attention mechanism (SAM) [38] module. The CAM adap-
tively assigns weights to receive 1∗1∗C feature map in the
channel dimension, while the SAM adaptively assigns
weights to receive H∗W∗1 feature map in the spatial dimen-
sion. We find that repeated feature recalibration makes the

Input: Training set X = fx1,⋯, xig and ground truths G = fg1,⋯, gig
Output: Trained model
Initialization: Learning rate Lr, batch size bs, and set each parameter value epoch, weights.
Forepochs = 1 to ido
//YOLOv7-RCBAM
Preprocess xi by mosaic: xi = ImagePreprocessing(xi)
Extract feature information in backbone: Features = backbone(xi)
Fuse features by feature fusion module: Fused = FeatureFusion(features)
Attention module extract feature: Attention = RCBAM(fused)
Objectness, anchor_shape, feature_cls, feature_loc = YOLOHead(attention)
//Calculate loss and gradient descent
L = box lossð f eature loc, giÞ + obj lossðobjectness, giÞ + cls lossð f eature cls, giÞ
Calculate gradients: Weight = backpropagation(L)

End: save weights of model

Algorithm 1: Training of YOLOv7-RCBAM.
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Table 1: The diagram of YOLOv7-RCBAM.

Type/stride Filter shape Stride Input size Output size

Input image — — 640 ∗ 640 ∗ 3 640 ∗ 640 ∗ 3
Conv 3 ∗ 3 1 640 ∗ 640 ∗ 3 640 ∗ 640 ∗ 32
Conv 3 ∗ 3 2 640 ∗ 640 ∗ 32 320 ∗ 320 ∗ 64
Conv 3 ∗ 3 1 320 ∗ 320 ∗ 64 320 ∗ 320 ∗ 64
Conv 3 ∗ 3 2 320 ∗ 320 ∗ 64 160 ∗ 160 ∗ 128
Conv 1 ∗ 1 1 160 ∗ 160 ∗ 128 160 ∗ 160 ∗ 64
Route 4 — — — 160 ∗ 160 ∗ 128
Conv 1 ∗ 1 1 160 ∗ 160 ∗ 128 160 ∗ 160 ∗ 64
Conv 3 ∗ 3 1 160 ∗ 160 ∗ 64 160 ∗ 160 ∗ 64
Conv 3 ∗ 3 1 160 ∗ 160 ∗ 64 160 ∗ 160 ∗ 64
Conv 3 ∗ 3 1 160 ∗ 160 ∗ 64 160 ∗ 160 ∗ 64
Conv 3 ∗ 3 1 160 ∗ 160 ∗ 64 160 ∗ 160 ∗ 64
Route 5 7 9 11 — — — 160 ∗ 160 ∗ 256
Conv 1 ∗ 1 1 160 ∗ 160 ∗ 256 160 ∗ 160 ∗ 256
MaxPool — — 160 ∗ 160 ∗ 256 80 ∗ 80 ∗ 256
Conv 1 ∗ 1 1 80 ∗ 80 ∗ 256 80 ∗ 80 ∗ 128
Route 13 — — — 160 ∗ 160 ∗ 256
Conv 1 ∗ 1 1 160 ∗ 160 ∗ 256 160 ∗ 160 ∗ 128
Conv 3 ∗ 3 2 160 ∗ 160 ∗ 128 80 ∗ 80 ∗ 128
Route 15 18 — — — 80 ∗ 80 ∗ 256
Conv 1 ∗ 1 1 80 ∗ 80 ∗ 256 80 ∗ 80 ∗ 128
Route 19 — — — 80 ∗ 80 ∗ 256
Conv 1 ∗ 1 1 80 ∗ 80 ∗ 256 80 ∗ 80 ∗ 128
Conv 3 ∗ 3 1 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 128
Conv 3 ∗ 3 1 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 128
Conv 3 ∗ 3 1 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 128
Conv 3 ∗ 3 1 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 128
Route 20 22 24 26 — — — 80 ∗ 80 ∗ 512
Conv 1 ∗ 1 1 80 ∗ 80 ∗ 512 80 ∗ 80 ∗ 512
Conv 1 ∗ 1 1 80 ∗ 80 ∗ 512 80 ∗ 80 ∗ 128
Route 28 — — — 80 ∗ 80 ∗ 512
MaxPool — — 80 ∗ 80 ∗ 512 40 ∗ 40 ∗ 512
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 512 40 ∗ 40 ∗ 256
Route 28 — — — 80 ∗ 80 ∗ 512
Conv 1 ∗ 1 1 80 ∗ 80 ∗ 512 80 ∗ 80 ∗ 256
Conv 3 ∗ 3 2 80 ∗ 80 ∗ 256 40 ∗ 40 ∗ 256
Route 32 35 — — — 40 ∗ 40 ∗ 512
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 512 40 ∗ 40 ∗ 256
Route 36 — — — 40 ∗ 40 ∗ 512
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 512 40 ∗ 40 ∗ 256
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 256
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 256
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 256
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Table 1: Continued.

