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Abstract 

Phone segmentation in ASR is usually performed indirectly by 

Viterbi decoding of HMM output. Direct approaches also exist, 

e.g., blind speech segmentation algorithms. In either case, 

performance of automatic speech segmentation algorithms is 

often measured using automated evaluation algorithms and used 

to optimize a segmentation system’s performance. However, 

evaluation approaches reported in literature were found to be 

lacking. Also, we have determined that increases in phone 

boundary location detection rates are often due to increased 

over-segmentation levels and not to algorithmic improvements, 

i.e., by simply adding random boundaries a better hit-rate can 

be achieved when using current quality measures. Since 

established measures were found to be insensitive to this type 

of random boundary insertion, a new R-value quality measure 

is introduced that indicates how close a segmentation 

algorithm’s performance is to an ideal point of operation. 

Index terms: blind speech segmentation, segmentation 

evaluation. 

1. Introduction 

Automatic speech segmentation has many applications in 

speech processing and phonetics, e.g., in automatic speech 

recognition and automatic annotation of speech corpora. 

Several methodological approaches to automatic segmentation 

have therefore been proposed (e.g., [1-9]). In order to develop 

and test a segmentation algorithm, the properties of the 

automatically created speech segments need to be analyzed in 

detail, and therefore automated evaluation methods are 

required. These methods should provide a fast, independent, 

and overall estimate of algorithm performance over large 

amounts of data. This would enable efficient experimentation 

regarding the effects of different parameter values and would 

make analysis spanning different annotated corpora more 

feasible. Moreover, if the output quality can be described using 

a single reliable measure that is able to indicate the distance and 

direction from the point of ideal performance, automatic 

optimization of algorithm parameters would become much 

more facilitated. 

 However, evaluation methods described in literature are 

not self-explanatory and therefore cannot be repeated in an 

exact manner.  No single best — or in any other way — 

approved method for describing the accuracy has been 

suggested, the trend being that many authors just adapt some 

conventional approach exploiting boundary search regions 

without specifying their use. The ambiguity associated with 

these evaluation approaches leads to problems when 

comparisons between approaches are conducted at different 

sites, and more importantly, the results may become unreliable 

in terms of the relationship between the real phonetic content of 

speech and the algorithmic output if the evaluation is not 

performed with care. Previous publications in this area were 

therefore comprehensively investigated. As a result, this paper 

identifies two major problems and offers solutions for them. The 

first one concerns itself with how correctly detected segment 

boundaries are computed. The second problem arises from over-

segmentation and its corruptive effects on the obtained hit rates.  

In order to sufficiently resolve the detected problems in 

evaluation, a method for correctly counting detected segment 

boundaries is explicitly defined and a new segmentation quality 

measure, called the R-value, is proposed.  

2. Evaluation methodology 

2.1 Evaluation reference 

In order to perform automatic evaluation it is necessary to have 

access to a reliable reference that indicates true segment locations 

in speech. The convention is to perform a segmental boundary 

comparison between an automatic method and a manually 

produced segmentation, since many well-known speech corpora 

are provided with an annotation created manually by one or more 

trained phoneticians. While manual segmentation is prone to the 

variability present in individual judgments, it is often considered 

as a reliable baseline for quality if it is carefully produced [10].  

2.2 Quality measures 

When algorithmic output is compared to a reference, a number of 

measures can be computed. Insertions are detected when one or 

more boundaries created by a segmentation algorithm do not 

match any reference boundary, or, if there are several generated 

boundaries in the vicinity of only one reference boundary. 

Deletions are noted when there is a boundary marked in the 

reference, but the algorithm produces no corresponding boundary. 

Finally, correctly detected boundaries are considered as hits.  

By using these measures, the overall segmentation accuracy is 

usually defined in terms of hit-rate (HR). For some finite section 

of speech let Nhit be the number of boundaries correctly detected 

and Nref be the total number of boundaries in the reference. HR 

can then be calculated using equation 1 in table 1 [1]. Another 

central measure, especially in the case of blind methods, is the 

over-segmentation (OS) rate, which is the ratio of the total 

number of detected boundaries Nf to the number of boundaries in 

the reference Nref (2) [11].  

Precision (3) describes the likelihood of how often the 

algorithm identifies a correct boundary whenever a boundary is 

detected. Recall (4) is the same as HR (1) except that it is not 

scaled to be a percentage. In order to describe the performance of 

an algorithm with one scalar value, the F-value (5) can be 

computed from precision (3) and recall (4) [12]. False-alarm rates 

and miss rates are also sometimes used (e.g., [6]) and can be 

derived directly from the above measures.  

 



Table 1: The most common quality measures used for 

segmentation. 
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2.3 Counting the hits: the search region method 

In order to determine the number of hits, deletions, and 

insertions, the reference annotation has to be somehow 

compared to a segmentation algorithm’s output. The practice 

evident in literature is to place a fixed-size search-region 

around each reference boundary and verify whether the 

segmentation algorithm has produced any boundaries in these 

regions. However, a major source of ambiguity exists in 

literature that concerns the overlapping of search regions [1-9]. 

