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Abstract—The scatterometers onboard the European Remote
Sensing satellites (ERS-1 & ERS-2) and the METeorological
OPerational satellite (METOP) have been shown to be useful for
surface soil moisture retrieval using the so-called TU-Wien change
detection method. This paper presents an improved soil moisture
retrieval algorithm based on the existing TU-Wien method but
with new parameterization as well as a series of modifications.
The new algorithm, WAter Retrieval Package 5 (WARP5), copes
with some limitations identified in the earlier method WARP4 and
provides the possibility of migrating soil moisture retrieval from
ERS-SCAT to METOP-ASCAT data. The WARP5 algorithm re-
sults in a more robust and spatially uniform soil moisture product,
thanks to its new processing elements, including a method for
the correction of azimuthal anisotropy of backscatter, a compre-
hensive noise model, and new techniques for calculation of the
model parameters. Cross-comparisons of WARP4 and WARP5
data sets with the Oklahoma Mesonet in situ observations and
also with European Centre of Medium Range Weather Forcast
(ECMWF) ReAnalysis (ERA-Interim) global modeled data show
that the new algorithm has a better performance and effectively
corrects retrieval errors in certain areas.

Index Terms—European Remote Sensing satellite (ERS),
METeorological OPerational satellite (METOP), scatterometer,
soil moisture.

I. INTRODUCTION

IN OCTOBER 2006, the European Organization for the
Exploitation of Meteorological Satellites (EUMETSAT)

launched METOP-A, the first of three satellites within
EUMETSAT’s Polar System (EPS) [1]. One of the instruments
onboard the satellite is the Advanced Scatterometer (ASCAT),
the successor instrument of the European Remote Sensing
satellites (ERS)-1/2 scatterometers (SCATs) [2]. Scatterometers
have been designed to measure wind speed and direction at the
sea surface using radar technology. Since the launch of ERS-1
in 1991, wind retrieval from scatterometers has become a
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routine application, and the derived information is used opera-
tionally for various purposes such as numerical weather predic-
tion [3]. Aside from its intended task as an ocean monitoring
tool, there is increasing evidence that the ERS and METOP
scatterometers also allow for the measurement of soil moisture
over land. From a physical point of view, scatterometers offer
a relatively direct opportunity to measure soil moisture because
of the high sensitivity of microwaves to the water content in
the soil surface layer. This is specifically the case in the low-
frequency domain (1–10 GHz) in which the scatterometers
operate. The major challenge of retrieving soil moisture is the
presence of additional factors influencing the signal, such as
surface roughness and vegetation.

To retrieve vegetation and soil properties from scatterometer
observations, most approaches use inversion methods based
on physical approximations of the scattering process [4]–[9].
They typically use simple bare soil backscattering models
like the one proposed by Oh et al. [10] or Fung et al. [11]
and vegetation models similar in form to the so-called Cloud
Model [12] or site-specific vegetation growth models like the
one used by Mougin et al. [13] for Sahelian regions. Major
problems of these retrieval concepts appear to be their physical
validity at large scales and their parameterization. For example,
Davidson et al. [14] demonstrated the limited range of validity
of currently available bare soil backscatter models. Grippa and
Woodhouse [15] noted the difficulty of modeling backscatter
from heterogeneous land cover and pointed out the need to
further investigate scaling processes.

Wagner et al. [16] presented a possible solution to these prob-
lems by utilizing the unique sensor design of the ERS/METOP
scatterometers and a change detection method which will fur-
ther be referred to as the TU-Wien model. Several studies
showed that the change detection technique can overcome some
of the problems of physical-based inversion models if sufficient
long-term data are available as it directly accounts for the
scattering process of rough and heterogeneous land surfaces.
The potential of using such methods has been demonstrated for
both active and passive microwave data [17]–[22].

In the TU-Wien model, a reference backscatter value rep-
resenting backscatter from the vegetated land surface under
dry soil conditions is subtracted from the actual backscatter
measurement to account for roughness and heterogeneous land
cover. To account for the effects of plant growth and decay,
the vegetation-sensitive signature of the multi-incidence angle
observations is exploited. Soil moisture is finally retrieved by
relating the actual backscatter measurement to dry/wet refer-
ences, resulting in a relative measure of soil moisture [16].
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Scipal [23] used the method to derive the first remotely
sensed global soil moisture data set. During recent years,
this data set has been evaluated in several validation studies
[24]–[27]. The data were also used successfully in hydrologic
[28], [29] and climate studies [30] and in first assimilation
experiments [31], [32]. The positive feedback of these studies
motivated the implementation of an operational near-real-time
METOP ASCAT processor at EUMETSAT’s central process-
ing facility [33]. Initial soil moisture retrieval tests, based on
ASCAT observations, indicate that the advanced sensor design
and calibration will deliver more accurate soil moisture data
with an almost daily temporal sampling at a spatial resolution
of approximately 25 km [34]. Hence, the METOP system has
the potential to provide an uninterrupted flow of soil moisture
information until at least 2020 and, as such, offer an attractive
complement to dedicated soil moisture missions planned for
launch in the near future, like the European Space Agency’s
Soil Moisture and Ocean Salinity Mission (SMOS) and NASA’s
Soil Moisture Active Passive mission (SMAP). The near-real-
time operational system capabilities and the heritage of the
ERS-1/2 missions will make it a valuable monitoring tool for
various applications.

