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Te sparrow search algorithm (SSA) is a novel swarm intelligence optimization algorithm. It has a fast convergence speed and
strong global search ability. However, SSA also has many shortcomings, such as the unstable quality of the initial population, easy
to fall into the local optimal solution, and the diversity of the population decreases with the iterative process. In order to solve these
problems, this paper proposes an improved sparrow search algorithm (ISSA). ISSA uses Chebyshev chaotic map and elite
opposition-based learning strategy to initialize the population and improve the quality of the initial population. In the process of
producer location update, dynamic weight factor and Levy fight strategy are introduced to avoid falling into a local optimal
solution. Te mutation strategy is applied to the scrounger location update process, and the mutation operation is performed on
individuals to increase the diversity of the population. In order to verify the feasibility and efectiveness of ISSA, it is tested on 23
benchmark functions. Te results show that compared with other seven algorithms, ISSA has higher convergence accuracy, faster
convergence speed, and stronger stability. Finally, ISSA is used to optimize the sound feld of high-intensity focused ultrasound
(HIFU). Te results show that ISSA can efectively improve the focusing performance and reduce the infuence of sound feld
sidelobe, which is of great beneft for HIFU treatment.

1. Introduction

Optimization methods are widely used in many felds, such
as signal processing [1], image processing [2], and machine
learning [3]. However, a large number of problems en-
countered in real life are very complex, and it is difcult to
fnd the global optimal solution. Te meta-heuristic algo-
rithm has attracted the attention of researchers because of its
simplicity, easy implementation, independent of specifc
problems, and avoiding falling into local optimal solutions.
Classic meta-heuristic algorithms include the genetic algo-
rithm (GA) [4], particle swarm optimization (PSO) [5], grey
wolf optimizer (GWO) [6], and whale optimization algo-
rithm (WOA) [7]. Tese algorithms have been applied to
many optimization problems and show excellent perfor-
mance. In recent years, more and more meta-heuristic al-
gorithms have been proposed, such as the moth search
algorithm (MSA) [8], harris hawks optimization (HHO) [9],

sparrow search algorithm (SSA) [10], slime mould algorithm
(SMA) [11], social network search (SNS) [12], and fusion-
fssion optimization (FuFiO) [13].

Te sparrow search algorithm (SSA) is a swarm in-
telligence optimization algorithm proposed by Xue and Shen
in 2020 and inspired by foraging and antipredation be-
haviors of sparrows [10]. It has been proved that SSA has
faster convergence speed and better performance than the
classical meta-heuristic algorithms PSO and GWO [10].
Among the meta-heuristic algorithms proposed in recent
years, SSA has received high attention and has been applied
to many types of engineering problems [14–16]. Terefore,
we choose SSA for research. Compared with other algo-
rithms, SSA has some advantages in convergence speed and
global search ability. Nevertheless, when solving complex
problems, the performance of SSA is greatly afected by the
initial population, and the diversity of the population will
decrease signifcantly with the iterative process [17]. In
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addition, in the optimization process, the convergence ac-
curacy of SSA needs to be improved, and the ability to jump
out of the local optimal solution needs to be enhanced.

Many scholars have made improvements to SSA. Lyu
et al. [18] use the chaotic map to initialize the population,
which ensures the quality of the initial solution and im-
proves the diversity of the initial population. However, this
method is stochastic and does not make full use of the
information carried by high-quality individuals in the initial
population. Song et al. [19] introduce nonlinear decreasing
weight to improve the ability of global exploration and local
exploitation, but this method cannot improve the ability to
jump out of the local optimal solution. Zhang et al. [20]
combine the sine cosine algorithm with SSA to help SSA
jump out of the local optimal solution, but this method is
stochastic, and if the solution space is not well selected, it still
cannot jump out of the local optimal solution.

In order to overcome the above shortcomings of SSA, an
improved sparrow search algorithm (ISSA) is proposed in
this paper. In the initial population stage, ISSA uses Che-
byshev chaotic map to improve the diversity of the pop-
ulation and uses an elite opposition-based learning strategy
to produce a high-quality population. When updating the
producer’s location, the dynamic weight factor is introduced
to balance the producer’s ability of global exploration and
local exploitation, and the Levy fight strategy is used to
expand the search space to avoid falling into the local op-
timal solution. Te mutation strategy is used to update the
scrounger’s position, guide individuals to approach the
optimal solution, and improve population diversity and
global search ability.

High-intensity focused ultrasound (HIFU) is a high
technology for the treatment of tumors. HIFU has been
initially applied to the clinical treatment of soft tissue tumors
such as breast cancer and uterine leiomyoma by virtue of its
advantages of minimally invasive and noninvasive, less
complications, and repeatable treatment [21]. Te principle
of HIFU treatment can be simply summarized as follows: the
low-energy ultrasound emitted by each array element of
focused ultrasound transducer passes through skin, blood,
bone, and other tissues and converges in the target area.
Under the thermal, mechanical, and cavitation efects of
ultrasound, the tumor tissue in the target area heats up
rapidly, and thermal coagulation necrosis occurs, thus losing
the ability of proliferation, infltration, and metastasis [22].
Te therapeutic efect of HIFU depends on the focusing
accuracy and temperature. In HIFU sound feld, the exis-
tence of acoustic sidelobe will reduce the focusing
performance.

Studies by many scholars have shown that by optimizing
the sound feld of focused ultrasound and suppressing the
acoustic sidelobe, the focusing performance and the ther-
apeutic efect of focused ultrasound can be improved. Wang
et al. [23] proposed an objective function for optimizing the
sound feld, but the problem of the maximum or minimum
value of the objective function was not solved.Terefore, this
paper uses ISSA to solve the maximum value of the objective
function to optimize HIFU sound feld. Te main contri-
butions of this paper are as follows:

(i) SSA is improved from the perspective of elite in-
dividuals, initial population, and search space

(ii) ISSA is verifed by Wilcoxon’s rank-sum test and
time complexity analysis

(iii) ISSA is used to optimize the HIFU sound feld and
suppress the acoustic sidelobe

Te rest of this paper is organized as follows. Section 2
outlines the key steps of SSA. Section 3 introduces the
proposed ISSA in detail. Section 4 describes the HIFU sound
feld models. Section 5 introduces the simulation experiment
and results. Section 6 summarizes the work of this paper and
points out the next research direction.

2. Model of the SSA

Te SSA is a swarm intelligence optimization algorithm
based on foraging and antipredation behaviors of sparrows.
In SSA, individuals in sparrow population are divided into
three diferent types: producer, scrounger, and scouter. Te
producers have high energy reserves, strong exploration
ability, and broad exploration space and are responsible for
fnding foraging areas with rich food for the whole pop-
ulation. When the sparrow detects the predator, the pro-
ducers need to lead other individuals to a safe area to avoid
the predator’s attack. Te location update equation of the
producers is as follows:

Xi,j
t+1

�

Xi,j
t

· exp
− i

α · Tmax
 , R2 < ST,

Xi,j
t

+ Q · L, R2 ≥ ST,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where t represents the current number of iterations, Xi,j

represents the position of the ith sparrow on the jth di-
mension (j � 1, 2, . . . , dim), α ∈ (0, 1] is a random number,
Tmax represents the maximum number of iterations,
R2 ∈ [0, 1] and ST ∈ [0.5, 1] represent the alarm value and
safety threshold, respectively, Q is a random number
obeying the normal distribution, L is a 1 × dim row vector,
and all elements in it are 1.