Type/stride Filter shape Stride Input size Output size

Conv 3 ∗ 3 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 256
Route 37 39 41 43 — — — 40 ∗ 40 ∗ 1024
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 1024 40 ∗ 40 ∗ 1024
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 1024 40 ∗ 40 ∗ 256
Route 45 — — — 40 ∗ 40 ∗ 1024
MaxPool — — 40 ∗ 40 ∗ 1024 20 ∗ 20 ∗ 1024
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 1024 20 ∗ 20 ∗ 512
Route 45 — — — 20 ∗ 20 ∗ 512
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 1024 40 ∗ 40 ∗ 512
Conv 3 ∗ 3 2 40 ∗ 40 ∗ 512 20 ∗ 20 ∗ 512
Route 49 52 — — — 20 ∗ 20 ∗ 1024
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 1024 20 ∗ 20 ∗ 256
Route 53 — — — 20 ∗ 20 ∗ 256
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 1024 20 ∗ 20 ∗ 256
Conv 3 ∗ 3 1 20 ∗ 20 ∗ 256 20 ∗ 20 ∗ 256
Conv 3 ∗ 3 1 20 ∗ 20 ∗ 256 20 ∗ 20 ∗ 256
Conv 3 ∗ 3 1 20 ∗ 20 ∗ 256 20 ∗ 20 ∗ 256
Conv 3 ∗ 3 1 20 ∗ 20 ∗ 256 20 ∗ 20 ∗ 256
Route 54 56 58 60 — — — 20 ∗ 20 ∗ 1024
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 1024 20 ∗ 20 ∗ 1024
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 1024 20 ∗ 20 ∗ 512
Route 62 — — — 20 ∗ 20 ∗ 1024
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 1024 20 ∗ 20 ∗ 512
Conv 3 ∗ 3 1 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 512
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 512
MaxPool — — 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 512
Route 67 — — — 20 ∗ 20 ∗ 512
MaxPool — — 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 512
Route 67 — — — 20 ∗ 20 ∗ 512
MaxPool — — 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 512
Route 67 68 70 72 — — — 20 ∗ 20 ∗ 2048
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 2048 20 ∗ 20 ∗ 512
Conv 3 ∗ 3 1 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 512
Route 63 75 — — — 20 ∗ 20 ∗ 1024
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 1024 20 ∗ 20 ∗ 512
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 256
Upsample — — 20 ∗ 20 ∗ 256 40 ∗ 40 ∗ 256
Route 46 79 — — — 40 ∗ 40 ∗ 512
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 512 40 ∗ 40 ∗ 256
Route 80 — — — 40 ∗ 40 ∗ 512
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 512 40 ∗ 40 ∗ 256
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 128
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 128 40 ∗ 40 ∗ 128
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Table 1: Continued.