The implementation of the TU-Wien method for operational
soil moisture processing however requires a careful revisit
of the existing model. The original method as proposed by
Wagner et al. [16] was developed and tested over Mali, Spain,
Ukraine, and Canada. Although Wagner et al. [24] found that
the transfer of the method to a global scale lead to satisfactory
results, some shortcomings of the algorithm have been iden-
tified. These are as follows: 1) the azimuthal look direction
of the sensor is not explicitly incorporated in the retrieval;
2) the backscatter normalization parameters of the model,
which correspond to yearly vegetation change, are determined
on a monthly basis, neglecting higher frequency variations;
3) the estimation of the dry/wet reference values lead to spa-
tially inconsistent results, particularly in the presence of high
noise; and 4) a persistent error model was lacking.

In this paper, we therefore propose and evaluate an im-
proved retrieval scheme which will address these problems by
reprocessing 16 years of SCAT data. For a better understanding
of the retrieval concept, a short description of the ERS/METOP
scatterometer data is given in Section II, and a brief review
of the earlier version of the soil moisture retrieval algorithm
[WAter Retrieval Package 4 (WARP4)] is made in Section III.
In Section IV, we introduce the improved retrieval algorithm
(WARP5). Finally, we compare WARP4 and WARP5 soil mois-
ture data with the in situ soil moisture observations from the
Oklahoma Mesonet network. We also use a global soil moisture
data set from the European Centre for Medium-Range Weather
Forecasts (ECMWF)’s reanalysis project called ERA-Interim, a
numerical weather prediction model, to evaluate the impact of
the retrieval modifications on soil moisture estimates.

II. SCATTEROMETER DATA

Scatterometers are microwave sensors designed to measure
the normalized radar cross section σ0 with high radiometric
accuracy over a set of different incident angles while scanning

Fig. 1. SCAT viewing geometry.

Fig. 2. Number of the resampled SCAT measurements from August 1991 to
May 2007.

the surface of the Earth from an aircraft or a satellite. They have
the advantage of providing day and nighttime measurements
unaffected by cloud cover. Spaceborne Scatterometers are used
to measure surface properties with relatively coarse spatial
resolutions but on a more frequent basis.

A. SCAT Onboard ERS-1 and ERS-2

The SCAT onboard ERS is part of the active microwave
instrument consisting of a synthetic aperture radar and a fan-
beam scatterometer operating in C-band (5.6 GHz) at VV polar-
ization. The three SCAT antennas generate radar beams looking
45◦ forward, 90◦ sideways, and 135◦ backwards with respect to
the satellite’s flight direction, at incidence angles ranging from
18◦ to 59◦. The three antenna beams continuously illuminate a
500-km-wide swath, each measuring the radar backscatter for
overlapping 50-km-wide cells. The result is three independent
backscatter measurements at the nodes of a 25-km orbit grid
(Fig. 1), taken at different viewing angles and separated by a
short time delay [35].

ERS-1 regularly acquired data between August 1991 and
May 1996. ERS-2 operated nominally between March 1996 and
January 2001, when due to a failure of a gyroscope, all ERS-2
instruments were temporarily switched off. Since May 2004,
ERS-2 again acquires data; however, reception of data is limited
to selected regions (i.e., North America, Europe, Northwest
Africa, China, and Australia) as ERS-2 lost its onboard data
storage capability in June 2003. Fig. 2 shows the availability of



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NAEIMI et al.: IMPROVED SOIL MOISTURE RETRIEVAL ALGORITHM FOR ERS AND METOP 3

the SCAT measurements on a global scale from August 1991
to May 2007. In April 2007, the ERS-2 spacecraft reached
its twelfth year in orbit. Apart from some minor problems,
all platform subsystems and payload instruments are working
satisfactorily and are providing high-quality data. Recently, the
ERS-2 mission was approved to be continued for three more
years until 2011.

B. ASCAT Onboard METOP

The ASCAT, like its predecessor SCAT, uses a fan-beam
antenna technology. Contrary to SCAT, it uses two sets of
three antennas. For ASCAT, the incidence angle range has been
extended to 25◦–65◦. ASCAT covers two 550-km swaths to the
left and right of the satellite ground track separated by approx-
imately 360 km from the satellite ground track. This results in
a double daily spatial coverage with respect to its predecessor
SCAT. Apart from the optimized viewing geometry, ASCAT
also features a number of technical improvements. The im-
proved instrument design and radiometric performance result in
higher stability and reliability of σ0 measurements. In addition
to the 50-km backscatter product foreseen for operational wind
monitoring, EUMETSAT delivers an equivalent product at a
resolution of 25 km [2].

III. WARP4 ALGORITHM REVIEW

A. Analysis Grid

In order to apply a change detection method for retrieving
relative soil moisture, σ0 measurements are required as time
series. In WARP4, all ERS-1/2 measurements were collocated
from the satellite orbit grid into a Discrete Global Grid (DGG),
a sinusoidal global grid generated by an adapted partitioning
of the globe with an approximately 25-km grid spacing [23].
In this way, each grid point is associated with a series of σ0

spatially resampled using a fixed sampling area. To provide
enough measurements for the interpolation procedure in each
satellite pass, the radius of the sampling area was set to 36 km,
considering the 25-km SCAT orbit grid. This area includes
the adjacent grid points of each DGG point also in diagonal
direction, located at about 35.4 km at most. The spatial inter-
polation of the data in each grid point is performed after the
incidence angle normalization of σ0 measurements, by using
the Hamming window function

H(r) = 0.54 + 0.46 cos

(

πr

RH

)

(1)

where r is the distance to the center of the window and RH

is the window radius. The Hamming window is a function
frequently used in radar remote sensing for interpolation of
irregularly distributed data [36].