Te scroungers always follow the producers to obtain
high-quality food and increase their energy reserves. Some
scroungers monitor the producers and compete with them
for food. When the energy reserve of the scroungers is low,
they will fy away from the population and look for food by
themselves to survive. Te location update equation of the
scroungers is as follows:

Xi,j
t+1

�

Q · exp
Xworst

t
− Xi,j

t

i
2

⎛⎝ ⎞⎠, i> n/2,

XP
t+1

+ Xi,j
t

− XP
t+1



 · A
+

· L, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

where Xworst
t is the current global worst position, n is the

number of individuals in the population, XP
t+1 is the global

best position found by the producers, A is a 1 × dim row
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vector, the elements in it are randomly assigned 1 or − 1, and
A+ � AT(AAT)− 1 represents the MP inverse of A.

In the sparrow population, some individuals play the
role of the scouter. Tese individuals can detect the threat
posed by predators and send out alerts to other individuals
to avoid. In the simulation experiment, it is assumed that
such individuals account for 10% to 20% of the total pop-
ulation, and their initial positions are randomly assigned.
Te location update equation of the scouters is as follows:

Xi,j
t+1

�

Xbest
t

+ β · Xi,j
t

− Xbest
t



, fi >fg,

Xi,j
t

+ K ·
Xi,j

t
− Xworst

t




fi − fw(  + ε
⎛⎝ ⎞⎠, fi � fg,
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⎪⎪⎪⎪⎪⎪⎩

(3)

where Xbest
t is the current global optimal location; β, as the

step size control factor, is a random number that obeys the
normal distribution with mean value of 0 and variance of 1;
K ∈ [− 1, 1] is a random number; fi is the ftness value of the
current individual (objective function value); fg and fw

represent the current global optimal and worst ftness values,
respectively; ε is a very small number so as to avoid de-
nominator being 0.

3. Model of the ISSA

3.1. Chebyshev Chaotic Map and Elite Opposition-Based
Learning Strategy. In swarm intelligence optimization al-
gorithm, the quality of initial population directly afects the
convergence performance of the algorithm. In SSA, the
initial population is generated randomly, which makes the
distribution of the initial population uneven and the quality
unstable, and reduces the convergence accuracy and con-
vergence speed. Chaotic mapping has the characteristics of
randomness, ergodicity, and regularity. In recent years, it has
been used in swarm intelligence algorithm to improve the
quality of the initial population. Commonly used chaotic
maps include Tent chaotic map [24], Kent chaotic map [25],
and Logistic chaotic map [26]. In this paper, Chebyshev
chaotic map is used to initialize the population. Compared
with the above chaotic mapping, Chebyshev chaotic map is
simpler, insensitive to the initial value, and the mapping
results are more evenly distributed. Chebyshev chaotic map
equation is as follows:

x
t+1

� cos t cos− 1
x

t
  , (4)

where x1 ∈ [0, 1] is a random number. After obtaining the
Chebyshev chaotic sequence, the initial population is gen-
erated by the following equation:

Xi,j
t+1

� lbj + ubj − lbj  × x
t
, (5)

where lbj and ubj represent the lower and upper boundary of
the jth dimension of the search space, respectively.

Te elite opposition-based learning strategy (EOLS) is
used to improve the quality of the initial population [27]. In
the sparrow population, there are some elite individuals.

Whether it is the ability to search or resist the enemy, elite
individuals are better than other individuals. Te basic idea
of the EOLS is to use the information carried by elite in-
dividuals as much as possible to generate the initial pop-
ulation, so as to improve the quality of the population, enrich
the diversity of the population, and avoid the algorithm
falling into the local optimal solution.

Generally speaking, the elite individuals are individuals
with small ftness value in the population. After obtaining
the initial population, the individuals are sorted according to
the ftness value, and several individuals with small ftness
value are selected to form the elite group. For each elite
individual in the elite group, its elite opposition can be
calculated by the following equation:

Xi,j � μ lbj + ubj  − Xi,j, (6)

where μ ∈ [0, 1] is a random number, and lbj and ubj

represents the lower and upper boundary of the individual in
the initial population in the jth dimension of the current
search space, respectively. After the elite opposition set is
obtained by (6), the initial population is combined with the
set, the ftness values of all individuals are calculated again,
and n individuals with small ftness values are selected to
form the real initial population.

3.2. Dynamic Weight Factor and Levy Flight Strategy. In the
sparrow population, the producers are responsible for ex-
ploring and exploiting the search space and looking for areas
with rich food resources. Terefore, the producers need to
adopt fexible strategies to balance the ability of global ex-
ploration and local exploitation. In SSA, it can be seen from
(1) that the position update weight of the producers is
unchanged. In the later stage of iteration, the producers still
use a large step for exploitation, which greatly reduces the
ability of local exploitation. Tis paper solves this problem
by introducing dynamic weight factor, which is expressed as
follows:

Xi,j
t+1

�

ω · Xi,j
t

· exp
− i

α · Tmax
 , R2 < ST,

ω · Xi,j
t

+ Q · L, R2 ≥ ST,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

ω �
Tmax − t + 1

Tmax
 

t

+ δ, (8)

where δ ∈ [0, 0.1] is a random number, which is used to
avoid the dynamic weight factor ω being too small in the
later stage of iteration. It can be seen from (8) that the
dynamic weight factor ω is large at the beginning of the
iteration but decreases sharply with the iterative process.
Dynamic weight factor ω ensures that the producers can
perform global exploration with a larger step size at the
initial stage of the iteration and perform local exploitation
with a smaller step size at the later stage of the iteration,
which balances the ability of global exploration and local
exploitation.
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If the producers have fallen into the local optimal so-
lution in the early stage of iteration, exploitation can only be
performed near the local optimal solution in the later stage
of iteration. In order to avoid such a situation, this paper
adopts the Levy fight strategy to help the producers still have
the opportunity to jump out of the local optimal solution in
the later stage of iteration. Levy fight is a non-Gaussian
random process, and its step size obeys Levy distribution. It
is very difcult to calculate the step size of Levy fight, so the
Mantegna algorithm [28] is often used to simulate, and its
expression is as follows:

s �
u

|v|
1/β , (9)

where u ∼ N(0, σu
2), v ∼ N(0, σv

2), σu and σv is defned as

σu �
Γ(1 + β)sin (πβ/2)

Γ((1 + β)/2)2(β− 1)/2 

1/β

,

σv � 1,

(10)

where Γ is the standard gamma function. β ∈ (0, 2) is
a random number.

After obtaining the step s of Levy fight, the position of
the producers is updated according to the following
equation:


Xi

t
� Xi

t
+ 0.01s Xi

t
− Xb

t
 , (11)

where Xi
t is the location of the producers calculated by (7).

Xb
t is the current global optimal location. According to the

characteristics of Levy distribution, Levy fight has many
small steps, which can enhance the local exploitation ability
of the producers. Occasionally, there are large steps to help
the producers jump out of the local optimal solution and
enhance the global exploration ability of the producers. Te
dynamic weight factor and Levy fight strategy complement
each other, improve the efciency of the producers, reduce
the possibility of the producers falling into the local optimal
solution, and better balance the ability of local exploitation
and global exploration.

3.3. Mutation Strategy. In the sparrow population, the
scroungers will monitor the behavior of the producers.
When the producers fnd food, they compete with them to
improve their energy reserves. Some of the scroungers with
low energy reserves will fy away from the population and
look for foraging areas alone. In SSA, the direction of the
scroungers fying away from the population is determined by

Xworst
t and Xi,j

t (i> n/2 in (2)). Tis update method cannot
ensure that the scroungers fnd areas with rich food. In this
paper, the mutation strategy [29] shown in the following is
used to guide the fight of the scroungers and improve the
diversity of the population.