Type/stride Filter shape Stride Input size Output size

Conv 3 ∗ 3 1 40 ∗ 40 ∗ 128 40 ∗ 40 ∗ 128
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 128 40 ∗ 40 ∗ 128
Route 81 83 85 87 — — — 40 ∗ 40 ∗ 1024
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 1024 40 ∗ 40 ∗ 256
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 128
Upsample — — 40 ∗ 40 ∗ 128 80 ∗ 80 ∗ 128
Route 29 91 — — — 80 ∗ 80 ∗ 256
Conv 1 ∗ 1 1 80 ∗ 80 ∗ 256 80 ∗ 80 ∗ 128
Route 92 — — — 80 ∗ 80 ∗ 256
Conv 1 ∗ 1 1 80 ∗ 80 ∗ 256 80 ∗ 80 ∗ 128
Conv 3 ∗ 3 1 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 64
Conv 3 ∗ 3 1 80 ∗ 80 ∗ 64 80 ∗ 80 ∗ 64
Conv 3 ∗ 3 1 80 ∗ 80 ∗ 64 80 ∗ 80 ∗ 64
Conv 3 ∗ 3 1 80 ∗ 80 ∗ 64 80 ∗ 80 ∗ 64
Route 93 95 97 99 — — — 80 ∗ 80 ∗ 512
Conv 1 ∗ 1 1 80 ∗ 80 ∗ 512 80 ∗ 80 ∗ 128
MaxPool — — 80 ∗ 80 ∗ 128 40 ∗ 40 ∗ 128
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 128 40 ∗ 40 ∗ 128
Route 101 — — — 80 ∗ 80 ∗ 128
Conv 1 ∗ 1 1 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 128
Conv 3 ∗ 3 2 80 ∗ 80 ∗ 128 40 ∗ 40 ∗ 128
Route 103 106 — — — 40 ∗ 40 ∗ 256
Route 89 107 — — — 40 ∗ 40 ∗ 512
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 512 40 ∗ 40 ∗ 256
Route 108 — — — 40 ∗ 40 ∗ 512
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 512 40 ∗ 40 ∗ 256
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 128
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 128 40 ∗ 40 ∗ 128
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 128 40 ∗ 40 ∗ 128
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 128 40 ∗ 40 ∗ 128
Route 109 111 113 115 — — — 40 ∗ 40 ∗ 1024
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 1024 40 ∗ 40 ∗ 256
MaxPool — — 40 ∗ 40 ∗ 256 20 ∗ 20 ∗ 256
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 256 20 ∗ 20 ∗ 256
Route 117 — — — 40 ∗ 40 ∗ 256
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 256
Conv 3 ∗ 3 2 40 ∗ 40 ∗ 256 20 ∗ 20 ∗ 256
Route 119 122 — — — 20 ∗ 20 ∗ 512
Route 77 123 — — — 20 ∗ 20 ∗ 1024
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 1024 20 ∗ 20 ∗ 512
Route 124 — — 20 ∗ 20 ∗ 1024
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 1024 20 ∗ 20 ∗ 512
Conv 3 ∗ 3 1 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 256
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Table 1: Continued.

Type/stride Filter shape Stride Input size Output size

Conv 3 ∗ 3 1 20 ∗ 20 ∗ 256 20 ∗ 20 ∗ 256
Conv 3 ∗ 3 1 20 ∗ 20 ∗ 256 20 ∗ 20 ∗ 256
Conv 3 ∗ 3 1 20 ∗ 20 ∗ 256 20 ∗ 20 ∗ 256
Route 125 127 129 131 — — — 20 ∗ 20 ∗ 2048
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 2048 20 ∗ 20 ∗ 512
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 512
Conv 3 ∗ 3 1 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 512
Conv 3 ∗ 3 1 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 512
Conv 3 ∗ 3 1 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 512
Route 133 — — — 20 ∗ 20 ∗ 512
AvgPool 20 ∗ 20 ∗ 512 1 ∗ 1 ∗ 512
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 512 1 ∗ 1 ∗ 512
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 512 1 ∗ 1 ∗ 512
Route 133 — — — 20 ∗ 20 ∗ 512
MaxPool — — 20 ∗ 20 ∗ 512 1 ∗ 1 ∗ 512
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 512 1 ∗ 1 ∗ 512
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 512 1 ∗ 1 ∗ 512
Add 141 145 — — — 1 ∗ 1 ∗ 512
Mul 133 146 — — — 20 ∗ 20 ∗ 512
Add 137 147 — — — 20 ∗ 20 ∗ 512
Mul 133 148 — — — 20 ∗ 20 ∗ 512
MaxPool — — 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 1
Route 149 — — — 20 ∗ 20 ∗ 512
AvgPool — — 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 1
Route 150 152 — — — 20 ∗ 20 ∗ 2
Conv 7 ∗ 7 1 20 ∗ 20 ∗ 2 20 ∗ 20 ∗ 1
Mul 149 154 — — — 20 ∗ 20 ∗ 512
Add 133 155 — — — 20 ∗ 20 ∗ 512
Route 133 — — — 20 ∗ 20 ∗ 512
Conv 1 ∗ 1 1 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 512
Conv 3 ∗ 3 1 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 512
Conv 3 ∗ 3 1 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 512
Conv 3 ∗ 3 1 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 512
Route 133 — — — 20 ∗ 20 ∗ 512
AvgPool — — 20 ∗ 20 ∗ 512 1 ∗ 1 ∗ 512
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 512 1 ∗ 1 ∗ 512
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 512 1 ∗ 1 ∗ 512
Route 133 — — — 20 ∗ 20 ∗ 512
MaxPool — — 20 ∗ 20 ∗ 512 1 ∗ 1 ∗ 512
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 512 1 ∗ 1 ∗ 512
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 512 1 ∗ 1 ∗ 512
Add 165 169 — — — 1 ∗ 1 ∗ 512
Mul 133 170 — — — 20 ∗ 20 ∗ 512
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Table 1: Continued.