B. Viewing Geometry Normalization

The σ0 measurements collocated to each DGG point are
taken at different incidence angles. As the intensity of backscat-
ter signal strongly depends on the incidence angle, the σ0

measurements cannot be compared directly and need to be

normalized to a reference incidence angle. Therefore, all σ0

measurements are extrapolated to a reference angle of 40◦ using
a second-order polynomial according to

σ0(40, t) = σ0(θ, t)−σ′(40, t)(θ−40)−
1

2
σ′′(40, t)(θ−40)2.

(2)

The reference angle is set to 40◦ in order to minimize extrap-
olation errors [37]. The parameters of this model, the slope σ′,
and the curvature σ′′ are determined from simultaneous multi-
incidence angle observations

σ′
(

θm − θa/f

2

)

=
σ0

m(θm) − σ0
a/f (θa/f )

θm − θa/f
(3)

where the index m stands for the midbeam antenna and the
indexes a or f for either the aft- or forebeam antennas. Having a
large set of samples evenly distributed over the entire incidence
angle range, σ′(40) and σ′′(40) can be derived by fitting a linear
model of the form

σ′(θ) = σ′(40) + σ′′(40)(θ − 40). (4)

It has to be mentioned that each σ′(40) triplet only allows
one to calculate an approximation, which is only valid near
the respective incidence angle and which is disturbed by mea-
surement noise. To account for noise effects and to ensure that
the parameters of (2) are estimated from measurements evenly
distributed over the entire incidence angle range, the parameters
are calculated for a large number of σ0(θ) triplets. The exact
shape of the polynomial expressed in (2) depends on the land
surface properties, i.e., it is sensitive to the vegetation and
surface structure. Smooth surfaces with no vegetation result in a
steep decline of σ0 with respect to θ and, therefore, low negative
σ′ values. Vegetation and rough surfaces generally result in
higher σ′ values. This is important to note, as the normalization
of σ0 has to take vegetation growth/decay effects into account.
Therefore, the parameters are estimated for each month of
the year. Consequently, 12 values of σ′(40) and σ′′(40) are
obtained. Interpolation between these monthly values is done
by using empirical trigonometric functions according to

σ′(40, t) = C ′ + D′ψ(t) (5)

where ψ(t) is one of the 68 predefined periodic functions
describing the dynamic evolution of σ′(40). As an example,
over the Iberian Peninsula, a simple sine model is used for the
determination of the slope function [38]

ψ(t) =
1

2
sin

(

2π

12
(t − 3)

)

. (6)

Using prescribed empirical functions instead of a simple
interpolation has the advantage of a controlled interpolation,
leading to robust estimates. Fig. 3 shows monthly slope values
at 40◦ and the respective periodic function for a grid point
located in Mali, Africa (15◦7′30′′N, 8◦40′34′′W). The empirical
model of (5) fits well to the monthly slope values. Small
deviations are visible only during January and February. The
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Fig. 3. WARP4 monthly slope values at 40◦ and respective slope function
σ
′(40, τ) comparing with 16-day MODIS EVI data averaged over three years

(2000–2002).

slope function σ′(40, t) represents variations of vegetation
canopies within a year. The σ′ values are satisfactorily corre-
lated with the vegetation index data, although the vegetation
index corresponds to the greenness and not the vegetation
biomass, which is more relevant for C-band backscatter. The
vegetation index data in Fig. 3 have been derived from a 16-day
Moderate Resolution Imaging Spectroradiometer (MODIS)
enhanced vegetation index (EVI) product [39]. EVI values are
averaged over three years (2000–2002) to obtain an estimation
of the yearly vegetation variation.

C. Soil Moisture Retrieval

The dominant mechanisms contributing to σ0(40) are vol-
ume scattering effects in the vegetation canopy and surface
scattering from the underlying soil surface [40]. In simple
radiative transfer models like the Cloud Model [12], the ef-
fect of vegetation is largely controlled by the optical depth
which weights the relative contribution of surface and volume
scattering. Although the TU-Wien model uses a different pa-
rameterization, it is similar in functionality to these models.
When vegetation grows, the optical depth increases, and the
volume scattering term becomes more important. This does not
necessarily mean that backscatter increases. In situations where
the reduced contribution from the underlying ground is more
important than the enhanced volume scattering, σ0 decreases.
For low incidence angles, the effect of vegetation is mainly
the attenuation of the signal returned by underlying soil [41].
In other words, backscattering from bare soil is, in general,
stronger than vegetated soil in near range. Because of the rapid
drop-off of the bare soil backscattering, the situation may be
reversed at high incidence angles. Therefore, at some incidence
angle, σ0(θ) curves of a developing and a full-grown vegetation
canopy should cross over [42]. In the TU-Wien model, it is
assumed that the effect of vegetation is minimal at the so-called
“crossover” angles θdry and θwet, which differ for dry and wet

soil conditions. If such crossover angle exists, then for dry
conditions, it should be found at lower incidence angles than
for wet conditions [37]. By considering these crossover angles
and using (2) and (5) after separating the time-dependent and
constant terms, the lowest level of the backscattering σ0

dry at
40◦ is given by

σ0
dry(40, t) = C0

dry − D′ψ(t)(θdry − 40) (7)

where C0
dry is the minimum value of σ0

dry at the dry crossover
angle θdry, which is empirically set to 25◦.

The same reasoning can be applied for wet soil conditions to
obtain the highest level of backscatter

σ0
wet(40, t) = C0

wet − D′ψ(t)(θwet − 40) (8)

where C0
wet is the maximum value of σ0

wet at the wet crossover
angle θwet empirically set to 40◦.

