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Sign language translation (SLT) is an important application to bridge the communication gap between deaf and hearing people. In
recent years, the research on the SLT based on neural translation frameworks has attracted wide attention. Despite the progress,
current SLT research is still in the initial stage. In fact, current systems perform poorly in processing long sign sentences, which
often involve long-distance dependencies and require large resource consumption. To tackle this problem, we propose two
explainable adaptations to the traditional neural SLTmodels using optimized tokenization-related modules. First, we introduce a
frame stream density compression (FSDC) algorithm for detecting and reducing the redundant similar frames, which effectively
shortens the long sign sentences without losing information. 'en, we replace the traditional encoder in a neural machine
translation (NMT) module with an improved architecture, which incorporates a temporal convolution (T-Conv) unit and a
dynamic hierarchical bidirectional GRU (DH-BiGRU) unit sequentially. 'e improved component takes the temporal tokeni-
zation information into consideration to extract deeper information with reasonable resource consumption. Our experiments on
the RWTH-PHOENIX-Weather 2014Tdataset show that the proposedmodel outperforms the state-of-the-art baseline up to about
1.5+ BLEU-4 score gains.

1. Introduction

Sign languages are visual-based natural languages used by
the deaf people for their communication. Since most hearing
people cannot understand sign language, sign language
translation (SLT) has become an important application to
bridge the communication gap between deaf and hearing
people. In recent years, researchers have successively pro-
posed deep learning models for neural SLT (e.g., [1–6]).

'e existing SLT models basically follow a multimodal
architecture, where convolutional neural network (CNN)
and neural machine translation (NMT) are sequentially
connected. 'e CNN module is used to extract image-level
features, reduce the fine-grained input, and generate a
tokenization layer as the input to the NMT module; the

NMT module is the main translation module for encoding
and decoding to generate target sentences. 'e above basic
SLTarchitecture was first proposed by Camgoz et al. [1]. 'e
tokenization layer serves as a hub layer in this architecture.
Hence, optimizing it can improve the performance of both
CNN and NMT.

However, most of the current SLT works only improve
the CNN or NMT module separately, resulting in poor
connection between the two modules which causes two
serious problems:

(1) Poor interpretability: most of the improvements
focus on some common tricks, rather than consid-
ering the uniqueness of SLT. 'e characteristics of
SLTdetermine that it is a special NMT task, although
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the input form is different from conventional spoken
language. 'erefore, analyzing from the input form
may help us to find some interesting SLTphenomena
and get a better interpretability. For a spoken sen-
tence, the input is usually a series of words. Although
there are semantic connections between words, they
are expressed in a discrete form. As for a sign
sentence, the input is usually a video signal. In actual
application, the video needs to be framed into
continuous frame images. Intuitively, we can com-
pare each video frame to the basic word element of
sign language. Unlike spoken language, the video
frames of any sign sentence are continuous, and the
order is closely related. In other words, it is illegal to
reverse the order between any frames. Specifically,
we found that there are many similar frames in the
neighborhood, and these frames repeatedly express
some meanings, which will cause redundant infor-
mation and long sentence. However, no works use
this visual phenomenon to custom optimization
algorithms for sign language.

(2) Poor performance for long sentences: longer sen-
tences result in long-distance dependencies, large
resource consumption, and low evaluation scores.
'is shows that both CNN and NMTmodules need
to be improved. However, the visual CNN module is
obtained more attention, and the work of the in-
novative NMT module is obtained less attention.
Besides, the improvement from the perspective of
model interpretation is also a very important aspect.

Longer sentences mean more frames. 'e longer the
sentence is, the more complicated the relationship between
video frames will have, which leads to insufficient con-
nection between frames. In theory, the amount of calculation
may increase exponentially. Hence, the SLTmodel generally
specifies a maximum number of input frames for the CNN
module. For longer sentences, how to express more effective
information within a certain window size is a meaningful
research point. However, there is no work considering re-
ducing useless frames from understandable visual features.
Especially for longer sentences, CNN is more pressured and
less efficient. If we can reduce the number of sign language
frames according to the visual surface image features, then
we may still get the same sentence meaning with a fewer
frames (like turning long sentences into short sentences),
which can not only reduce the convolution pressure, but also
generate a higher quality tokenization layer. Moreover, the
tokenization layer is then input into the NMT module, so
optimizing it in the tokenization level will be a key role for
improving the subsequent NMT.