Type/stride Filter shape Stride Input size Output size

Add 161 171 — — — 20 ∗ 20 ∗ 512
Mul 133 172 — — — 20 ∗ 20 ∗ 512
MaxPool — — 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 1
Route 173 — — 20 ∗ 20 ∗ 512
AvgPool — — 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 1
Route 174 176 — — — 20 ∗ 20 ∗ 2
Conv 7 ∗ 7 1 20 ∗ 20 ∗ 2 20 ∗ 20 ∗ 1
Mul 173 178 — — — 20 ∗ 20 ∗ 512
Add 133 179 — — — 20 ∗ 20 ∗ 512
Add 156 180 — — — 20 ∗ 20 ∗ 512
RepConv 3 ∗ 3 1 20 ∗ 20 ∗ 512 20 ∗ 20 ∗ 1024
YOLO

Route 117 — — — 40 ∗ 40 ∗ 256
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 256
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 256
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 256
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 256
Route 117 — — — 40 ∗ 40 ∗ 256
AvgPool — — 40 ∗ 40 ∗ 256 1 ∗ 1 ∗ 256
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 256 1 ∗ 1 ∗ 256
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 256 1 ∗ 1 ∗ 256
Route 117 — — — 40 ∗ 40 ∗ 256
MaxPool — — 40 ∗ 40 ∗ 256 1 ∗ 1 ∗ 256
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 256 1 ∗ 1 ∗ 256
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 256 1 ∗ 1 ∗ 256
Add 192 196 — — — 1 ∗ 1 ∗ 256
Mul 117 197 — — — 40 ∗ 40 ∗ 256
Add 188 198 — — — 40 ∗ 40 ∗ 256
Mul 117 199 — — — 40 ∗ 40 ∗ 256
MaxPool — — 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 1
Route 200 — — — 40 ∗ 40 ∗ 256
AvgPool — — 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 1
Route 201 203 — — — 40 ∗ 40 ∗ 2
Conv 7 ∗ 7 1 40 ∗ 40 ∗ 2 40 ∗ 40 ∗ 1
Mul 200 205 — — — 40 ∗ 40 ∗ 256
Add 117 206 — — — 40 ∗ 40 ∗ 256
Route 117 — — — 40 ∗ 40 ∗ 256
Conv 1 ∗ 1 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 256
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 256
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 256
Conv 3 ∗ 3 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 256
Route 117 — — — 40 ∗ 40 ∗ 256
AvgPool — — 40 ∗ 40 ∗ 256 1 ∗ 1 ∗ 256
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Table 1: Continued.

Type/stride Filter shape Stride Input size Output size

Conv 1 ∗ 1 1 1 ∗ 1 ∗ 256 1 ∗ 1 ∗ 256
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 256 1 ∗ 1 ∗ 256
Route 117 — — — 40 ∗ 40 ∗ 256
MaxPool — — 40 ∗ 40 ∗ 256 1 ∗ 1 ∗ 256
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 256 1 ∗ 1 ∗ 256
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 256 1 ∗ 1 ∗ 256
Add 216 220 — — — 1 ∗ 1 ∗ 256
Mul 117 221 — — — 40 ∗ 40 ∗ 256
Add 212 222 — — — 40 ∗ 40 ∗ 256
Mul 117 223 — — — 40 ∗ 40 ∗ 256
MaxPool — — 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 1
Route 224 — — — 40 ∗ 40 ∗ 256
AvgPool — — 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 1
Route 225 227 — — — 40 ∗ 40 ∗ 2
Conv 7 ∗ 7 1 40 ∗ 40 ∗ 2 40 ∗ 40 ∗ 1
Mul 224 229 — — — 40 ∗ 40 ∗ 256
Add 117 230 — — — 40 ∗ 40 ∗ 256
Add 207 231 — — — 40 ∗ 40 ∗ 256
RepConv 3 ∗ 3 1 40 ∗ 40 ∗ 256 40 ∗ 40 ∗ 512
YOLO