The dry and wet references derived in (7) and (8) are finally
used to determine variations in the soil moisture content. As-
suming a linear relationship between σ0(40) and the surface
soil moisture content [43], the relative soil moisture content in
the surface layer is calculated as

Θs(t) =
σ0(40, t) − σ0

dry(40, t)

σ0
wet(40, t) − σ0

dry(40, t)
. (9)

Θs(t) is a relative measure of the water content in the surface
layer ranging between zero and one (0%–100%). Assuming
that σ0

dry represents a completely dry soil surface and σ0
wet a

saturated one, Θs(t) is equal to the degree of saturation, i.e.,
the soil moisture content expressed in percent of porosity [44].
The reference values σ0

dry and σ0
wet are estimated from the

lowest and highest σ0(40) extremes acquired during the period
of August 1991–May 2007. By using such long-term data,
the reference values will likely represent the respective soil
conditions even in temporal sparsely sampled areas. In extreme
climates such as deserts, where saturation is never observed, an
empirical bias-correction factor is applied to σ0

wet in order to
obtain spatially consistent soil moisture estimates.

IV. TU-WIEN ALGORITHM UPDATES IN WARP5

WARP5 is the latest revision of the TU-Wien algorithm.
The motivation on setting up WARP5 was implementing a
more robust processing algorithm and extending the model
to cover some model deficiencies in WARP4. In this section,
we introduce the new aspects in WARP5 and highlight major
differences between the new algorithm and WARP4.

A. Resampling Scatterometer Data to a New DGG

The grid used in WARP4 was based on simplified assump-
tions to disburden data resampling. These are 1) a spherical
model of the Earth; 2) a geocentric coordinate system; and
3) no full compliance with the requirement for uniform grid
spacing. Using a simplified model of the Earth, not compliant
with the model used during the data generation process, leads to
collocation and coordinate transformation errors. To minimize
these errors, a new grid is implemented in WARP5. Apart from
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a new physical definition of the analysis grid, the grid point
spacing is reduced by a factor of two. This makes it possible to
1) include directly the ASCAT fine resolution (25 km) product
in the analysis and 2) build up a consistent soil moisture data set
including both SCAT and ASCAT data. The new grid is based
upon the GEM6 ellipsoid, which is also used during the ground
range projection of SCAT and ASCAT data [45], and generated
by an adapted partitioning of the globe with an about 12.5-km
equal grid spacing [46].

In addition to the new grid, the way the observations are col-
located has been modified. In WARP4, the Hamming function
defined in (1) is used once the σ0(40) is derived. In WARP5, the
Hamming weighting function is applied at the very first step of
the processing for the backscatter coefficients σ0 as well as for
the azimuthal and incidence angles ϕ and θ, respectively, for
each beam. This results in a more accurate calculation of the
model parameters.

B. Azimuthal Correction

In the previous section, the need for normalizing backscatter
signal with respect to the viewing geometry has been discussed,
and the method used in WARP4 to correct incidence angle
effects was presented. The intensity of the backscattered signal,
however, does not only depend on the incidence angle but also
on the azimuthal look direction. The WARP4 implementation
of the TU-Wien model does not explicitly incorporate these
effects, as they are generally weak. In regions characterized
by surface patterns and microreliefs (e.g., sand desert) with a
distinct azimuthal orientation, this simplification results in an
artificial modulation of the signal [47]. In WARP5, such effects
are partly corrected using the multilooking capabilities of the
sensor.

Two of the three side-looking antennas of SCAT look at the
surface with the same incidence angle but from two different
azimuth angles (the same is valid for ASCAT having two
antenna triplets on each side of the satellite track). The differ-
ence between the fore- and aftbeam backscattering coefficients
(σ0

fore − σ0
aft) is therefore a measure of azimuthal dependence

plus the noise level of the individual σ0 measurements [48].
To account for the azimuthal effects, a normalization technique
is used. In this method, a correction factor is applied to the
backscatter measurements of each beam separately. To calcu-
late the correction factors, a second-order polynomial is applied
to model the σ0 variations with respect to the incidence angle θ

for three possible azimuth angles (i.e., for each beam and for
ascending and descending passes separately). The difference
between these polynomials and the polynomial derived for the
entire data set is used as a correction bias.

A measure to quantify the effect of this correction on the
retrieval is the estimated standard deviation (ESD) of σ0 cal-
culated as

ESD(σ0) =
StDev

(

σ0
fore − σ0

aft

)

√
2

. (10)

Fig. 4 shows two histograms of global ESD values before
and after the measurements have been corrected for azimuthal

Fig. 4. Distribution of the ESD of backscatter in WARP4 and WARP5 in
global scale before and after azimuthal anisotropy correction.

viewing effects. According to the observations over rainfor-
est, the relative radiometric stability of SCAT is estimated as
0.13 dB [42], [49]. The histogram in Fig. 4 shows a clear
peak close to this level. The skewed shape of the distribution
toward higher values is an indication of azimuthal effects and
proves the need for a correction. The fact that the majority of
values center around a level of 0.15 dB indicates that, over
most parts of the Earth, land surface azimuthal effects have a
negligible impact on the measurements. After correcting the
measurements for azimuthal effects, a clearly noticeable shift
toward lower values is visible in the histogram.