To solve the above mentioned issues, we propose a novel
SLTmodel with a better interpretability for longer sentences,
as shown in Figure 1. 'ere are two improvements with
tokenization-related units.

First, we propose a frame-level frame stream density
compression (FSDC) algorithm, which can compare pixels at
the image level in an unsupervised manner, reducing re-
dundant frames in temporal neighborhood. Intuitively, it

can be understood as retaining high-density information by
comparing the similarity of input image frames in the
neighborhood. 'e reduced convolution information can
generate tokenization with a smaller size, which allows more
information to be transmitted within the limited window
length. Besides, for the NMTmodule, reducing the number
of input frames means a shorter length of input. Overall, this
is a visually interpretable optimization of sign language that
converts long sentences into short sentences.

Second, we replace the traditional encoder in the NMT
module with an improved architecture to further strengthen
the association between long sentence video frames. Inspired
by the study of FairSeq [7], a hybrid model is proposed. 'e
model incorporates a temporal convolution (T-Conv) unit
and a dynamic hierarchical bidirectional GRU (DH-BiGRU)
unit sequentially. It first convolves the input in the time
domain and then encodes the semantic information in the
subsequent deep hierarchical RNNs. We can still treat the
tokenization layer as a vector representation layer of the
dimensionality-reduced frames. As an improvement,
3DCNN/C3D was used in the CNN module [8, 9] to
strengthen the association between frames in the time do-
main. However, it requires larger resource consumption and
does not always work well in the case of low sign language
resources. We observed that, if the NMTmodule convolves
the sign sentences at the tokenized level in the time domain
using 2DCNN, it can not only approach the function of
3DCNN/C3D, but also approach the speed of 2DCNN. All in
all, this also shortens long sentences in the time domain and
deepens the RNN structure in a hierarchical way. In this
case, the NMT structure can handle longer sentences as
easily as short sentences.

'e main contributions of this paper are as follows:

(1) We have proposed a novel SLT model with toke-
nization-related units, which can better handle
longer sentences in lower resource consumption,
and has a better interpretability.

(2) We have introduced for the first time an unsuper-
vised FSDC algorithm to compress the density of the
input frames without removing key information.
'is method is suitable for many similar video tasks.

(3) We have proposed a novel NMTmodule for SLTwith
optimized encoder-related units, temporal convolu-
tion and dynamic hierarchical bidirectional GRU
hybrid network (TC-DHBG-Net), which compresses
the effective information of the tokenization layer
from the time domain so that long sentences are
further shortened on the time domain to facilitate
hierarchical GRUs to find semantic information.

(4) Moreover, our improved neural SLTmodel has been
made publicly available (https://github.com/binbin
jiang/nslt_xmu).

2. Our Proposed Approaches

As a special language, sign language has its own specific
linguistic rules as well [10], so the SLT model follows the
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NMT framework, as shown in Figure 1. Now suppose that
y � (y1, y2, . . . , yTy) is an output sentence that corresponds
to the sign video frame sequence x � (x1, x2, . . . , xTx) in the
training set. At the very beginning, we use the unsupervised
FSDC algorithm module to optimize the frame-level input
sentences. 'en, a spatial CNN is used to convolute frames
to gain tokenization layer which is then input into the NMT
module for encoding and decoding. In this section, we will
introduce the proposed approaches in detail.

2.1. Unsupervised FSDC Module. As shown in Figure 2(a),
the spatial CNN is mainly used to reduce the fine-grained
input of video frames. In SLT, the video frame is the most
basic input unit. 'e compression of video frames directly
affects the processing efficiency of CNN and the quality of
the tokenization layer. 'erefore, optimizing the number of
frames also means optimizing the tokenization layer.