Route 101 — — — 80 ∗ 80 ∗ 128
Conv 1 ∗ 1 1 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 128
Conv 3 ∗ 3 1 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 128
Conv 3 ∗ 3 1 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 128
Conv 3 ∗ 3 1 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 128
Route 101 — — — 80 ∗ 80 ∗ 128
AvgPool — — 80 ∗ 80 ∗ 128 1 ∗ 1 ∗ 128
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 128 1 ∗ 1 ∗ 128
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 128 1 ∗ 1 ∗ 128
Route 101 — — — 80 ∗ 80 ∗ 128
MaxPool — — 80 ∗ 80 ∗ 128 1 ∗ 1 ∗ 128
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 128 1 ∗ 1 ∗ 128
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 128 1 ∗ 1 ∗ 128
Add 243 247 — — — 1 ∗ 1 ∗ 128
Mul 101 248 — — — 80 ∗ 80 ∗ 128
Add 239 249 — — — 80 ∗ 80 ∗ 128
Mul 101 250 — — — 80 ∗ 80 ∗ 128
MaxPool — — 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 1
Route 251 — — — 80 ∗ 80 ∗ 128
AvgPool — — 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 1
Route 252 254 — — — 80 ∗ 80 ∗ 2
Conv 7 ∗ 7 1 80 ∗ 80 ∗ 2 80 ∗ 80 ∗ 1
Mul 251 256 — — — 80 ∗ 80 ∗ 128
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depth feature response decrease and affects the detection
result, so the improvement of the CAM module can help
improve the accuracy of ship detection.

The basic structure of residual channel attention mecha-
nism (RCAM) is shown in Figure 3. The CAM adds a paral-
lel maximum pooling layer. The input feature maps
compress the global information through the pooling layer
and then obtain the characteristic map through two-layer
convolution with activation function, respectively:

MAvg = F1 ReLU F AvgPool zð Þð Þð Þð Þ, ð1Þ

MMax = F1 ReLU F MaxPool zð Þð Þð Þð Þ, ð2Þ

Mpool = Sigmoid MAvg +MMax
À Á

, ð3Þ

where z is the input of the CAM. AvgPool and MaxPool are
the pooling layers. ReLU and Sigmoid are the activation

function. F is the convolution layer. The output of them
are MAvg and MMax.

Then, the channel information is recalibrated by matrix
point multiplication. The feature map by the sigmoid activa-
tion function is denoted asMpool, and then, after recalibration

M = Z ⋅Mpool = z1m1, z2m2,⋯, zimi½ �: ð4Þ

Finally, we stack number of the convolutional batch-
normalization SiLU (CBS) modules. It can help extract effec-
tive feature in the deep layers. The CBS1 is used to smooth
feature by 1 × 1 kernel size convolution layer, and the last
three CBS3 can be used to extract the feature by 3 × 3 kernel
size convolution layers and maintain the original channel
dimension:

N = CBS3 CBS3 CBS3 CBS1 zð Þð Þð Þð Þ: ð5Þ

Table 1: Continued.

Type/stride Filter shape Stride Input size Output size

Add 101 257 — — — 80 ∗ 80 ∗ 128
Route 101 — — — 80 ∗ 80 ∗ 128
Conv 1 ∗ 1 1 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 128
Conv 3 ∗ 3 1 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 128
Conv 3 ∗ 3 1 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 128
Conv 3 ∗ 3 1 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 128
Route 101 — — — 80 ∗ 80 ∗ 128
AvgPool — — 80 ∗ 80 ∗ 128 1 ∗ 1 ∗ 128
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 128 1 ∗ 1 ∗ 128
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 128 1 ∗ 1 ∗ 128
Route 101 — — — 80 ∗ 80 ∗ 128
MaxPool — — 80 ∗ 80 ∗ 128 1 ∗ 1 ∗ 128
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 128 1 ∗ 1 ∗ 128
Conv 1 ∗ 1 1 1 ∗ 1 ∗ 128 1 ∗ 1 ∗ 128
Add 267 271 — — — 1 ∗ 1 ∗ 128
Mul 101 272 — — — 80 ∗ 80 ∗ 128
Add 263 273 — — — 80 ∗ 80 ∗ 128
Mul 101 274 — — — 80 ∗ 80 ∗ 128
MaxPool — — 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 1
Route 275 — — — 80 ∗ 80 ∗ 128
AvgPool — — 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 1
Route 276 278 — — — 80 ∗ 80 ∗ 2
Conv 7 ∗ 7 1 80 ∗ 80 ∗ 2 80 ∗ 80 ∗ 1
Mul 275 279 — — — 80 ∗ 80 ∗ 128
Add 101 280 — — — 80 ∗ 80 ∗ 128
Add 258 281 — — — 80 ∗ 80 ∗ 128
RepConv 3 ∗ 3 1 80 ∗ 80 ∗ 128 80 ∗ 80 ∗ 256
YOLO
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After that, we add the operation of merging and dot-
multiplying the feature map by the CAM module with the
feature extraction map. Therefore, M fully considers the lead
of global information and effectively highlights the discrimi-
native feature information of the ship. And the N is formed
after feature extraction by four CBS modules. After the “+”
operation, we get