C. Slope and Curvature Calculation

In the previous section, it was argued that the main factor
influencing the σ0 versus θ relationship is vegetation and its
phenological cycle. The rate of vegetation change refers to
the vegetation growth length, which varies depending on mean
annual temperature, precipitation, incoming solar radiation,
as well as land cover type. The method currently in use to
parameterize this effect is to fit a first-order polynomial to the
local slope values calculated in (3) to estimate the parameters
in (4), σ′(40) and σ′′(40) on a time-window basis. In the older
formulation, the time window is set to one month. The reason
for using monthly estimates was robustness with respect to
noise, but a one-month sampling window filters high-frequency
variations. Furthermore, in some cases, the applied empirical
function ψ(t) used in (5) cannot satisfactorily describe natural
variations. This problem is particularly evident at the beginning
of the vegetation development or vegetation dormancy onset. To
quantify the impact of the time-window length in the estimation
of σ′ in (4), we calculate σ′ for different values of τ , the
period for which σ0 measurements are sampled for the slope
calculation

σ′(θ, τ) = σ′(40, τ) + σ′′(40, τ)(θ − 40). (11)
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Fig. 5. Daily slope parameter calculated for two different time-window
lengths.

Smaller τ values guarantee accounting for any temporal
variations of the slope parameter. It should, however, be noted
that there is a lower limit in defining τ , as the noise of the
slope function σ′(40, t) increases with a decreasing number of
measurements. Fig. 5 shows the result of setting the τ value to 1
and 12 weeks, respectively. By setting τ to one week, seasonal
variations of the slope are well captured. However, the resulting
estimate appears very noisy. Setting τ to 12 weeks results in a
smooth estimate which reflects the general vegetation cycle but
this eliminates a considerable part of the variation. To estimate
the magnitude of the error caused by different settings of τ , we
calculate the relative noise of the slope by comparing it with the
averaged series of σ′(40, τ)

ε =

√

√

√

√

1

N

N
∑

i=1

(σ′
i(40, τ) − σ′

i(40, τ))2 (12)

where σ′(40, τ) is the slope at 40◦ and σ′(40, τ) is the smoothed
series of σ′(40, τ), generated by using a moving average win-
dow of one month. Fig. 6 shows how the relative noise of
slope function decreases by considering larger τ values. Setting
τ > 10 results in more stable estimates of the slope.

To overcome this caveat and have a tradeoff between a noisy
but sensitive and a stable but less responsive σ′, a method
similar to Monte Carlo (MC) simulation [50] is employed for
the slope parameter estimation. It is, in general, assumed that,
for a 50-km resolution, the vegetation change is not globally
remarkable in less than a two-week period, and the seasonal
vegetation change does not take longer than 12 weeks. In this
way, σ′(40) is determined as the mean of simulated σ′(40, τ)
values given a large quasi-random number of τ ranging between
2 and 12 weeks as input of the simulation

σ′(40) =
1

M

M
∑

i=1

σ′(40, τi) (13)

Fig. 6. Noise of slope function decreases by using the larger time-window
lengths.

where M is the number of the evaluations in the MC simulation.
The same method used for the slope calculation is applied for
the determination of the curvature σ′′(40), the second derivative
of σ0(θ) at 40◦

σ′′(40) =
1

M

M
∑

i=1

σ′′(40, τi). (14)

Finally, instead of using empirical functions introduced in
WARP4, a cubic spline interpolation is performed to obtain the
slope and curvature functions σ′(40, t) and σ′′(40, t). Fig. 7
shows the new slope function calculated for a WARP5 grid
point nearest to the location shown in Fig. 3 in Mali, Africa.
As another example, in Fig. 8, the slope functions in WARP5
and WARP4 are compared for a grid point located in Kansas,
U.S. (37◦42′27′′N, 101◦55′19′′W). The double peaks in the
slope function of WARP5, caused in this case by the farming
activities in the region, could not be detected by the old method.
Such rapid variations of the vegetation canopy within a year
can also be observed in vegetation index data. Using the new
method, a more accurate fit of the slope function is established,
particularly when the biomass reaches its maximum maturity.
Fig. 9 shows the time of year when the slope function reaches
its highest value in two different algorithms. In some instances,
there is a more than ten-day difference in the estimation of the
maximum slope.

D. Dry and Wet Reference Determination

The TU-Wien model is essentially a change-detection
method that relates σ0(40, t) to the lowest and highest values
of σ0(40) that have ever been recorded. The lowest and highest
values are supposed to be references of the driest and the
wettest conditions of soil surface. A significant step before the
determination of the dry/wet references is removing outliers in
the σ0(40) time series. This should be done cautiously to avoid
taking out the valid measurements. The outliers in the σ0(40)
distribution are representing faulty data because of systematic
errors like instrument malfunctioning or situations where the
algorithm might not be valid. Such outliers are detected in two
individual phases during the calculation of dry/wet references.
In the first step, values greater than three interquartile distances
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Fig. 7. WARP5 monthly slope values at 40◦ and respective slope function.

Fig. 8. Slope functions calculated in WARP4 and WARP5 compared with the
averaged EVI.

from the mean are removed from the σ0(40) distribution.
After separating extreme low and high values in the σ0(40)
distribution, the outlier removal procedure is performed once
again to remove outliers greater than 1.5 interquartile distances
from the mean, in both groups of the extreme low and high
observations.