For any video dataset, we must follow a fixed frames per
second (FPS) to frame all the videos, which leads to massive
similar redundant frames in the temporal neighborhood. As
an illustration, a signer signs the same sign language at fast
and slow speeds, respectively. Although the two express the
same meaning, they produce videos of different lengths.
Obviously, a video signed at a slower speed will get more
redundant similar frames in temporal neighborhood.

To reduce this effect, the FSDC algorithm is proposed.
We delete the less-important frames by comparing the
similarity index and to keep the sequence of the frames fixed
at the same time. In theory, it helps us to reduce the amount
of training data as well as errors caused on account of sign
speed and FPS.

We use the SSIM algorithm [11] to calculate the simi-
larity between two images, which is close to the intuitive
feeling of the human eye. When calculating the structural
similarity of frame fi and frame fj, the corresponding
calculation flow chart is shown in Figure 3. 'e formula of
the SSIM algorithm is as follows:

SSIM fi, fj( ) � L fi, fj( )[ ]x · C fi, fj( )[ ]y · S fi, fj( )[ ]z, (1)

where L(∗) denotes the luminance comparison, C(∗ ) de-
notes the contrast comparison, and S(∗ ) denotes the
structure comparison. Note that x> 0, y> 0, and z> 0, we
initialize x � y � z � 1. SSIM(∗ ) is a decimal between 0 and
1. Extremely, SSIM � 1 means two images are completely
identical, while SSIM � 0 means completely different.

'e FSDC calculates the SSIM indexes for both each
frame and all frames in the neighborhood. If the SSIM index
is greater than a certain threshold δ(0< δ < 1), only one of
them will be retained, while the rest will be discarded as
redundant frames. A running example of Algorithm 1 is
shown in Figure 2(b).

Formally, we explore frame-level input tokenization as
shown in Figure 2(a) and map the feature vectors to the
tokenization layer as

Γ � SpatialCNN(FSDC(x)). (2)

2.2. TC-DHBG-Net for Encoding Stage. Figure 4 shows the
improved NMT module we proposed. Specifically, we im-
prove the encoder in two folds. 'e first is T-Conv unit for
the tokenization layer; and the second is DH-BiGRUs for
mining semantic information.

'e T-Conv unit is inspirited by the work of Bérard et al.
[12] on the end-end speech task. It takes as input a sequence
of features for tokenization layer. 'ese features are given as
input to two nonlinear (tanh) layers, which output new
features of size n. In order to enhance the optical flow feature
capture, we concatenate the positional encoding [13] to
obtain the feature vectors with position information. Like
[14], this new set of features is then passed to a stack of two
convolutional layers. Each layer applies 16 convolution
filters of shape (3, 3, depth) with a stride of (2, 2) w.r.t. time
and feature dimensions; depth is 1 for the first layer and 16
for the second layer. We get features of shape (Tx/2, n/2, 16)
after the 1st layer and (Tx/4, n/4, 16) after the 2nd layer. 'is
latter tensor is flattened with shape (Tx�Tx/4, 4n) before
being passed to a stack of three-levelDH-BiGRUs. 'is set of
features has 1/4th the time length of the initial features,
which speeds up the raining because the complexity of the
model is quadratic with respect to the source length.

'e DH-BiGRU unit computes a sequence of annota-
tions h � hi, . . . , hTx, where each annotation hi is a con-
catenation of the corresponding forward and backward
states. 'e hidden state of the last GRU layer in each hi-
erarchy is inserted into the next hierarchy. Formally, first we
insert the tokenized vectors into a recurrent neural structure
to obtain the semantic information of the context sequence.
For recurrent unit type, we choose GRU [15] instead of
LSTM [16] because the former has fewer gate structures. 'e
hierarchical structure [2, 12, 17] and bidirectional structure
can extract deeper relevant information. Suppose that the
hierarchy of HGRU is n, then

ξencoder � φen rnnn ,en rnnn−1 ,...,en rnn1
(Γ) � h1, h2, . . . , hn′( ),

(3)
where (h1, h2, . . . , hn′) are the hidden states of the last GRU
layer, and n′ is a variable, and φen rnn(

∗) indicates the
processing of RNN in the encoder.