Xi,j
t+1

� Xi,j
t

+ η XP
t+1

− Xi,j
t

 , (12)

where η ∈ [0, 1] is a random number. Te previous formula
will guide the scroungers to the global optimal position
XP

t+1 and improve the probability of the scroungers fnding
high-quality food. In the simulation experiment, when
i> n/2, the frst equation in equations (2) and (12) is ran-
domly selected to update the position of the scroungers to
improve the diversity of the population.Te implementation
steps of ISSA are shown in Algorithm 1.

4. Model of the HIFU Sound Field

Common focused ultrasonic transducers can be divided into
three types: concave spherical self-focusing transducer,
acoustic lens focusing transducer, and phased array focusing
transducer. Te concave spherical self-focusing transducer
adjusts the focusing position by changing the size and
curvature of the concave spherical surface. Terefore, the
focus of this transducer is fxed, and the position of the focus
can only be changed by moving the transducer. Te acoustic
lens focusing transducer uses the lens to converge the sound
wave to the target area. Te refection and refraction of
sound waves through the lens will lose part of the energy,
and the lens itself will absorb the energy of sound waves to
generate heat. Terefore, it is necessary to select materials
with low loss and high temperature resistance. Te phased
array focusing transducer generates a sound wave with
a certain amplitude and phase by controlling each array
element and realizes one-point or multipoint focusing
according to the principle of wave interference. Compared
with the above two kinds of transducers, the focusing po-
sition and depth of phased array transducer are adjustable,
and the precision is higher. Terefore, the concave spherical
phased array transducer shown in Figure 1 is selected for
simulation in this paper.

In the simulation experiment, 256 rectangular array
elements (shown in the rectangular box in Figure 1) are
evenly arranged inside the concave sphere. Te sound
pressure at any point in the sound feld generated by the
concave spherical phased array [30] is given by the following
equation:

p(x, y, z) �
jρc

λ


N

n�1
un

Fn∆w∆h

Rn

e
− (α+jk)


RSRsinc

k xn∆w

2R
sinc

k yn∆h

2R
, (13)

where j �
���
− 1

√
represents imaginary unit. ρ represents the

density of the medium. λ represents the wavelength of the
sound wave. c represents the velocity of the sound wave in

the medium. un represents the vibration velocity of a particle
perpendicular to the surface of the array element. ∆w and ∆h

represents the length and width of the array element
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respectively. α represents the attenuation coefcient of
sound wave. k represents the wave number. R represents the
distance from any point (x, y, z) to the projection point of

the array element center (xn, yn, zn) in the xy plane. For the
calculation of other parameters, please refer to
reference [30].

Input:
N: the number of sparrows
Tmax: the total number of iterations
PD: the number of producers
SD: the number of scouters
ST: the safety value

Output:
fbest: the optimal solution
Xbest: the global optimal position

(1) Using (5) and (6) to initialize a population of N sparrows;
(2) while t≤Tmax do
(3) Calculating the ftness value of individuals;
(4) Ranking the ftness values and fnding the current best and worst individual;
(5) for i � 1: PD do
(6) Using equations (7) and (11) to update the producers’ position;
(7) end for
(8) for i � (PD + 1): N do
(9) Using (2) or (12) to update the scroungers’ position;
(10) end for
(11) for i � 1: SD do
(12) Using equation (3) to update the scouters’ position;
(13) end for
(14) for i � 1: N do
(15) if the new position is better than the previous position then
(16) Using the new position to update the previous position;
(17) end if
(18) if the new position is better than the optimal position then
(19) Using the new position to update the optimal position;
(20) end if
(21) end for
(22) t � t + 1
(23) end while
(24) return fbest, Xbest

ALGORITHM 1: Te improved sparrow search algorithm.

x

z

y

o

(xn, yn, zn)

(a)

(xn, yn, zn)

(b)

Figure 1: Concave spherical phased array transducer model: (a) side view and (b) main view.
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Equation (13) can be expressed as a matrix as follows:

P � HM · uN, (14)

M represents the number of focal points. N represents the
number of array elements. uN represents the array element
driving signal vector

uN � u1, u2, . . . , uN 
T
, (15)

HM represents the forward transmission operator of sound
feld, which is an M × N matrix

HM �

h11 h12

h21 h22

· · · h1N

· · · h2N

⋮ ⋮

hM1 hM2

⋱ ⋮

· · · hMN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

P represents the sound pressure vector of the focal point

P � p1, p2, . . . , pM 
T
. (17)

We can set the sound pressure vector of the focal point P

to the desired value. Ten, the array element driving signal
vector uN can be calculated by the following equation:

uN � HM
H

· HMHM
H

 
− 1

· P. (18)

After obtaining uN, the sound pressure at any point in
the sound feld can be calculated by equation (13).

Te above method only specifes the sound pressure
value pi(i � 1, 2, . . . , M) of each focal point, but does not
specify the phase, so each focal point is formed at the same
time. In fact, by adjusting the phase of each focal point, not
only focusing can be achieved, but the optimal focusing
efect can also be obtained. Rewrite the sound pressure
vector P as

P � p1e
jθ1 , p2e

jθ2 , . . . , pMe
jθM 

T
. (19)

Optimal focusing efect is achieved by maximizing the
sound pressure gain function

max
P

H
P

P
H

HMHM
H

 
− 1

P
. (20)

5. Experiments and Results

All simulation experiments are performed on an Intel Core
i7-11800H CPU @2.30GHz. All codes are implemented on
MATLAB R2020b.

5.1. Algorithm Performance Test. In the simulation experi-
ments, the performances of the ISSA, GA, PSO, GWO,
WOA, HHO, SSA, and SNS on 23 benchmark functions are
compared to verify the feasibility and efectiveness of ISSA.
Tese 23 benchmark functions are divided into three cat-
egories: unimodal functions, multimodal functions (both of
which have a dimension of 30), and fxed-dimension
functions. Te details are shown in Tables 1–3.

When comparing the performance of the eight algo-
rithms, in order to ensure the fairness and objectivity of the
results, the same values are set for the common parameters:
the population size n is set to 100, and themaximum number
of iterations Tmax is set to 500. In ISSA and SSA, the pro-
portion of the producers and the scroungers is set to 20%
and 80%, respectively, the proportion of the scouters is set to
20%, and the safety threshold ST is set to 0.8. In GA, the
crossover probability pc and mutation probability pm

adaptively change. In PSO, learning factor c1 � c2 � 1.5,
inertia weight wmax � 0.8, wmin � 0.4, speed vmax � 1,
vmin � − 1.

30 experiments are conducted independently on each
benchmark function, and the convergence curve of each
algorithm is drawn. Te results are shown in Figure 2. Te
minimum value, average value, and standard deviation of
each algorithm are recorded, and the results are shown in
Table 4. For the same benchmark function, the average value
represents the convergence accuracy of the algorithm, and
the standard deviation represents the stability of the
algorithm.