Z1 =N +M, ð6Þ

since successive repetitive feature recalibration operations
can lead to lower response values of depth features and
thus affect the detection effect. Residual connection helps
to fuse the extraction information and prevents the loss of
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feature information due to recalibration. Finally, the feature
map Z2 is obtained after recalibration. We introduce resid-
ual connection between successive feature recalibrations by
using the idea of residual learning. It can improve the fea-
sibility of optimization while preserving the original infor-
mation. In the end, the RCBAM is proposed by
connecting the output of the residual channel attention
module (RCAM) to the SAM.

3.2. Double Transfer Strategy. In DL, the amount of param-
eters needs to be trained in the face of a large dataset. Train-
ing from scratch easily leads to the problems of slow training
speed and poor interference resistance. Therefore, transfer
learning is introduced to improve the training process and
enhance the interference resistance in this paper.

Model-based transfer learning, also called parameter-
based transfer learning, shares some common knowledge

× + ×
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+ ×
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between the original task and the target task at the model level.
The transfer learning based on sharing parameters achieves
the purpose of knowledge transfer by freezing the common
parameters of some models. The premise of the transfer of
shared parameters is that there are similar features in the
learning task to make the model parameters consistent.

Since the model is not easy to identify ships, it is diffi-
cult to do well in the fine-grained detection of ships, so
the model fine-tuning method is introduced. As shown in
Figure 4, the VOC2007 dataset A is loaded into the original
model for training to get the pretraining parameters, based
on which the SeaShips dataset B is input for classification
experimental training to make the model improve in ship
category recognition. To further improve the accuracy of
ship classification detection and increase the model training
speed, we add an attention mechanism to the tail of the
model for ship classification dataset B training by freezing
the backbone network.

3.3. Feature Fusion Module. The features extracted by the
single attention mechanism are not obvious. To deepen the
features that the attention mechanism pays attention to,
the output of the attention is fused, which enhances the fea-
ture performance [39, 40]. Given the problem of unfocus in
different feature fusion modules, we introduce the same
attention fusion to enhance the effective features and prevent
feature disappearance from the deep network.

We add an improved convolutional attention mecha-
nism to the three-dimensional feature maps of 128, 256,
and 512 and fuse two identical feature maps through a merg-
ing operation to enhance the effect of the features extracted
by the attention mechanism. The resulting features are

Out = Z3 + Z3: ð7Þ

The feature fusion attention module can effectively pre-
vent the loss of depth information so that the model can
learn rich features and pay attention to the target features,
instead of superimposing attention feature, which can
change the feature dimension and lose the feature informa-
tion. Fusing attention feature is more beneficial to retain fea-
ture dimension and information.

4. Experiments

4.1. Datasets and Evaluation Metrics. At present, there are
some datasets with ship categories; these include the COCO
dataset, VOC dataset, CIFAR-10 dataset, and SeaShips [41]
dataset. COCO and VOC only have one type of ship (boat),
so ship classification experiments cannot be performed. There
are 7000 open-source data in SeaShips dataset, which contains
948 passenger ships, 4398 mining ships, 3010 general cargo
ships, 4380 fishing ships, 1802 container ships, and 3904 bulk
carriers in total of six types of ships, so the SeaShips dataset is
chosen for our experiment. The dataset is divided into training

Table 2: The comparison of AP in different attention mechanisms in different ship categories.

Attention model Bulk cargo carrier Container ship Fishing boat General cargo ship Ore carrier Passenger ship

YOLOv7 96.89% 99.99% 95.49% 97.48% 96.66% 93.33%

YOLOv7+ECA 96.71% 100% 95.84% 97.81% 97.67% 95.18%

YOLOv7+SE 96.20% 100% 95.89% 97.78% 97.69% 94.16%

YOLOv7+CBAM 96.70% 100% 95.75% 97.76% 97.96% 93.93%

YOLOv7-RCBAM 96.90% 100% 95.93% 98.16% 97.99% 96.56%

Table 3: The comparison of indicators in different attention mechanisms.