2.3. Decoder and Attention Mechanism

2.3.1. Decoder. For the word embedding, we use a fully
connected layer that learns a linear projection from one-hot

F
ra

m
e 

st
re

am
 d

en
si

ty
 

co
m

p
re

ss
io

n
 (

F
SD

C
) 

al
go

ri
th

m

T
o

k
en

iz
at

io
n

 la
ye

r

Sp
at

ia
l C

N
N

O
u

tp
u

t 
se

n
te

n
ce

Im
p

ro
ve

d
 N

M
T

 m
o

d
u

le

Figure 1: Overview of our proposed end-to-end SLT model with
improved tokenization-related units, which includes an FSDC
optimization algorithm and an improved NMT module.
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vectors of spoken language words to a denser space as
follows:

ωi �WordEmbedding yi( ), (4)

where ωi is the embedded version of the spoken word yi.
In the decoding stage, we aim at maximizing the

probability p(y | x). 'e decoder computes a probability of
the translation y by decomposing the joint probability into
the ordered conditional probabilities as follows:

p(y | x) �∏
Ty

i�1

p yi
∣∣∣∣y1, y2, . . . , yi−1, h1, h2, . . . , hn′( )( ).

(5)

2.3.2. Attention Mechanism. Like other SLTmodels, we may
also suffer from long-term dependencies, vanishing gradi-
ents, and performance deterioration with many input
frames. To solve the issues, we utilize attention mechanisms
which have been proved useful in various tasks including but
not limited to machine translation. 'e most common at-
tention mechanisms are the mechanisms of Bahdanau et al.
[18] and Luong et al. [19]. Based on hyperparameter ex-
periments, we take Bahdanau as our attention mechanism.
Given the input x, we define each conditional probability at
time i depending on a dynamically computed context vector
ci as follows:

p yi
∣∣∣∣y1, y2, . . . , yi−1, x( ) � softmax g si( )( ), (6)

where si is the hidden state of the decoder at time i and g is a
linear transformation that outputs a vocabulary-sized vector.
Note that the hidden state si is computed as

si � φdernn ωi−1, si−1,ωi( ), (7)

where φdernn(
∗) indicates the processing of RNN in the de-

coder and ωi−1 is the word embedding of the previously
predicted word yi−1, si−1 is the last hidden state of the de-
coder, and ci is computed as a weighted sum of the hidden
states from encoder as

ci �∑
Ty

j�1

αijhj, (8)

where αij is the weight of each annotation hj.

3. Experiments

In this section, we conducted a series of experiments on the
RWTH-PHOENIX-Weather 2014Tdataset by employing our
improved SLT model with tokenization-related units com-
pared to the baseline.

3.1. Baseline. As described above, the baseline is an atten-
tion-based structure combined by 2DCNN and Seq2Seq
sequentially. 'e spatial 2DCNN is an AlexNet [20], and its
parameters are pretrained on Imagenet [21]. 'e encoder
and decoder of Seq2Seq are nonhierarchical GRUs. In order

to compare with the baseline fairly, all experiments run in
the same dataset and GPU environment. Except for the
differences mentioned in the paper, other configurations for
all models are consistent by default.

3.2. Dataset. 'e RWTH-PHOENIX-Weather 2014T is the
most popular continuous SLT dataset. It is collected by
extending the German sign language recognition (SLR)
dataset, RWTH-PHOENIX-Weather 2014 Corpus [22].
Compared with other SLT datasets, this dataset has larger
data and higher quality. It contains 4,839 vocabulary, 8,257
video clips, 947,756 frames, and 113,717 words in total, as
shown in Table 1. Each video corresponds to a translation
sentence. Although the dataset includes sign language gloss
corpus, our model is trained without gloss-level alignment,
where the glosses give the meaning and the order of signs
[1, 23, 24]. Nevertheless, the use of glosses is limited to a
prerequisite that word label in sentences is consistent with
the order of corresponding visual content. In the other
words, if the word is out of order, it is unsuitable to tackle
sequential frame-level classification under word labels in
disorder. In fact, most datasets do not include gloss anno-
tations. Although we do not consider it for this work, we
conducted NMT experiments using gloss to gain optimal
settings as [1].