The backscatter coefficients under dry and wet conditions
are estimated by taking an average of the extreme lowest and
highest measurements. In WARP4, the number of observations,
which are used for the averaging of the extreme measurements,
is kept constant, ignoring the regional differences in the noise
level. In WARP5, the extreme low values in σ0(θdry) and the
extreme high values in σ0(θwet) distributions are separated with
respect to an explicit uncertainty range, defined as a 95% two-
sided confidence interval of the measurements. The confidence

interval of the extreme low and high values is obtained by
considering the noise of σ0(θdry) and σ0(θwet)

Confidence Interval = ±1.96 ×
(

Noise of σ0(θ)
)

. (15)

The value 1.96 represents the 97.5 percentile of the standard
normal distribution, which is often rounded to 2 for simplic-
ity. Consequently, the mean values of the separated extreme
observations are considered as dry and wet references at the
presumed crossover angles

C0
dry =

1

Nlower

Nlower
∑

i=1

σ0
i (θdry) (16)

C0
wet =

1

Nupper

Nupper
∑

i=1

σ0
i (θwet) (17)

where Nlower and Nupper are the numbers of low and high
extreme values in the σ0(θdry) and σ0(θwet) distributions,
respectively.

Knowing C0
dry and C0

wet and considering (2), dry and wet
references at 40◦ are obtained as follows:

σ0
dry(40, t) = C0

dry − σ′(40, t)(θdry − 40)

−
1

2
σ′′(40, t)(θdry − 40)2 (18)

σ0
wet(40, t) = C0

wet − σ′(40, t)(θwet − 40)

−
1

2
σ′′(40, t)(θwet − 40)2. (19)

Equations (18) and (19) imply that the dry and wet refer-
ences vary during the year, depending on the incidence an-
gle deviation from the dry/wet crossover angles and also the
condition of vegetation canopy, which is reflected in the slope
and curvature. This comprises a vegetation correction in soil
moisture estimation if the crossover angles are chosen correctly.
In WARP algorithm, crossover angles are set to θwet = 40◦

and θdry = 25◦. This generates a constant wet reference but a
dynamic dry reference. Fig. 10 shows the dry/wet references
calculated in WARP5 together with the cumulative distribution
of σ0(40) for a grid point in Spain.

In WARP5, a new empirical bias-correction factor based on
sensitivity (σ0

wet − σ0
dry) is applied to σ0

wet(40) values in areas
where the saturation condition is probably never observed,
which is identified by the external climate data [51]. In such
areas, σ0

wet(40) values are raised until the sensitivity reaches
to at least 5 dB. Although the new correction factor provides
a more spatially uniform wet correction, it is still an interim
solution like the earlier method.

E. Noise Model

The degree of accuracy and reliability of the soil moisture
product, as output of the WARP processor, depends on the
retrieval algorithm functionality in addition to the noise of
the scatterometer observations. In WARP5, parallel to the soil
moisture retrieval algorithm, an error analysis is carried out to
determine the uncertainties associated with the measurements
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Fig. 9. Time of the year when the slope parameter reaches its maximum value across the Sahelian zone in Africa.

Fig. 10. Cumulative distribution of the normalized backscatter and determi-
nation of the dry/wet references.

and the model parameters. The noise model is initialized with
the azimuthal noise, which is calculated using (10), and propa-
gated through the retrieval algorithm. Using such an error prop-
agation procedure, the uncertainties in the measured variables
are carried over to determine the final surface soil moisture
noise εΘs. The following approximation of an error propagation
equation [52] is used throughout the processing steps:

ε2
Θs ≈

n
∑

i=1

(

∂f

∂pi

)2

· ε2
pi

(20)

where Θs = f(p1, . . . , pn) and εpi
is the estimated noise of the

model parameter pi, assuming that the parameters in the model
are uncorrelated.

The noise of soil moisture retrieved from the scatterometer
data comprises errors coming from the instrument, azimuthal
anisotropy, speckle, as well as the uncertainties associated with
the model parameters. In the TU-Wien noise model, a range of
possible error sources are taken into account. There are a variety
of factors influencing the noise of relative soil moisture that can
be categorized as variables depending on the time of year (sen-
sitivity and noise of slope and curvature parameters), invariable
in time (ESD), and parameters dependent on data acquisition,
including σ0 and the extent of incidence angle deviation from

the reference incidence angle. Fig. 11 shows the global maps
of ESD after azimuthal correction, sensitivity, and the averaged
value of the estimated soil moisture noise. The estimated soil
moisture noise identifies areas where the algorithm does not
work properly. This includes areas with dense vegetation cover,
sand deserts, coastal areas, water bodies, areas covered with
permanent snow or ice, and areas with complex topography.

One should bear in mind that the WARP5 noise model is
able to estimate the entire errors related to soil moisture if the
basic assumptions in the retrieval algorithm are valid. However,
some nonsystematic error sources resulting from snow cover
or frozen surface remain unpredictable. Such errors cannot be
detected with the noise model and should be carefully flagged
or masked using some external data sets.

V. EVALUATION OF WARP5

To evaluate the impact of the model changes on the soil
moisture estimates, we compare the derived soil moisture with
the in situ soil moisture observations from the Mesonet network
located in Oklahoma, U.S., and with the global reanalysis soil
moisture data from the ERA-Interim project.

A. Comparison With In Situ Soil Moisture Observations

1) Study Area: Oklahoma state is located in the south cen-
tral region of the U.S. covering an area of 181 196 km2. Forests
cover 24% of the area, and a broad band of prairie and steppe
shelter expansive ecosystems in the state’s central and western
portions, although cropland has largely replaced native grasses.
Fig. 12(a) shows the region’s land cover [53]. Oklahoma is
situated between the Great Plains and the Ozark Plateau in
the Gulf of Mexico watershed, sloping from the high plains in
the west to the southeastern low wetlands. The highest peak is
Black Mesa (1516 m above sea level), located in the northwest
corner in the Oklahoma Panhandle, and the state’s lowest point
is on the Little River near its far southeastern boundary (88 m
above sea level).