For unimodal functions, i.e., F1 to F7, ISSA is superior to
SSA in all indicators. For F1 to F4, ISSA can accurately fnd
the optimal value of zero, and the average and standard
deviation are also zero, indicating that the convergence
accuracy and stability of ISSA are excellent. For F2 to F4,
although SSA can also fnd the optimal value of zero, this
does not mean that SSA can fnd the optimal value every
time, because the average is not zero. Te other six algo-
rithms fail to fnd the optimal value of zero. For F5 to F7,
ISSA and SSA do not converge to the global optimal so-
lution, but ISSA converges faster. From the data in Table 4, it
can be found that on F6, the convergence accuracy and
stability of ISSA are at least two orders of magnitude higher
than those of SSA, indicating that ISSA has higher con-
vergence accuracy and better stability. On F5 and F7, the
stability of ISSA is similar to that of SSA, but the conver-
gence accuracy is at least two orders of magnitude higher
than that of SSA, indicating that when the stability is similar,
the convergence accuracy of ISSA is higher.

Table 1: Unimodal functions (dim� 30).

Functions Range Fmin

F1(x) � 
n
i�1xi

2 [− 100, 100] 0
F2(x) � 

n
i�1|xi| + 

n
i�1 |xi| [− 10, 10] 0

F3(x) � 
n
i�1(

i
j�1xj)

2 [− 100, 100] 0
F4(x) � max |xi|, 1≤ i≤ n  [− 100, 100] 0
F5(x) � 

n− 1
i�1 [100(xi+1 − xi

2)2 + (xi − 1)2] [− 30, 30] 0
F6(x) � 

n− 1
i�1 (xi + 0.5)2 [− 100, 100] 0

F7(x) � 
n
i�1ixi

4 + random(0, 1) [− 1.28, 1.28] 0
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For multimodal functions, i.e., F8 to F13, ISSA is su-
perior to SSA in most indicators. On F8, ISSA is not as stable
as SSA, but the convergence accuracy is one order of
magnitude higher than SSA, and the convergence speed is
also much faster than SSA. For F9 to F11, the performance of
ISSA is similar to that of SSA. On both F12 and F13, ISSA is
two to three orders of magnitude higher than SSA, both in
terms of convergence accuracy and stability. For the other
six algorithms, except that the GWO, WOA, HHO, and SNS
perform slightly worse than ISSA, both the GA and PSO are
far inferior to ISSA.

For fxed dimension functions, i.e., F14 to F23, due to the
low dimension, the indicators of ISSA and SSA are relatively
close. On F15 to F20, except GA, the other seven algorithms
can fnd or approach the optimal value, but ISSA is always
the most stable. On F14, SNS has the best convergence
accuracy and stability, while SSA has the worst convergence
accuracy and stability. On F21, SNS has the best convergence
accuracy and stability. On F22 and F23, ISSA has excellent
convergence accuracy and stability.

5.2. Efectiveness Analysis of Improvement Strategies.
Based on the three strategies proposed in Section 3, this
paper improves the convergence accuracy of SSA and en-
hances the convergence stability of SSA. But it is unclear
whether all three strategies worked, so verifcation is needed.
In order to compare the impact of diferent improvement
strategies on the performance of the algorithm, SSA that

only uses the Chebyshev chaotic map and elite opposition-
based learning strategy (SSA01), SSA that only adopts the
dynamic weight factor and Levy fight strategy (SSA02), SSA
that only uses mutation strategy (SSA03), and ISSA are
compared on eight test functions. Te experimental results
are shown in Figure 3 and Table 5.

As shown in Figure 3, SSA01, SSA02, and SSA03 con-
verge faster than SSA, while the convergence speed of ISSA
based on the three strategies is signifcantly improved. On
F5, F7, and F13, although ISSA did not converge to the
theoretical optimal value, the convergence speed and con-
vergence accuracy are signifcantly better than the other four
algorithms. On F2, all fve algorithms converge to the
theoretical optimal value, but with the same number of
iterations, ISSA has higher convergence accuracy; with the
same convergence accuracy, ISSA has a faster convergence
speed. On the eight test functions, the convergence speed
and convergence accuracy of SSA01, SSA02, and SSA03 are
better than SSA, but slightly inferior to ISSA, indicating that
each strategy has worked, and each strategy is very efective.

It can be seen from Table 5 that the convergence accuracy
and stability of SSA01, SSA02, and SSA03 are better than those
of SSA on most test functions, and the convergence accuracy
and stability of ISSA are also signifcantly improved. On F5,
F7, F12, and F14, although ISSA does not converge to the
theoretical optimal value, both the convergence accuracy and
the stability of the algorithm are better than SSA01, SSA02,
and SSA03, indicating that under the joint infuence of the

Table 2: Multimodal functions (dim� 30).

Functions Range Fmin

F8(x) � 
n
i�1 − xi sin(

���
|xi|


) [− 500, 500] − 418.9829 n

F9(x) � 
n
i�1[xi

2 − 10 cos (2πxi) + 10] [− 5.12, 5.12] 0
F10(x) � − 20 exp (− 0.2

���������
1/n

n
i�1xi

2


) − exp (1/n
n
i�1cos (2πxi)) + 20 + e [− 32, 32] 0

F11(x) � 1/4000
n− 1
i�1 xi

2 − 
n
i�1 cos (xi/

�
i

√
) + 1 [− 600, 600] 0

F12(x) � π/n 10 sin2 (πy1) + 
n− 1
i�1 (yi − 1)2[1 + 10 sin2 (πyi+1)] + (yn − 1)2 

[− 50, 50] 0+
n
i�1u(xi, 10, 100, 4)yi � 1 + (xi + 1)/4

u(xi, a, k, m) �

k(xi − a)
m

xi > a

0 − a<xi < a

k(− xi − a)
m

xi < − a

⎧⎪⎨

⎪⎩
F13(x) �

0.1 sin2 (3πx1) + 
n− 1
i�1 (xi − 1)2[1 + sin2 (3πxi+1)] + (xn − 1)2 · [1 + sin2 (2πxn)]  + 

n
i�1u(xi, 5, 100, 4)[− 50, 50]0

Table 3: Fixed-dimension functions.

Functions Dim Range Fmin

F14(x) � (1/500 + 
25
j�11/(j + (x1 − a1j)

6 + (x2 − a2j)6) 2 [− 65, 65] 1
F15(x) � 

11
i�1[ai − x1(bi

2 + bix2)/(bi
2 + bix3 + x4)]

2 4 [− 5, 5] 0.0003
F16(x) � 4x1

2 − 2.1x1
4 + 1/3x1

6 + x1x2 − 4x2
2 + 4x2

4 2 [− 5, 5] − 1.0316
F17(x) � (x2 − 5.1/4π2x1

2 + 5/πx1 − 6)2 + 10(1 − 1/8π)cos x1 + 10 2 [− 5, 5] 0.398
F18(x) � [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x1

2 − 14x2 + 6x1x2 + 3x2
2)] · [30 +

(2x1 − 3x2)
2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

2 [− 2, 2] 3

F19(x) � − 
4
i�1ci exp [

3
j�1aij(xj − pij)

2] 3 [0, 1] − 3.86
F20(x) � − 

4
i�1ci exp [

6
j�1aij(xj − pij)

2] 6 [0, 1] − 3.32
F21(x) � − 

5
i�1[(X − αi)(X − αi)

T + ci]
− 1 4 [0, 10] − 10.1532

F22(x) � − 
7
i�1[(X − αi)(X − αi)

T + ci]
− 1 4 [0, 10] − 10.4028

F23(x) � − 
10
i�1[(X − αi)(X − αi)

T + ci]
− 1 4 [0, 10] − 10.5363
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Figure 2: Continued.

8 Computational Intelligence and Neuroscience



three strategies, the convergence accuracy and stability of
ISSA are both improved to the greatest extent.