3.3. Settings. Based on baseline conclusions and our expe-
rience, we preset some important hyperparameters. We use
GRU as the recursive module for both encoder and decoder,
where each recurrent layer contains 1,000 hidden units.
During the training, the optimizer used is Adam [25], and
the learning rate is 0.00001 with a decay factor of 0.98 and a
batch size of 1. During the decoding, we use beam search
with a width size of 3 to generate sentences.

3.4. Evaluation. We use BLEU [26] and ROUGE [27] as the
evaluation metrics, which are most used in machine
translation tasks. Note that the BLEU score is represented by
BLEU-1, 2, 3, 4 and the ROUGE score refers to ROUGE-L
F1-SCORE. In training, the BLEU-4 score on the develop-
ment set is used to select the best model.

3.5. Comparison to Existing Approaches. Table 2 shows the
performance comparison between our proposed systems
and the existing baseline systems.

'e existing baseline systems use different attention
mechanisms, of which the Bahdanau mechanism performs
best. It is worth mentioning that although the transformer
has good performance in many NMT tasks, it does not
achieve good results in the SLT dataset due to its small data
size.

Our proposed systems contain innovations in multiple
places, so we added different improved modules on the
baseline for comparison. We can see that after using the
unsupervised FSDC algorithm (#2h), the model achieves
better performance. As for the improvement of the encoder
in NMTmodule, either T-Conv or DH-BiGRUs units have a
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promoting effect as shown in Table 2 (#2e and #2f). 'e
complete improved encoder module which uses both T-
Conv and DH-BiGRUs units (i.e., TC-DHBG-Net) improves
more significantly as shown in Table 2 (#2g). From the
performance, we can see that the improved encoder in the
NMTmodule is the most important and the FSDC algorithm
can slightly improve the basis as shown in Table 2 (#2i).
Overall, the proposed tokenization-related units without
extra information improve significantly for the SLT.

3.6. Validation on TC-DHBG-Net. In order to validate the
role of the T-Conv} unit of the TC-DHBG-Net, we only add
T-Conv units to the encoder of the baseline, while the re-
cursive neural unit remains unchanged. In Table 2, #2e
exceeds the baseline moderately, which proves the positive
role of the T-Conv unit.

'e DH-BiGRUs unit is another important component
of the TC-DHBG-Net. We replace the original GRUs of the
baseline with our DH-BiGRUs unit in 3 levels by default. As
shown in Table 2 (#2f), the multilevel structure is introduced
and the performance is moderately improved, proving the
effect of the hierarchical structure.

Although T-Conv unit and DH-BiGRUs unit have been
proved by the above experiments, it does not mean that the
combination of the two will be better. 'erefore, it is nec-
essary to introduce Table 2 (#2g). Compared with baseline,
#2g improves significantly, which is better than any single
module (#2e or #2f).

3.7. Ablation on the Levels of DH-BiGRUs. 'e DH-BiGRU
has an important hyperparameter, the number of RNN
levels. To test the scores for different levels of DH-BiGRU
in the recurrent neural unit, we set the numberNlevel to 1,
2, 3, and 4, respectively. We conducted experiments based
on the previous experiment as shown in Table 2 (#2g).

Table 3 illustrates that the hierarchical structure has a
significant impact on the scores. When Nlevel is set to less
than 3, the scores increase as the number of levels in-
creases, and when Nlevel � 3, the score increases to peak;
but when Nlevel > 3, the score starts to drop. As a con-
clusion, a larger number of layers do not mean a higher
score. 'erefore, we set Nlevel � 3 to the optimal
hyperparameter.