Oklahoma is placed in a temperate region with a continental
climate. Because of its position between zones of differing
prevailing temperature and winds, weather patterns within the
state can vary widely between relatively short distances. The
southern and eastern portions of the state are influenced heavily
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Fig. 11. (a) ESD of backscatter. (b) Sensitivity (σ0
wet − σ

0
dry

). (c) Average of the estimated soil moisture noise.
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Fig. 12. (a) Oklahoma state’s land cover [53]. (b) Correlation coefficients
between WARP5 soil moisture data and in situ observations. (c) Difference of
the correlation coefficients obtained from comparing WARP4 and WARP5 data
with in situ observations.

by warm and humid air moving northward from the Gulf of
Mexico but transitions to a semiarid zone in the western parts
and the high plains of the Panhandle are less frequently affected
by southern moisture. Precipitation and temperature fall from
east to west accordingly. The southeast areas have an annual av-
erage temperature of 17 ◦C and an annual rainfall of 1420 mm,
while in areas of the Panhandle, the average temperature is
14 ◦C, and annual rainfall is under 430 mm. In the Oklahoma

region, summers are long and usually quite hot. Winters are
shorter and less rigorous than those of the more northern states.
Periods of extreme cold are infrequent, and those lasting more
than a few days are rare [54].

2) Mesonet Network: The Oklahoma Mesonet is a network
of 127 automated meteorological monitoring sites including
soil moisture sensing devices [55]. Stations are distributed
across Oklahoma with at least one station in every county
providing real-time data. The soil moisture sensors installed at
Oklahoma Mesonet sites are heat dissipation sensors manufac-
tured by Campbell Scientific known as 229-L and deployed at
four different depths (5, 25, 60, and 75 cm below the surface).
Data are collected every 30 min, and a series of automated and
manual processes performs a quality control and convert the
raw data into daily average values. The 229-L sensors measure
a temperature difference, which is the change in sensor tem-
perature after a heat pulse has been introduced [56]. Because
the specific heat and thermal conductivity of water are different
from that of the porous ceramic matrix, the magnitude of heat
dissipation varies with varying contents of soil water. Thus,
a constant interval of heating leads to different temperature
rises depending upon the water content of the soil. The soil
water content depends strongly on soil texture while soil matric
potential is exponentially related to soil wetness. Therefore, a
normalized parameter of the sensor response called fractional
water index (FWI) is used to measure soil moisture dynamics.
FWI is a unitless value ranging from zero for very dry soil to
one for soil at field capacity. FWI is a linear quantity, which is
not limited by varying soil texture at each site [57].

3) Results of Comparison: In this paper, we used the
5-cm-layer FWI measurements in a period of three years
(2004–2006). In situ measurements are fairly accurate but they
are point measurements. Since soil moisture has an extreme
spatial variability behavior at small scale, it is very difficult to
estimate catchment average soil moisture from such point mea-
surements [58]. Therefore, a comparison of in situ observations
with scatterometer data can be reasonable only if the in situ

data are linked to the atmospheric-forcing-related component of
soil moisture at regional scale. Fig. 12(b) shows the correlation
coefficients between in situ and WARP5 soil moisture data. As
it is expected, lower correlation coefficients are observable in
irrigated cropland areas, where point measurements usually do
not follow the regional averages. In general, the comparison of
in situ data with WARP5 and WARP4 soil moisture measure-
ments indicates remarkable improvements in soil moisture es-
timation using the new algorithm. The difference in correlation
coefficients in some stations is up to 0.1 [Fig. 12(c)].

B. Comparison With ERA-Interim Reanalysis Data Set

Using modeled soil moisture to evaluate satellite observa-
tions is problematic. Robock et al. [59] noted that the agreement
of both the amplitude and the interannual variation of soil
moisture between 30 different atmospheric general circulation
models was poor. However, strengths and weaknesses of the
modeled and observed data sets are well understood, and it
should be possible to draw “intelligent conclusions” in each
case. In addition, the intention here was not to determine the
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Fig. 13. (a) Correlation coefficients (R) between WARP5 and ERA-Interim soil moisture data. (b) Difference of correlation coefficients between ERA-Interim
and WARP5 compared to the correlation between ERA-Interim and WARP4.

absolute accuracy of the scatterometer soil moisture data but to
evaluate how changes in the retrieval improve the soil moisture
estimation. Nevertheless, interpretation of the results has to be
done carefully. While an improvement in the correlation be-
tween WARP5 and ERA-Interim soil moisture compared to the
correlations observed between WARP4 and ERA-Interim does
not necessarily indicate a more accurate soil moisture retrieval,
a degradation does not mean that the retrieval is less accurate.