SSA01 adopts the Chebyshev chaotic map to improve the
diversity of the population and uses elite opposition-based
learning strategy to generate high-quality populations.
SSA02 introduces a dynamic weight factor to balance the
ability of global exploration and local exploitation and uses
the Levy fight strategy to expand the search space, avoid
falling into the local optimal solution, and improve the
convergence accuracy. SSA03 uses a mutation strategy to
perform mutation operations on individuals to increase the
diversity of the population and improve the ability to jump
out of local optimal solutions. Tis further explains the
feasibility of three strategies adopted in this paper.

5.3.Wilcoxon’sRank-SumTest. Derrac et al. [31] suggest that
statistical tests should be used when evaluating the per-
formance of an algorithm. It is not sufcient to evaluate the
performance of the algorithm only by the average and
standard deviation, and other statistical tests should also be

considered to demonstrate that the proposed improved
algorithm has signifcant improvement over existing algo-
rithms. In this paper, the Wilcoxon rank-sum test is used to
further illustrate that the performance of ISSA is indeed
signifcantly improved compared with other algorithms.
Select the null hypothesis H0: the performance of two al-
gorithms is similar, and the alternative hypothesis H1: the
performance of two algorithms is signifcantly diferent. Te
test result p is used to compare the diferences between the
two algorithms. When p< 0.05, H0 is rejected, indicating
that there is a signifcant diference in performance between
the two algorithms. When p> 0.05, H0 is accepted; that is,
the two algorithms have the same global optimization
performance.

Table 6 shows the test results of ISSA and the other seven
algorithms on 23 benchmark functions. R is the signifcance
evaluation result: “+,” “− ,” and “� ,” respectively, represent
the performance of ISSA is superior, inferior, and equivalent
to the algorithms under comparison. NAN means that it
cannot be compared; that is, the two algorithms under
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Figure 2: Convergence curves of eight algorithms on benchmark functions. (a) F1. (b) F2. (c) F3. (d) F4. (e) F5. (f ) F6. (g) F7. (h) F8. (i) F9.
(j) F10. (k) F11. (l) F12. (m) F13. (n) F14. (o) F15. (p) F16. (q) F17. (r) F18. (s) F19. (t) F20. (u) F21. (v) F22. (w) F23.
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Table 4: Minimum, average, and standard deviation of eight algorithms on benchmark functions.

Func Algorithm Fmin Avg Std

F1

GA 0.1726 0.3688 0.1058
PSO 0.1152 0.3618 0.2198
GWO 7.4055E − 43 4.2803E − 41 8.5127E − 41
WOA 2.4924E − 105 9.1573E − 97 2.7034E − 96
HHO 5.0860E − 120 3.6083E − 106 1.3799E − 105
SSA 0 0 0
ISSA 0 0 0
SNS 4.5158E − 80 3.3939E − 78 5.7930E − 78

F2

GA 1.3102 2.2009 0.3276
PSO 1.3232 3.1762 1.3121
GWO 7.9563E − 25 5.6060E − 24 4.0470E − 24
WOA 1.5696E − 64 2.1231E − 57 7.3635E − 57
HHO 2.2888E − 64 5.0350E − 56 1.4616E − 55
SSA 0 5.9657E − 246 0
ISSA 0 0 0
SNS 1.1772E − 41 1.2192E − 40 8.8551E − 41

F3

GA 35.0637 113.5643 98.2013
PSO 9.3528 31.9008 17.2877
GWO 1.0519E − 14 1.7352E − 11 6.7481E − 11
WOA 3.0453E+ 03 1.3447E+ 04 6.1948E+ 03
HHO 1.9320E − 112 1.9745E − 95 4.6188E − 95
SSA 0 1.6209E − 303 0
ISSA 0 0 0
SNS 4.2048E − 30 2.8538E − 23 7.9304E − 23

F4

GA 0.8578 4.0991 2.0845
PSO 1.0475 5.0234 2.7751
GWO 1.5166E − 11 1.4806E − 10 1.1322E − 10
WOA 6.8169E − 12 20.9694 23.8119
HHO 8.1970E − 59 1.4348E − 54 4.9994E − 54
SSA 0 9.1203E − 237 0
ISSA 0 0 0
SNS 3.1845E − 36 1.5309E − 35 1.2401E − 35

F5

GA 132.8354 328.3109 172.5915
PSO 46.0601 244.4676 309.2162
GWO 24.9588 26.1575 0.7470
WOA 26.2030 26.8192 0.2945
HHO 3.2743E − 05 0.0012 0.0016
SSA 9.8449E − 09 1.2272E − 05 2.8983E − 05
ISSA 2.5419E − 09 7.6049E − 09 1.3492E − 05
SNS 25.2683 26.1652 0.3588

F6

GA 0.2511 0.4112 0.1158
PSO 0.0927 0.3191 0.1521
GWO 1.5281E − 05 6.3023E − 05 0.1987
WOA 0.0023 0.0043 0.0017
HHO 5.8671E − 08 7.3739E − 06 1.1985E − 05
SSA 6.6045E − 11 7.0626E − 07 1.0864E − 07
ISSA 3.9263E − 13 4.8787E − 11 7.7172E − 10
SNS 4.0101E − 07 1.4531E − 05 2.8176E − 05

F7

GA 0.4491 0.8592 0.3148
PSO 0.1019 0.2901 0.1288
GWO 1.6605E − 04 1.0398E − 03 2.6688E − 04
WOA 6.5593E − 05 5.2027E − 04 8.3366E − 03
HHO 2.7958E − 06 3.7936E − 06 3.9055E − 05
SSA 8.5655E − 06 1.0812E − 04 8.7271E − 05
ISSA 9.4541E − 07 6.7345E − 06 5.4023E − 05
SNS 2.8520E − 05 4.8744E − 05 1.0430E − 04
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Table 4: Continued.

Func Algorithm Fmin Avg Std

F8

GA − 1.8296E+ 03 − 1.4652E+ 03 170.2547
PSO − 8.6206E+ 03 − 8.1473E+ 03 764.9701
GWO − 8.5730E+ 03 − 6.7798E+ 03 543.8278
WOA − 1.2569E+ 04 − 1.2524E+ 04 1.2405E+ 03
HHO − 1.2621E+ 04 − 1.2569E+ 04 627.8604
SSA − 9.6550E+ 03 − 9.2471E+ 03 661.9266
ISSA − 1.2569E+ 04 − 1.1637E+ 04 1.9303E+ 03
SNS − 9.1063E+ 03 − 8.5178E+ 03 274.8565

F9

GA 22.7386 43.8443 18.1360
PSO 35.6856 63.8049 15.2725
GWO 0 157.723 2.8713
WOA 0 0 0
HHO 0 0 0
SSA 0 0 0
ISSA 0 0 0
SNS 0 0 0

F10

GA 0.5610 1.9370 1.2596
PSO 1.7736 4.5744 3.1795
GWO 2.2204E − 14 2.8362E − 14 3.3553E − 15
WOA 8.8818E − 16 8.8818E − 16 2.4567E − 15
HHO 8.8818E − 16 8.8818E − 16 0
SSA 8.8818E − 16 8.8818E − 16 0
ISSA 8.8818E − 16 8.8818E − 16 0
SNS 8.8818E − 16 8.8818E − 16 0