Attention model R P F1 mAP
YOLOv7 91.72% 95.86% 93.50% 96.64%

YOLOv7+ECA 93.88% 95.95% 95.00% 97.20%

YOLOv7+SE 94.31% 95.88% 95.00% 96.95%

YOLOv7+CBAM 93.79% 96.40% 95.00% 97.02%

YOLOv7-RCBAM 94.14% 96.00% 95.00% 97.59%

Table 4: The comparison of AP values for each model between different ship categories.

Model Bulk cargo carrier Container ship Fishing boat General cargo ship Ore carrier Passenger ship mAP
YOLOv4 92.79% 98.61% 94.21% 93.83% 94.29% 90.08% 93.97%

YOLOv5 95.80% 99.50% 95.90% 98.50% 95.00% 96.00% 96.80%

YOLOv7 96.89% 99.99% 95.49% 97.48% 96.66% 93.33% 96.64%

YOLOv7-RCBAM 96.90% 100% 95.93% 98.16% 97.99% 96.56% 97.59%
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Figure 6: Different model test renderings.
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set and test set in the ratio of 4 : 1, and the training set is
divided into subtraining set and validation set of 4 : 1. The sub-
training set contains 4480 images, and the validation set con-
tains 1120 images, while the test set contains 1400 images.

We select a variety of evaluation indexes to prove the
superiority of the model, including precision (P), recall (R),
average precision (AP), and mAP. The main usage indica-
tors are as follows:

(1) AP refers to the area under the precision-recall (P-R)
curve when balancing the P and R to represent the
AP of each category in the model detection degree,
and calculation formula is

AP =
ð1
0
P Rð ÞdR: ð8Þ

(2) mAP refers to the mean of the AP of all categories
and the calculation formula is

mAP = ∑N
i=1APi

N
: ð9Þ

N is the number of all target categories.
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Figure 8: The comparison of data enhancement assessment metrics.

Table 5: The comparison of data enhancement accuracy.

Model R P mAP
YOLOv4 77.89% 90.45% 86.62%

YOLOv5 88.30% 91.10% 92.60%

YOLOv7 72.37% 92.21% 91.19%

YOLOv7-RCBAM 89.31% 95.58% 96.13%

(a) (b)

(c) (d)

Figure 7: (a) Original, (b) add noise, (c) adjust brightness, (d) and cutout.
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4.2. Experiment Analysis of Ship Classification Detection. In
this paper, we set 20 training epochs and mainly use mAP
values for model detection accuracy assessment. First, to verify
the advantage of our method in comparison with different
advanced attention mechanisms, we compare the accuracy of
various types of ships. We compare this method with other
YOLO methods to verify the superiority of our method. To
verify the detection ability of the method to complex environ-
ment, the image is enhanced to train the model.

4.2.1. Comparison of Different Attention Mechanisms. To
verify the effectiveness of the attention mechanism we pro-
posed, we use the YOLOv7 as the base model, and the effi-
cient channel attention (ECA), squeeze-and-excitation
attention (SE), and CBAM and RCBAM are added to it,
respectively.

The experimental results show that our method per-
forms well. As shown in Table 2, compared with the AP of
the original YOLOv7 model, there are different degrees of
improvement in the AP of all types of ships. The ECA and
SE model focus on the channel dimension and ignore the
spatial dimension in the ship images, resulting in a low AP
for all types of ship detection. Compared with the CBAM,
our method improves the channel attention mechanism,
which can retain the detailed information of various ships
and improve the detection accuracy. However, in the cate-
gory of ore carriers, large ships are more likely to mistake
the background for a ship due to the obstruction of the
external environment, resulting in a decrease in ship detec-
tion accuracy. As can be seen from Table 3, our method
achieves the highest mAP of 97.59% among various atten-
tion mechanisms. The R and P are increased to 96.00%
and 94.14%, and the F1 value reaches 95.00%.

4.2.2. Comparison of Different Models. To prove that our
method has a good detection effect compared with other
object detection models, we use the SeaShips dataset for
model training and evaluation. The experimental models
for comparison are YOLO4, YOLOv5, and YOLOv7. The
experimental results are as shown.