A typical definition reads as: “a boundary is considered to be 

correctly detected if the hypothesis and the manual 

transcription are within 20 ms of each other” without any 

further specifications (from [2], p. 2; see also, e.g., [1], [3-9]). 

Situations, in which there are two reference boundaries within 

40 ms of each other
1
, while the algorithm produces a single 

boundary in the overlapping region, are not well defined (fig. 

1). The manner in which reference and segment output 

boundaries are paired in these situations and whether re-use of 

boundaries for several hits is explicitly ruled out leads to 

different hit-rates. Such subtle differences in interpretation may 

yield changes in performance as large as 5 % [13] and therefore 

acts as a large source of inconsistency in the reporting of 

segmentation algorithm results. 

 
Figure 1: Example of an overlapping search region causing an 

ambiguous situation in evaluation. The second algorithmically 

produced boundary is within two search regions 

simultaneously, leading to the problem of how to define a 

matching boundary for each reference boundary.   

 

A simple method to avoid the overlap problem can be 

formulated as follows: search regions of a typical fixed size, 

e.g., ±20 ms, are placed around each reference boundary. If 

overlapping search regions exist, that is, adjacent regions with 

their reference boundaries exist closer than 40 ms to each other, 

then the regions are asymmetrically shrunk to divide the space 

between two reference boundaries into two equal-width halves 

(similarly to [11], but now with a maximum search region size; 

see fig. 2). This prevents ambiguous situations associated with 

overlapping search regions. Now each region can be searched 

for algorithmically generated boundaries. Every search region  

                                                                    
1
 For example, in TIMIT 21.9 % of all boundaries are closer than 

40 ms to each other. 

 
Figure 2: The overlap of regions is removed by asymmetrically 

shrinking the search regions of boundary 1 and 2 to a common 

mid-point (indicated by the arrow). The matching of reference 

boundaries to algorithmic boundaries now becomes 

straightforward. 

 

containing an algorithmically generated boundary is considered as 

a hit and all additional boundaries are counted as insertions. 

Empty regions are considered as deletions. 

3. Stochastic over-segmentation 

One notable aspect of the search region approach is that a 

relatively large proportion of the signal timeline becomes covered 

with search regions, since normal rate speech contains about ten 

phones per second. For example, with the TIMIT corpus, 45 % of 

all audio material already falls into some search region when a 

±20 ms search region is specified (fig. 3). This is one reason why 

larger search regions become questionable for evaluation 

purposes. In some publications even larger search regions up to 

±100 ms have been used [14-15]. Even with only a 70 ms search 

region (± 35 ms) around each TIMIT phone boundary, 68 % of 

the timeline becomes covered causing many sporadically 

generated phone boundaries to be classified as correct. This 

clearly would permit a very poor segmentation algorithm to fare 

well since any generated boundary would only have an 

approximately 1/3 chance of falling outside of a hit window. 

Obviously, improvements are required in how segmentation 

algorithm performance is measured. 

As explained above, expanding timeline coverage is a 

potential problem in the evaluation of any generic segmentation 

algorithm since the probability that a randomly inserted boundary 

hits a search region increases when more of the timeline is 

covered. To demonstrate the interdependence of accuracy and 

over-segmentation, a stochastic segmentation experiment was 

performed. In this experiment boundaries were generated at 

entirely random temporal locations with a stochastic process. By 

counting the number of boundaries hitting the search regions, the 

hit-rate started to increase along with the over-segmentation 

value. This movement can be seen when plotted in the 

segmentation performance plane (hit-rate vs. over-segmentation) 

near the bottom of figure 4 as the dashed line labeled “Theoretical 

stochastic process”. Note that a segmentation algorithm that 

would match the reference annotation perfectly would be 

considered to be performing ideally and would have its operating 

point marked at the 100 % hit-rate and 0 % over-segmentation 

levels. This point of ideal operation is referred to as the target-

point (TP). 

 

 

 



 
Figure 3: Search region timeline coverage in TIMIT material as 

a function of search region width (overlapping sections of 

adjacent search regions are not included twice in the analysis). 

 
Figure 4: Use of the segmentation performance plane to display 

results from different segmentation algorithms ([1-2], [6]) as 

well as the result obtained using random insertion of segment 

boundaries. Note that the target-point indicates the point at 

which a segmentation algorithm would perform ideally, i.e., the 

algorithmic output would match the reference annotation 

according to a defined search region. 
 

The increase of HR as a function of OS in this process has 

significant similarity to the state-of-the-art segmentation results 

reported in literature ([1-2], [6-7]), i.e., the rate at which hit-rate 

increases (by allowing more over-segmentation) does not seem 

to be any larger than what can be obtained by randomly 

inserting boundaries. 