F11

GA 0.0110 0.0803 0.0507
PSO 0.4939 1.3628 0.8000
GWO 0 0 0
WOA 0 0 0
HHO 0 0 0
SSA 0 0 0
ISSA 0 0 0
SNS 0 0 0

F12

GA 0.0017 0.0083 0.0157
PSO 5.4913 13.3800 4.7394
GWO 1.3595E − 06 0.0167 0.0133
WOA 1.6101E − 04 0.0013 0.0024
HHO 3.5147E − 08 1.1030E − 06 1.3409E − 06
SSA 3.6602E − 13 4.4157E-11 1.1270E − 08
ISSA 5.4643E − 17 1.9518E − 13 1.2207E − 11
SNS 1.8399E − 08 5.5631E − 08 8.9952E − 08

F13

GA 0.0367 0.0882 0.0265
PSO 0.0637 0.4392 2.0113
GWO 1.4168E − 05 0.1006 0.1266
WOA 0.0055 0.0068 0.0287
HHO 2.5137E − 08 4.0881E − 06 1.2922E − 05
SSA 4.5725E − 11 2.7827E − 09 1.1367E − 07
ISSA 1.7253E − 14 1.3480E − 12 3.0559E − 10
SNS 4.7620E − 07 0.0110 0.0401

F14

GA 0.9980 0.9980 1.1822E − 05
PSO 0.9980 2.9821 1.2826
GWO 0.9980 1.1206 1.9074
WOA 0.9980 1.1641 0.3622
HHO 0.9980 0.9983 3.4100E − 11
SSA 0.9980 14.7720 16.9265
ISSA 0.9980 1.1084 1.9682
SNS 0.9980 0.9980 0
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Table 4: Continued.

Func Algorithm Fmin Avg Std

F15

GA 9.2281E − 04 1.1875E − 03 4.9309E − 04
PSO 3.0749E − 04 1.2237E − 03 3.8690E − 04
GWO 3.0749E − 04 5.0112E − 04 6.8127E − 04
WOA 3.0772E − 04 7.1811E − 04 4.3624E − 04
HHO 3.0749E − 04 5.3561E − 04 2.3027E − 04
SSA 3.0749E − 04 3.0801E − 04 8.1578E − 07
ISSA 3.0749E − 04 3.0749E − 04 1.6916E − 08
SNS 3.0749E − 04 3.0921E − 04 1.0241E − 05

F16

GA − 1.0308 − 1.0093 0.0269
PSO − 1.0316 − 1.0314 6.7752E − 15
GWO − 1.0316 − 1.0315 1.4321E − 05
WOA − 1.0316 − 1.0315 1.5771E − 11
HHO − 1.0316 − 1.0316 3.5948E − 14
SSA − 1.0316 − 1.0315 6.6486E − 15
ISSA − 1.0316 − 1.0316 6.4539E − 16
SNS − 1.0316 − 1.0315 6.7752E − 15

F17

GA 0.3979 0.4099 0.0154
PSO 0.3979 0.3979 0
GWO 0.3979 0.3979 3.4787E − 07
WOA 0.3979 0.3979 9.4224E − 08
HHO 0.3979 0.3979 5.5899E − 10
SSA 0.3979 0.3979 0
ISSA 0.3979 0.3979 0
SNS 0.3979 0.3979 0

F18

GA 3.0191 4.2707 20.0975
PSO 3.0000 3.0000 1.9110E − 15
GWO 3.0000 3.0000 4.5137E − 10
WOA 3.0000 3.0000 7.6160E − 06
HHO 3.0000 3.0000 1.0883E − 10
SSA 3.0000 3.0000 2.0748E − 14
ISSA 3.0000 3.0000 1.1778E − 15
SNS 3.0000 3.0000 2.2296E − 14

F19

GA − 3.8125 − 1.7296 1.4953
PSO − 3.8244 − 3.8244 1.3550E − 15
GWO − 3.8244 − 3.8244 1.2697E − 06
WOA − 3.8244 − 3.8244 3.3715E − 04
HHO − 3.8244 − 3.8243 1.8163E − 04
SSA − 3.8244 − 3.8244 1.3550E − 15
ISSA − 3.8244 − 3.8244 1.3550E − 15
SNS − 3.8244 − 3.8244 1.3550E − 15

F20

GA − 3.2285 − 2.3482 0.9614
PSO − 3.3220 − 3.2625 0.0605
GWO − 3.3220 − 3.2590 0.0711
WOA − 3.3220 − 3.2532 0.0798
HHO − 3.3179 − 3.2014 0.0784
SSA − 3.3220 − 3.2507 0.0592
ISSA − 3.3220 − 3.2744 0.0592
SNS − 3.3220 − 3.2520 0.0624

F21

GA − 9.8954 − 4.4387 4.6735
PSO − 10.1532 − 2.6828 3.4455
GWO − 10.1531 − 5.0415 1.7986
WOA − 10.1532 − 9.9830 0.9307
HHO − 10.1500 − 5.0550 1.2921
SSA − 10.1532 − 10.1531 1.5634E − 04
ISSA − 10.1532 − 9.5262 1.4992
SNS − 10.1532 − 10.1531 7.1207E − 05
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comparison both fnd the global optimal solution and
cannot make a signifcant diference judgment.

It can be seen from Table 6 that only the p values of ISSA
and SSA on F3 are slightly greater than 0.05, and the other p

values are much less than 0.05. Tis indicates that the
performance of ISSA and SSA on F3 is similar, while on
other benchmark functions, the performance of ISSA is
signifcantly diferent from the other seven algorithms.Te p

values of ISSA and SSA on F1, F9 to F11, F17, and F19 are
NAN because both algorithms fnd the global optimal so-
lution. Te results of the Wilcoxon rank-sum test further
illustrate that the performance of ISSA is indeed signifcantly
improved compared with other algorithms.

5.4. Time Complexity Analysis. Suppose the number of in-
dividuals in the sparrow population is N, the dimension of
solution space is D, and the maximum number of iterations
is Tmax. Suppose the time required for initializing population
parameters is t0, the time required for generating random
numbers in each dimension is t1, the time for solving ftness
function is f(D), and the time for sorting sparrows by
ftness value is t2, and then, the time complexity of SSA in
initializing population stage is

T0 � O t0 + N t1D + f(D)(  + t2  � O[D + f(D)]. (21)

When updating the location of producers, suppose the
number of producers is PD, the time required to update the
position of each dimension according to (1) is t3, the time
required to generate random numbers Q and α is t4, and the
time to solve the ftness function is f(D). Te time com-
plexity of this stage is

T1 � O PD · t3 + t4 + t4( D + f(D)(   � O[D + f(D)].

(22)

When updating the position of scroungers, the number
of scroungers is (N − PD), the time required to update the
position of each dimension according to (2) is t5, the time to
generate the random number Q is still t4, and the time to
solve the ftness function is f(D). Te time complexity of
this stage is

T2 � O (N − PD) t5 + t4( D + f(D)(   � O[D + f(D)].

(23)

When updating the position of scouters, suppose the
number of scouters is SD, the time required to update the
position of each dimension according to (3) is t6, the time to
generate random number β and K is t7, and the time to solve
the ftness function is f(D). Te time complexity of this
stage is

T3 � O SD · t6 + t7 + t7( D + f(D)(   � O[D + f(D)].