The experimental results in Table 4 and Figure 5 show
that our method improves the AP of various types of ships
by different degrees compared with various models, but in
the class general cargo ship, our method is lower than the
YOLOv5 by 0.34%. Compared with the YOLOv4, YOLOv5,
and YOLOv7, our method adds an improved attention
mechanism to reduce the feature extraction of redundant

information and focus on the ship target features, which
can significantly improve the mAP value and AP values.
The improvement over the YOLOv4 networks is particularly
significant, with mAP improving by 3.62%. While compar-
ing the YOLOv5, mAP improves by 0.79% to reach a maxi-
mum of 97.59%, reflecting the superiority of the model’s
mAP. Figure 6 shows the effect of six types of ship detection.
YOLOv5 networks have located the wrong bounding boxes
in bulk cargo boat, indicating that the method have worse
detection performance. However, YOLOv4 networks have
repeatedly detected the bounding boxes, indicating that the
method can correctly locate and classify the ship target,
but due to the inaccuracy of the NMS, the wrong bounding
boxes cannot be correctly eliminated. YOLOv7 networks
have predicted a bigger bounding box in ore carrier, which
show that it can correctly locate the target but mismatch
the background. Our method focuses on object features
and enhances feature performance, so it can correctly clas-
sify and locate ships.

4.2.3. Test of Model Interference Resistance. As shown in
Figure 7, to verify the interference resistance of the model
detection, we cutout the images to occlude the ships, reduce
the image brightness to simulate the night, and finally
increase the image noise to simulate rainy and foggy condi-
tions. We adopt the method of random enhancement of
each ship image and randomly select one of the methods
of cutout, changing brightness, and increasing noise for ran-
dom scale enhancement. It can increase the richness of the
dataset and enable the model to adapt to multiple ship detec-
tions in different scenarios.

The interference resistance of the model is verified after
image enhancement of the original data, as shown in the
figures.

As shown in Figure 8, after image enhancement, it is dif-
ficult for the model to detect the ship objects in environ-
ments such as darkness, noisy, and cutout, resulting in a
decrease in the model R of 4.83%, and the detection accuracy

Figure 9: The image enhancement detection effect.

Table 6: The comparison of indicators in different attention
mechanisms.

Methods
Small ship
detection

ShipYOLO
Enhanced

YOLOv3-tiny
Ours

mAP 96.35% 95.50% 97.00% 97.59%
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and mAP of the model decrease by 0.42% and 1.46%. As
shown in Table 5, compared with different models, our
method takes the lead mAP by 96.13%, indicating that the
model is effective in detecting the recalled ship target fea-
tures and can correctly classify ships. Facing complex envi-
ronments, our method focuses on the ship’s target itself
during detection and can still achieve a high precision. It
can be seen that the method is interference resistant and
can adapt to various environmental vessel classification
detection. From the effect figure in Figure 9, we know that
our model can correctly locate ship targets and classify ship
types in the environment with weak light and strong noise,
while the model can still locate and classify ships without
being affected by target occlusion, multiple target overlaps,
and small target ships in the image.

4.2.4. Comparison with Previous State-of-the-Art
Approaches. To verify that our method has a good detection
effect, we compare it with previous SOTA approaches in the
SeaShips dataset. The experimental models for comparison
are small ship detection method [42], ShipYOLO [32], and
enhanced YOLOv3-tiny [31]. The results are as shown.

The experimental results in Table 6 show that our
method achieves the highest level of mAP with 97.59% over
the other methods. Compared with small ship detection, our
method improves the mAP by 1.24%. Small ship detection
and ShipYOLO methods ignore the extraction feature in
deep layers due to the lower accuracy. Enhanced YOLOv3-
tiny method reduces the parameters to improve the detec-
tion speed, while the mAP is 0.59% lower than ours.
Although the methods add an attention mechanism to focus
on the ship objects, our RCBAM performs better, since the
RCBAM extracts the deep feature by CBS module and fuses
the extraction information by residual connection. By the
way, feature recalibration operations help improve the feasi-
bility of optimization, and feature fusion attention module
effectively captures the deep rich features.

5. Conclusion

In this paper, aiming at the problems of inaccurate object
feature extraction and inconspicuous feature information
in deep layers, a YOLOv7-RCBAM for the ship detection
method is proposed. In our design, the RCBAM module is
introduced to extract object feature information effectively,
and the double transfer learning and the feature fusion
attention of the method can fuse the feature information
and avoid feature losing in deep layers. The effectiveness of
our method based on YOLOv7-RCBAM is verified by case
studies on several experimental data in this paper. Com-
pared with other benchmark models and state-of-the-art
methods, our method has better detection accuracy and
anti-interference. In future research work, the real-time per-
formance of ship detection is particularly important. We will
focus on improving the detection accuracy of the model
while reducing the number of model parameters, to improve
the training speed of the model and achieve the purpose of
lightweight models.
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