3.8. Validation on FSDC Algorithm. At the very beginning,
we analyze the structural similarity of all frames in the
dataset. Figure 5(a) shows that the number or proportion of
the separable redundant frames varies with different
thresholds. Even if the threshold is set to 75%, we can see
that the number of frames for temporal neighborhood
exceeds 85%. Once the threshold is lower, the proportion of
frames will be greater. 'is indicates that the relationship
between the frames is tight. A reasonable initial threshold is
crucial to the model, but the threshold is an empirical and
experimental hyperparameter. If the threshold is set too
low, much more useful frame information may loss; on the
contrary, the optimization will not work at all. Analyzing
Figure 5(a), we think that the similarity threshold is set to at
least 94%.

To validate the FSDC algorithm, we set the thresholds
from 94% to 99%, to control the percentage of redundant
frames. We conducted the experiment on the baseline
(Table 4 (#4a)) and the structure we proposed (Table 4
(#4b)), respectively. Figure 5(b) shows that within a rea-
sonable range, the FSDC algorithm can be positive relative to
the improvement of the baseline, especially when the
threshold is set to 95%. But the relative value of negative
numbers in Table 4 (#4b) also shows that not all thresholds
can improve performance.

Moreover, it is worth mentioning that the size of the
training data is reduced by 9.28%when the threshold is set to
95%.'e optimized dataset not only saves storage space, but
also saves processing time (about 10% reduction).

3.9. About Length. Figure 6(a) shows the distribution of the
number of sentences with respect to the different lengths of
source sentences (frames) on the test set. Since the frame
number of most sentences is less than 100, we think that
more than 100 frames are considered as long sentences.

Input: input F; threshold δ (0≤ δ ≤1); number of video frames N.
Output: F′
Initialize x� 0, i� 1
for x + i≤N, do

if SSIM(fx, fx+i) > δ , then
Retain x + i, discard fx+i, update i � i + 1

else if SSIM(fx, fx+i) ≤ δ, then
Retain fx, fx+i, update x � x + i, i � 1

end if
end for

ALGORITHM 1: FSDC algorithm for temporal neighborhood.

Table 1: Key statistics of the German datasets.

Train Dev Test

Vocab. 2,887 951 1,001
Clips 7,096 519 642
Frames 827,354 55,775 64,627
Tot. words 99,081 6,820 7,816
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Figure 6(b) shows the BLEU scores of generated translations
on the test set with respect to the lengths of the source
sentences. In particular, we split the translations into dif-
ferent bins according to the length of source sentences
(frames), and then test the BLEU scores for translations in
each bin separately with the results reported in Figure 6(b).
Our approach can achieve big improvements over the
baseline system in almost all bins, especially in the long
sentences which have more than 117 frames. 'e perfor-
mance comparison intuitively shows that our model can
better adapt to the translation of long sentences, which
benefits the FSDC algorithm and the improved encoder.

3.10. Qualitative Comparison. As shown in Table 5, to help
readers understand our translations better, we qualitatively
analyze the results of the sentence-level experiments. 'e
sentences shown in the examples are both long sentences. 'e
frame numbers of examples (a) and (b) are 192 and 196 frames,
respectively. After using our FSDC optimization algorithm, the
frame numbers are reduced to 182 and 169 frames, respec-
tively. Since long sentences have serious long-distance de-
pendency problems, both examples show that the current SLT
models have poor translation ability to deal with long sen-
tences. Comparing the baseline and our model, our model is
relatively more accurate, and the meanings of the sentences are
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Figure 5: (a) Numbers and percentage of redundant frames with respect to different similarity thresholds. (b)'e increased absolute values
of BLEU compared to the baseline after using the FSDC algorithm. When the threshold is around 95%, both models reach the peak.

Table 3: BLEU scores on DH-BiGRU unit in different levels.

# Levels
Development set Test set

ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

3a 1 31.34 30.94 18.26 12.71 9.76 32.18 31.60 18.52 12.43 9.52
3b 2 31.69 31.23 18.62 13.15 10.16 32.08 30.08 18.15 12.88 9.97
3c 3 33.02 32.37 19.49 13.44 10.21 32.25 32.19 19.38 13.71 10.66
3d 4 31.52 31.40 18.71 13.00 9.87 31.58 31.85 18.95 13.17 10.03

Table 2: Experiments on the existing baseline systems vs. variants of our novel model.