(24)

To sum up, the time complexity of SSA is

T � T0 + Tmax T1 + T2 + T3(  � O[D + f(D)]. (25)

Now, the time complexity of ISSA is analyzed.
Suppose the time required for initializing population pa-
rameters is η0, the time required to initialize the position of
each dimension according to (4) and (5) is η1, and the time
to solve the ftness function is f(D). Suppose the proportion
of elite individuals is r, then the number of elite individuals
is rN. Suppose the time required to generate the elite in-
dividual position of each dimension according to (6) is η2,
the time to solve the ftness function is still f(D), and the
time to sort and generate the real initial population is η3.
Ten, the time complexity of this stage is

T0
′

� O η0 + N η1D + f(D)(  + rN η2D + f(D)(  + η3  � O[D + f(D)]. (26)

Table 4: Continued.

Func Algorithm Fmin Avg Std

F22

GA − 10.2468 − 3.3236 6.0573
PSO − 10.4029 − 10.3015 1.5411
GWO − 10.4029 − 10.0491 1.3432
WOA − 10.4029 − 10.0132 1.3732
HHO − 10.3999 − 5.7947 1.8339
SSA − 10.4029 − 10.4028 4.0757E − 03
ISSA − 10.4029 − 10.4027 2.0212E − 05
SNS − 10.4029 − 10.3021 1.1427E − 03

F23

GA − 10.4686 − 2.0108 3.1604
PSO − 10.5364 − 10.5181 0.6198
GWO − 10.5363 − 5.1064 1.7620
WOA − 10.5364 − 9.1405 2.6164
HHO − 10.5358 − 5.1278 1.8662
SSA − 10.5364 − 10.5363 1.6540E − 04
ISSA − 10.5364 − 10.3659 2.5198E − 04
SNS − 10.5364 − 10.3445 1.8067E − 03
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When updating the position of producers, suppose the
time required to generate the dynamic weight factor
according to (8) is η4, the time required to update the
position of each dimension according to (7) is η5, and the
time to generate random numbers Q and α is η6. Suppose the

time required to generate the Levy step according to (9) is η7,
the time required to update the position of each dimension
according to equation (12) is η8, and the time to solve the
ftness function is f(D). Ten, the time complexity of this
stage is

T1
′

� O η4 + PD · η5 + η6 + η6( D + η7 + η8D + f(D)(   � O[D + f(D)]. (27)

When updating the position of scroungers, the time
required to update the position of each dimension according
to (2) or (12) is η9, the time to generate the random
number Q is still η6, and the time to solve the ftness function
is f(D). Ten, the time complexity of this stage is

T2
′

� O (N − PD) η9 + η6( D + f(D)(   � O[D + f(D)].

(28)

Te time complexity T3
′ of updating the position of

scouters is the same as equation (24).
To sum up, the time complexity of ISSA is

T
′

� T0
′

+ Tmax T1
′

+ T2
′

+ T3
′

  � O[D + f(D)]. (29)

5.5. Performance of the ISSA in HIFU Sound Field
Optimization. Te ISSA is used to optimize HIFU sound
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Figure 3: Convergence curves of diferent improvement strategies on benchmark functions: (a) F2, (b) F5, (c) F7, (d) F9, (e) F12, (f ) F13, (g)
F14, and (h) F21.
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feld to test its performance in practical engineering prob-
lems. Without loss of generality, the optimization efects of
ISSA under symmetric focal point and asymmetric focal
point are investigated, respectively.

In the case of symmetric focal point, we set four focal
points, whose coordinates in the z direction are 100mm, and
their coordinates in the xy plane are (10, 10)mm,
(− 10, 10)mm, (− 10, − 10)mm, and (10, − 10)mm, re-
spectively. Te distribution of unoptimized sound feld and
the ISSA-optimized sound feld on the z � 100mm plane is
shown in Figure 4. On the axis of x � − 10mm, the variation
curve of sound pressure P with y is shown in Figure 5.

As shown in Figure 4, in the unoptimized sound feld,
there are obvious acoustic sidelobes between two adjacent
focal points (marked with red rectangle box in Figure 4), and
its amplitude is 94.5 Pa. After ISSA optimization, these
acoustic sidelobes have been suppressed. Te amplitude is

weakened to 1.1866E − 05 Pa, and the energy of the acoustic
wave is more concentrated to the focal points. It can be seen
from the calculation that the percentage of sound pressure
improvement is nearly 100%. Tis improvement can be
more clearly observed in Figure 5. In Figure 5, the two curves
have a very clear diference around y � 0mm, and the blue
curve is always above the red curve, which means that the
acoustic sidelobes are very obvious in the unoptimized
sound feld, while after ISSA optimization, the acoustic
sidelobes in the sound feld have been suppressed. Here, the
focal point sound pressure is set to 600 Pa, and the acoustic
sidelobe sound pressure has reached 94.5 Pa, accounting for
15.75% of the focal point. It can be seen that there is a lot of
waste of sound energy. It is very necessary to suppress the
acoustic sidelobe and improve the focal point energy.

In the case of the asymmetric focal point, we also set
four focal points. Teir coordinates in the z direction are

Table 5: Experimental results of diferent improvement strategies.

Func Algorithm F min Avg Std

F2

SSA 0 1.6886E − 318 0
SSA01 0 0 0
SSA02 0 0 0
SSA03 0 0 0
ISSA 0 0 0

F5

SSA 4.0723E − 09 4.2421E − 05 1.5023E − 05
SSA01 3.5211E − 09 3.8830E − 07 1.1986E − 05
SSA02 3.0467E − 09 1.4628E − 06 5.3375E − 06
SSA03 3.4656E − 09 1.3116E − 06 4.2906E − 06
ISSA 1.0824E − 09 9.7182E − 08 2.8898E − 06

F7

SSA 3.5673E − 06 1.6544E − 04 1.0126E − 04
SSA01 1.4294E − 06 1.1571E − 04 9.2207E − 05
SSA02 3.3467E − 06 6.7627E − 05 7.4811E − 05
SSA03 3.0225E − 06 1.5858E − 04 7.9233E − 05
ISSA 1.3805E − 06 4.4199E − 05 7.3731E − 05

F9

SSA 0 0 0
SSA01 0 0 0
SSA02 0 0 0
SSA03 0 0 0
ISSA 0 0 0

F12

SSA 2.8537E − 13 1.1162E − 11 2.8143E − 09
SSA01 1.8369E − 15 3.3307E − 13 9.0648E − 11
SSA02 3.0190E − 15 7.2377E − 12 1.9612E − 10
SSA03 3.5533E − 16 5.3059E − 15 1.8971E − 10
ISSA 2.9885E − 16 2.0635E − 13 4.9317E − 11

F13

SSA 2.0502E − 12 7.3101E − 10 1.3270E − 09
SSA01 1.8026E − 14 5.9631E − 14 2.5349E − 10
SSA02 7.8553E − 13 1.7663E − 10 2.5502E − 10
SSA03 3.1532E − 14 4.6639E − 11 2.0181E − 10
ISSA 1.1261E − 14 3.1549E − 14 1.6795E − 10

F14

SSA 0.9980 10.7632 7.2905
SSA01 0.9980 1.1187 2.7074
SSA02 0.9980 1.1158 2.8284
SSA03 0.9980 1.2208 2.7056
ISSA 0.9980 1.1002 2.1311