This observation leads to the conclusion that the 

segmentation results that have been reported in literature with 

relatively high over-segmentation values indicate very little 

about the internal characteristics of an algorithm. If the increase 

in accuracy (as is the case with higher levels of OS) starts to 

align itself with the theoretical stochastic process curve in fig. 4 

(i.e., parallel in direction indicating a similar slope), the 

capability of the algorithm to provide information about 

meaningful phonetic changes in the signal becomes negligible. 

Therefore, results from an entirely random segment generation 

process that assumes no knowledge of the underlying speech 

signal can be used to effectively define a zero-level 

segmentation quality baseline.  

4. R-value as a measure for segmentation 

quality 

Optimizing the operation of a speech segmentation algorithm is 

often a tradeoff between hit-rate and over-segmentation (or 

inversely, false-alarm rate and miss-rate). In order to find a 

suitable operating point, a proper balance between these two 

measures needs to be determined.  The previously introduced F-

value (5) is one possible way to describe overall performance of 

an algorithm with a single value. However, the F-value is prone 

to stochastic hit-rate increases due to the over-segmentation 

problem described in section 3. In order to describe performance 

using a single value that is also sensitive to over-segmentation, a 

novel measure was developed.  

The theoretical goal of segmentation is to achieve operation 

around the target-point (TP) that is located at the 100 % hit-rate 

and 0 % over-segmentation levels as compared to a reference. 

The basis of the new measure is the algorithm’s distance from TP 

and not the (hit-rate) gain achieved by over-segmentation. On the 

segmentation performance plane, a distance r1 from the 

segmentation result to TP can be derived (6). Additionally, to 

appreciate the value of under-segmentation compared to over-

segmentation in an algorithm (i.e., less false positives), another 

distance r2 (7) is measured from the segmentation result 

perpendicularly to the ideal zero-insertion line y = x – 100 (fig. 

5). This line is the left-side theoretical limit for possible results in 

this space and extends from –100 % over-segmentation and 0 % 

hit-rate, to the 100 % hit-rate level with 0 % over-segmentation 

(e.g., with a 50 % hit-rate, over-segmentation needs to be –50 % 

in order to avoid any insertions). The distances r1 and r2 are then 

added together and normalized to have a maximum value of 1 at 

the target-point (8). This new distance measure, referred to as the 

R-value, decreases as the distance to the target grows, i.e., 

similarly as the F-value does, but is critical towards over-

segmentation.  
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Figure 5: R-distance is calculated by summing distance r1 

(distance from the segmentation algorithm’s operating point 

“Segmentation result” to the target-point), with r2 (distance from 

“Segmentation result” to the ideal zero-insertions limit), and then 

normalized according to (8). 
 

Figure 6 shows the behavior of F- and R-values in the 

segmentation performance plane using equal value curves. 

Dashed lines indicate how hit-rate increases as a function of over-

segmentation due to the stochastic generation of boundaries.  As 

can be seen, the F-value behaves in a linear manner when 

compared to the R-value. High over-segmentation rates are more 

severely penalized when using the R-value as compared to the F-

value, and the R-value drops dramatically above OS = 0 % when 

OS is increased unless the accuracy is actually increasing more 

rapidly even with the generally detrimental effect of increased 

random insertions.  



 
Figure 6: F-value and R-value equal value curves in hit-rate vs. 

over-segmentation coordinates. Superimposed dashed lines 

indicate hit-rate increase as a function of over-segmentation in 

stochastic boundary generation: five different elevated offsets 

for the theoretical stochastic process are shown. The F-value 

curves (solid lines) are nearly parallel with the effects of 

stochastic boundary generation (dashed lines) indicating the F-

value’s strong correlation with over-segmentation and thus its 

weakness as a reliable quality measure. On the other hand, the 

R-value measure is aware of the level of over-segmentation and 

can be used to direct the segmentation algorithm towards the 

target-point. 

 

Thus, the R-value not only measures the quality of a 

segmentation algorithm but can also be used to automatically 

direct the automatic segmentation process towards a goal, e.g., 

the target-point. It should also be noted that distance r1 alone 

can be used to find the optimal operating point from an 

operating curve of an algorithm in terms of equally weighted 

HR and OS rates. 

5. Conclusions 

Serious weaknesses in the manner in which the performance of 

speech segmentation algorithms are currently measured were 

shown. It was found that random insertion of segment 

boundaries increases hit-rate as a function of over-segmentation 

due to a large covering of the search regions in the speech 

timeline. This increase in hit-rate correlates significantly with 

the high over-segmentation results reported in literature, 

suggesting that at higher over-segmentation rates a stochastic 

process starts to dominate the results instead of the capabilities 

of the tested algorithm. Therefore, a novel measure called the 

R-measure was introduced that can be applied to the evaluation 

of any automatic speech segmentation algorithm. The R-

measure increases towards the ideal target-point (100 % hit-rate 

and 0 % over-segmentation) and is much more sensitive to 

increases in over-segmentation levels than previously used 

measures like the F-value. In combination with the search 

region method explicitly defined in section 2.3, this measure 

provides for an independent and more relevant quality score for 

automatic segmentation of speech.  
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