# Model
Development set Test set

ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE BLEU-1 BLEU-2 BLEU-3 BLEU-4

Existing baseline systems
2a None 29.54 28.33 15.71 10.32 8.57 28.60 26.65 15.02 10.27 8.24
2b Transformer 30.28 29.82 16.98 11.89 8.93 29.89 29.45 16.72 11.78 8.82
2c Luong 31.67 32.18 18.56 12.38 9.46 30.71 30.01 17.43 12.11 9.02
2d Bahdanau 31.93 31.66 18.70 12.79 9.53 31.56 31.32 18.36 12.36 9.25

Our proposed systems
2e +T-Conv 32.08 30.08 18.15 12.88 9.97 31.34 30.94 18.26 12.71 9.76
2f +DH-BiGRUs 31.55 30.21 18.29 13.05 9.84 31.20 31.46 17.64 12.40 9.65

2g
+TC-DHBG-Net (+T-
Conv +DH-BiGRUs)

31.69 31.23 18.62 13.15 10.16 32.25 32.19 19.38 13.71 10.66

2h +FSDC 32.13 31.72 18.84 12.98 9.79 31.52 31.72 19.04 13.01 9.71
2i +FSDC+TC-DHBG-Net 32.76 31.43 19.12 13.40 10.35 32.99 31.86 19.51 13.81 10.73

Bold indicates the best performance.

Computational Intelligence and Neuroscience 7



closer to the ground true. Note that the translation results
closer to the target in Table 5 are marked in bold.

4. Related Work

According to a recent review [28], sign language is an on-
going research that began decades ago. 'e SLR system can
be classified into three based on the type: (1) fingerspelling
recognition; (2) isolated word recognition; (3) continuous
sign sentence recognition. As for SLT, it is a more advanced
task to further understand the semantic information of sign
language.

In earlier work, the SLR system employed traditional
recognition methods. For instance, Gao et al. [29] used
HMM to recognize SLR words; 'e authors of [30, 31] used
SVM to classify continuous sign language alphabets and
isolated words; Baccouche et al. [32] performed a trajectory
matching to classify the isolated words. Compared to the
above, deep learning-based models have been employed
recently. CNNs [33, 34], LSTMs [2, 35–37], or hybrid models
[3, 38] have been used for continuous sentence recognition.

When it comes to SLT, few research results are published
up to now. However, the development of SLR has laid a
foundation for SLT. Camgoz et al. [1] released the first
available continuous SLTdataset and proposed a neural SLT
model. 'ey combined CNN with the classic machine
translation model-Seq2Seq. 'eir work maintains state of
the art on the RWTH-PHOENIX-Weather 2014T dataset.
Later, Ko et al. [4] proposed a neural SLT model based on
human pose estimation, converting a video frame to key-
points, which simplifies the complexity of recognition, but
ignored much important semantic information, e.g., ex-
pressions. We believe that it is under consideration. Guo
et al. [2] proposed a hierarchical LSTM model that per-
formed both SLR and SLTexperiments on a Chinese dataset.
'ey used 3DCNN for features extraction and compared it
with the video captioning model S2VT [39]. 'e critical
problem about their dataset is that it only includes 100
sentences, which is inappropriate for translation tasks.
Overall, SLT achievement is still underperforming, limited
by a lack of large-scale datasets and better translation
models.

53

99

122

163

107

51

31

13
2

0

20

40

60

80

100

120

140

160

180
N

u
m

b
er

 o
f 

se
n

te
n

ce
s

Source frame length

(1
7,

42
)

(4
2,

67
)

(6
7,

92
)

(9
2,

11
7)

(1
17

,1
42

)

(1
42

,1
67

)

(1
67

,1
92

)

(1
92

,2
17

)

(2
17

,2
42

)

(a)

0

2

4

6

8

10

12

14

B
L

E
U

 s
co

re

Source frame length

Baseline (BLEU 9.25)

Ours (BLEU 10.67)

(1
7,

42
)

(4
2,

67
)

(6
7,

92
)

(9
2,

11
7)

(1
17

,1
42

)

(1
42

,1
67

)

(1
67

,1
92

)

(1
92

,2
17

)

(2
17

,2
42

)

(b)

Figure 6: (a) Numbers and percentage of redundant frames with respect to different similarity thresholds. (b)'e increased absolute values
of BLEU compared to the baseline after using the FSDC algorithm. When the threshold is around 95%, both models reach the peak.