ERA-Interim is based on the ECMWF Integrated Forecast
Model, a global numerical weather prediction model. The data
set used in this paper covers the entire lifetime of the ERS
satellites and is an advanced version of the widely used ERA-
40 reanalysis data set [60]. ERA-Interim uses mostly the sets
of observations acquired for ERA-40, supplemented by data
for later years from ECMWF’s operational archive. The data
have a spatial resolution of 50 km. Land surface processes are
described by the Tiled ECMWF Scheme for Surface Exchanges
over Land [61], [62]. Soil moisture is analyzed everyday at 00,
06, 12, and 18 Coordinated Universal Time (UTC) using an
optimum interpolation scheme of screen-level observations. To

Fig. 14. Correlation between WARP5 and ERA-Interim soil moisture data
increases clearly by decreasing the estimated soil moisture retrieval noise
excluding the higher latitudes.
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Fig. 15. Time series of WARP4, WARP5, and ERA-Interim soil moisture measurements.

facilitate the comparison, each data set has been collocated to a
regular 0.25◦ grid using a nearest neighbor resampling method,
and satellite observations have been pooled into six hourly files.
Observations were masked if one of the data sets indicated
missing observations or if the ERA-Interim reanalysis indicated
freezing or snow-covered conditions. Fig. 13(a) shows the
correlation between the modeled and satellite-observed soil
moisture (WARP5), and Fig. 13(b) shows areas where the
correlation coefficients are improved using the new algorithm.
In general, the correlation is positive over large parts of the
land surface, with maximum values around 0.9. At 85% of
the land points, the correlation is significant at the 0.05 level,
at 8% of the land points, soil moisture is not correlated sig-
nificantly, and at 7%, the correlation is negative at the 0.05
confidence level according to a t-test. The spatial distribution
of the correlation clearly reflects zonal climate patterns. As
expected, the correlation is high in areas characterized by a
strong seasonal soil moisture cycle (for example, in Monsoon
areas). Over deserts, the correlation becomes negative. This
problem has also been reported by Wagner et al. [24] and can be
attributed to a shortcoming in the satellite retrieval method. The
maps also exhibit some unexpected features. Over Europe, the
correlation is comparably high. Similarly, the correlation is high
over Southeast China which is supposed to be characterized by
a low sensitivity of the microwave signal to soil moisture due to
a high amount of above-ground biomass. The high correlations
over Spain are specifically encouraging. The climate has a wet
winter and a dry summer. Consequently, soil moisture and veg-
etation behave quasi-anticyclically, while in the other climate
types, vegetation and soil moisture are often highly correlated.
Under the latter conditions, imperfections in the backscatter
model may be hidden because vegetation may act as a proxy
indicator for soil moisture or vice versa. Over Spain, such
imperfections of the retrieval method would yield inconsistent
results. Some part of the discrepancy between the modeled
and SCAT data can be described by the estimated retrieval
noise. Fig. 14 shows how the correlation between ERA-Interim
and WARP5 data decreases by increasing the retrieval noise in
lower latitudes.

Fig. 16. Northwestern China. Higher correlation between ERA-Interim and
WARP5 is regionally observable compared to the correlation between ERA-
Interim and WARP4.

Fig. 15 shows an example of how the new processing scheme
works in practice in an area affected by strong azimuthal effects.
This is a soil moisture time series over northwestern China, an
area heavily affected by azimuthal viewing effects due to large-
scale farming activities [47]. These effects are most clearly
visible during winter. During this time, the soil is frozen, and
temperatures are well below 0 ◦C. For the scatterometer the
frozen soil appears comparable to a completely dry soil. The
variation visible in the soil moisture signal is therefore com-
pletely artificial, caused by azimuthal anisotropies. In WARP4,
processing this variation can make up to 40%. In WARP5, the
effect is substantially lowered to a value of 10%. Also, during
summer, the improved functioning of the retrieval is confirmed
by a better fit of satellite observations to modeled soil moisture.
Consequently, the correlation coefficients in this region increase
up to more than 0.2 (Fig. 16). The new processing also leads to
spatially more consistent soil moisture estimates. Fig. 17 shows
an example over the southeastern parts of the U.S. Over this
area, a biased estimation of the wet reference leads to too dry
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Fig. 17. Southeastern U.S. Comparison of soil moisture data sets as an example of improvement in soil moisture estimation with the new algorithm WARP5.

Fig. 18. Central Europe. Comparison of WARP4 and WARP5 soil moisture data.

soil moisture estimates compared to the adjacent regions. The
soil moisture patterns are spatially more consistent and compare
well to the modeled soil moisture.

VI. SUMMARY AND OUTLOOK

In this paper, we introduced an enhanced algorithm for the
derivation of the relative soil moisture from scatterometer data.
We have addressed some limitations of the earlier processing
algorithm WARP4 and proposed a new methodology to im-
prove the TU-Wien model parameterization. The improvements
gained by the new algorithm result in a more uniform perfor-
mance of the model and, consequently, a spatially consistent
soil moisture product with a better resolution (Fig. 18). The
artificial variations in soil moisture caused by the azimuthal ef-
fects are effectively weakened through the azimuthal correction
method. The MC simulation performed in the new algorithm
made it possible to approach to an optimal time-window length
for slope parameter calculations. A more accurate and sensitive
slope function is succeeded by the new formulation of the slope.
This is important as the seasonal vegetation dynamics is the

most important parameter in the normalization of the backscat-
tered signal and is also essential for the vegetation correction
procedure. The WARP5 error analysis not only provides quality
information about the product but also helps to improve the
calculation of model parameters during the retrieval process.
Dry and wet references, determined based on the noise of
signal, approximate truthful extreme events and therefore re-
sult in spatially uniform references for scaling normalized
backscatter. The comparison of satellite data with Mesonet
in situ observations and ERA-Interim modeled data confirms
the improvements made in the new algorithm particularly in
regions characterized with high azimuthal noise.

Although the new method yields several significant improve-
ments, the results show that more work is required on soil mois-
ture retrieval over deserts to understand the complex backscatter
mechanism in such regions. The determination of the right
dry/wet crossover angles is important and remains to be fully
investigated as they impact considerably the calculation of the
dry/wet references as well as the vegetation correction proce-
dure. More work is also needed for the correction of wet refer-
ences in the areas where soil never reaches the saturation point.
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