F21

SSA − 10.1532 − 10.1531 6.1446E − 05
SSA01 − 10.1532 − 10.1532 9.2352E − 04
SSA02 − 10.1532 − 10.1532 1.7586
SSA03 − 10.1532 − 10.1532 5.9467E − 05
ISSA − 10.1532 − 10.1532 0.9302
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200mm, and their coordinates in the xy plane are
(10, 10)mm, (− 10, 20)mm, (− 20, − 10)mm, and
(20, − 20)mm, respectively. Te distribution of the unop-
timized sound feld and the ISSA-optimized sound feld on
the z � 200mm plane is shown in Figure 6. On the axis of
x � − 20mm, the variation curve of sound pressure P with y

is shown in Figure 7.
As shown in Figure 6, in the unoptimized sound feld,

there are three obvious acoustic sidelobes (marked with a red
rectangle box in Figure 6), and their amplitudes from top to
bottom are 168.11 Pa, 163.43 Pa, and 157.43 Pa. After ISSA
optimization, these acoustic sidelobes are suppressed to

diferent degrees, and their amplitudes are weakened to
116.05 Pa, 108.67 Pa, and 121.51 Pa, respectively. Te per-
centage of sound pressure improvement is 30.97%, 33.51%,
and 30.97%, respectively. Tis improvement can be more
clearly observed in Figure 7. In Figure 7, the amplitude of the
acoustic sidelobe near y � 0mm before optimization is
168.11 Pa, accounting for 28.02% of the focal point. After
ISSA optimization, the acoustic sidelobe is weakened to
116.05 Pa, accounting for 19.34% of the focal point. Te
improvement is about 10%. Te energy of the sound feld is
more concentrated after ISSA optimization, which is very
benefcial for HIFU treatment.

Table 6: Wilcoxon’s rank-sum test.

Functions
GA PSO GWO WOA HHO SSA SNS
P R p R p R p R p R p R p R

F1 1.2118E − 12 + 1.2118E − 12 + 1.2118E − 12 + 1.2118E − 12 + 1.2118E − 12 + NAN � 1.2118E − 12 +
F2 1.2118E − 12 + 1.2118E − 12 + 1.2118E − 12 + 1.2118E − 12 + 1.2118E − 12 + 1.4552E − 04 + 1.2118E − 12 +
F3 1.2118E − 12 + 1.2118E − 12 + 1.2118E − 12 + 1.2118E − 12 + 1.2118E − 12 + 0.0815 − 1.2118E − 12 +
F4 1.2118E − 12 + 1.2118E − 12 + 1.2118E − 12 + 1.2118E − 12 + 1.2118E − 12 + 0.0014 + 1.2118E − 12 +
F5 3.0199E − 11 + 3.0199E − 11 + 3.0199E − 11 + 3.0199E − 11 + 6.7220E − 10 + 0.0408 + 3.0199E − 11 +
F6 3.0199E − 11 + 3.0199E − 11 + 3.0199E − 11 + 3.0199E − 11 + 3.3384E − 11 + 4.1997E − 10 + 3.0199E − 11 +
F7 3.0199E − 11 + 3.0199E − 11 + 8.9934E − 11 + 4.1997E − 10 + 2.7086E − 03 + 6.7650E − 05 + 1.1023E − 08 +
F8 3.0199E − 11 + 5.9673E − 09 + 3.8202E − 10 + 1.0261E − 03 + 0.0033 + 2.5721E − 07 + 6.5277E − 08 +
F9 1.2118E − 12 + 1.2118E − 12 + 1.1022E − 03 + NAN � NAN � NAN � NAN �

F10 1.2118E − 12 + 1.2118E − 12 + 6.3567E − 10 + 3.8580E − 07 + NAN � NAN � NAN �

F11 1.2118E − 12 + 1.2118E − 12 + NAN � NAN � NAN � NAN � NAN �

F12 3.0199E − 11 + 3.0199E − 11 + 3.0199E − 11 + 3.0199E − 11 + 3.0199E − 11 + 3.4971E − 09 + 3.0199E − 11 +
F13 3.0199E − 11 + 3.0199E − 11 + 3.0199E − 11 + 3.0199E − 11 + 3.0199E − 11 + 1.4643E − 10 + 3.0199E − 11 +
F14 5.8389E − 03 + 1.6289E − 05 + 5.1425E − 04 + 5.8375E − 04 + 3.7142E − 03 + 1.2118E − 12 + 8.5920E − 07 +
F15 3.0199E − 11 + 9.3096E − 06 + 3.4742E − 10 + 3.0199E − 11 + 3.0199E − 11 + 4.0772E − 06 + 2.1540E − 08 +
F16 1.7203E − 12 + 0.0026 + 1.7203E − 12 + 1.7189E − 12 + 9.3658E − 03 + 0.0122 + 0.0027 +
F17 1.2118E − 12 + NAN � 1.2118E − 12 + 1.2118E − 12 + 4.5664E − 12 + NAN � NAN �

F18 1.9356E − 09 + 0.0474 + 7.1021E − 08 + 7.1021E − 08 + 8.6673E − 07 + 0.0321 + 0.0210 +
F19 1.2118E − 12 + NAN � 1.2118E − 12 + 1.2118E − 12 + 1.2118E − 12 + NAN � NAN �

F20 4.9074E − 09 + 0.0277 + 0.0017 + 0.0017 + 3.2156E − 04 + 3.2156E − 04 + 0.0017 +
F21 1.2828E − 10 + 4.6208E − 06 + 4.2895E − 05 + 6.1378E − 04 + 3.3591E − 10 + 2.1246E − 09 + 1.8400E − 09 +
F22 1.1208E − 10 + 9.9211E − 10 + 2.0048E − 04 + 4.0546E − 05 + 1.8240E − 10 + 4.9973E − 04 + 7.6337E − 06 +
F23 2.7604E − 09 + 0.0082 + 0.0077 + 5.5777E − 04 + 2.4325E − 10 + 0.0077 + 1.4179E − 03 +
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Figure 4: Sound feld distribution on z� 100mm plane with the symmetric focal point: (a) unoptimized and (b) ISSA-optimized.
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Figure 5: Variation curve of sound pressure P with y on the axis of x� − 10mm.
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Figure 6: Sound feld distribution on z� 200mm plane with the asymmetric focal point: (a) unoptimized and (b) ISSA-optimized.
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Figure 7: Variation curve of sound pressure P with y on the axis of x� − 20mm.
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6. Conclusions

Tis paper presents an improved sparrow search algorithm,
which overcomes some shortcomings of SSA and improves
the convergence performance and stability of SSA [32]. ISSA
uses Chebyshev chaotic map and elite opposition-based
learning strategy to initialize the population and improve
the quality of the initial population. Te dynamic weight
factor and Levy fight strategy are introduced into the po-
sition update equation of producers to avoid falling into the
local optimal solution. Te mutation strategy is introduced
into the position update equation of scroungers to increase
the diversity of the population. In order to verify the fea-
sibility and efectiveness of ISSA, the performance of ISSA
on 23 benchmark functions is compared with that of the GA,
PSO, GWO, WOA, HHO, SSA, and SNS. Te results show
that ISSA is superior to the other seven algorithms in
convergence speed, convergence accuracy, and stability. In
order to test the performance of ISSA in practical engi-
neering problems, ISSA is used for HIFU sound feld op-
timization. Te results show that ISSA can efectively
suppress the acoustic sidelobe and improve the focusing
ability of sound waves, which is of great beneft for HIFU
treatment. Te signifcance of this paper is as follows:

(i) Improve the sparrow search algorithm, enhance the
quality of the initial population, and the ability to
jump out of the local optimal solution

(ii) Establish a 256-element concave spherical phased
array transducer model, use ISSA to optimize the
HIFU sound feld, efectively suppress the acoustic
sidelobe, improve the focusing performance, and
provide a new idea for the research of HIFU
technology

In future work, we will further optimize ISSA and use it
to solve other engineering problems. At the same time, we
will also pay attention to other advanced optimization al-
gorithms and make further research.
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