Table 4: BLEU scores vary in different thresholds.

# 'resholds 94 95 96 97 98 99 100

4a
Baseline — — — — — — 9.25
+FSDC 9.39 9.71 9.51 9.44 9.39 9.35 —
△ +0.14 +0.46 +0.26 +0.19 +0.14 +0.10 —

4b
+Ours — — — — — — 10.66

+Ours + FSDC 10.06 10.73 10.68 10.23 10.36 10.50 —
△ +0.81(−0.60) +1.48 (+0.07) +1.43 (+0.02) +0.98 (−0.43) +1.11 (−0.30) +1.25 (−0.16) —

△ represents the increased absolute values of BLEU from the baseline, and the scores in parentheses represent the relative change value from +Ours. 'e
FSDC algorithm does not work when the threshold is 100%.
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5. Conclusion

In this work, we propose a novel weakly supervised SLT
model with improved tokenization-related modules to adapt
to longer sentences. We first propose an FSDC algorithm for

temporal neighborhood to optimize the limited training data
by removing the redundant frames and compress the sen-
tence length to get a better interpretability. 'en we in-
troduce a T-Conv and DH-BiGRU-mixed NMT, which can
consider the temporal information with reasonable resource

Table 5: Comparison of translations between our model and baseline.

Example (a)

Source

Target
der wind weht mäßig bis frisch mit starken bis stürmischen böen im bergland teilweise schwere sturmböen im südosten mitunter
nur schwacher wind. ('e wind blows moderately to fresh with strong to stormy gusts in the mountains, sometimes severe gusts in

the southeast, sometimes only weak winds.)

BASE
der wind weht mäßig im norden frisch mit frisch mit stürmischen böen an der nordsee schwere sturmböen. ($e wind blows

moderately in the north fresh with fresh with stormy gusts at the north sea heavy gusts of wind.)

OURS
der wind weht mäßig bis frisch bei schauern und gewittern kann es stürmische böen auf den bergen sturmböen. ($e wind blows

moderately to fresh during showers and thunderstorms, it can be stormy gusts on the mountains.)
Frames From 192 to 182

Example (b)

Source

Target
und morgen wird es dann in der südosthälfte nochmal ähnlich werden wie heute allerdings im nordwesten bereits dichtere wolken.
(and tomorrow it will be similar again in the southeast half of the day as in the northwest, however, with thicker clouds.)

BASE
morgen im süden und süden bleibt es allerdings schon wolkenlücken und gewitter das wird es schon schon werden werden aus den

westen. (Tomorrow in the south and south there will be cloud gaps and thunderstorms it will be from the west.)

OURS
und morgen wird es dann in der südosthälfte nochmal ähnlich am alpenrand wieder mal südwestwind und gewitter. (and

tomorrow it will be similar in the south-east half again on the edge of the alps again south-west wind and thunderstorm.)
Frames From 196 to 169

BASE: baseline model; Ours: the optimal model mentioned above; and the texts in parentheses represent the English translation corresponding to German.
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consumption as well as succeed in extracting deeper in-
formation. To evaluate our approaches, we conducted ex-
periments on the public dataset-RWTH-PHOENIX-Weather
2014T. Compared with the existing state-of-the-art baseline,
our model can reduce the size of training data by 9.3% and
outperform the baseline up to about 1.5+ BLEU-4 score on
the sign-to-text translation task. Moreover, we conducted a
series of comparison and ablation experiments and analyzed
the translation performance qualitatively.

Despite the improved performance, SLT still has a lot of
room to be studied. In future work, we will explore better
interpretative methods to translate longer sentences.
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