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An Improved Stabilization Method for Linear
Time-Delay Systems

Emilia Fridman and Uri Shaked

Abstract—In this note, we combine a new approach for linear time-
delay systems based on a descriptor representation with a recent result
on bounding of cross products of vectors. A delay-dependent criterion for
determining the stability of systems with time-varying delays is obtained.
This criterion is used to derive an efficient stabilizing state-feedback design
method for systems with parameter uncertainty, of either the polytopic or
the norm-bounded types.

Index Terms—Delay-dependent stability, linear matrix inequality (LMI),
stabilization, time-delay systems, time-varying delay.

I. INTRODUCTION

The problem of reducing the conservatism entailed in applying fi-
nite-dimensional techniques to asses the stability of linear systems with
time delay has attracted much attention in the past few years [1]–[6].
All these techniques provide sufficient conditions only for the asymp-
totic stability of these systems and they entail a considerable conser-
vatism which stems from two main sources. The first cause for conser-
vatism is the model transformation used to describe the system which
makes it more amenable for analysis [7], [8] and the second reason
for conservatism is the bounding method used to derive the bounds
on weighted cross products of the state and its delayed version while
trying to secure a negative value to the derivative of the corresponding
Lyapunov–Krasovskii functional. The search for the most appropriate
model transformation has led to four main approaches [9]–[11]. The
most recent one [9], the one that is based on a descriptor representation
of the system, which is equivalent to the original system, minimizes the
overdesign that stems from the model transformation source of conser-
vatism [11].

The conservatism that stems from the bounding of the cross terms
has also been significantly reduced in the past few years. An important
result for improving the standard bounding technique of, e.g., [2], has
been proposed in [12]. Indeed, combining the later with the descriptor
model transformation lead in [10] and [11] to an efficient delay-de-
pendent stability criterion that was also used in synthesis for stabiliza-
tion and optimal performance. Only recently, an improvement of the
bounding technique has been proposed [13]. The latter generalizes the
one in [12] and the resulting criteria that are obtained in [13] are, there-
fore, more efficient than those found in [12].

It is the purpose of this note to combine the bounding method of [13]
with the descriptor model transformation of [9] and [11] in order to de-
rive a most efficient stability criterion for systems with time-varying
delays. This criterion is then applied to solve the problem of robust sta-
bilizing the system in presence of either norm-bounded or polytopic
uncertainties by means of state-feedback control. The resulting crite-
rion is applied to an example taken from [13], and its superiority to the
results of the latter is demonstrated.

Notation: Throughout this note, the superscriptT stands for matrix
transposition,Rn denotes then-dimensional Euclidean space,Rn�m

is the set of alln � m real matrices, and the notationP > 0, for
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P 2 Rn�n, means thatP is symmetric and positive definite. The space
of vector functions that are square integrable over [01) is denoted
by L2.

II. A N EW STABILIZATION METHOD

We consider the following linear system with time-varying delays:

_x(t) =

2

i=0

Aix(t� �i(t)) +Bu(t); x(t) = �(t); t 2 [�h; 0]

(1)
wherex(t) 2 Rn is the system state,u(t) 2 Rq is the control input,
�0 � 0, Ai andB are constantn � n matrices,� is a continuously
differentiable initial function, andh is an upper-bound on the time-
delays�i, i = 1; 2. For simplicity only, we took two delays�1 and�2.
The results of this section can be easily applied to the case of multiple
delays�1; . . . ; �m.

The matrices of the system are not exactly known. Denoting


 = [A0 A1 A2 B ]

we assume that


 =

N

j=1

fj
j ; for some 0 � fj � 1;

N

j=1

fj = 1 (2)

where theN vertices of the polytope are described by


j = [A
(j)
0 A

(j)
1 A

(j)
2 B(j) ] :

In Section III, we extend our results to the case where the uncertainty
in the system parameters obeys the norm-bounded model [17].

As in [11], we consider two different cases for time-varying delays

�i(t) are differentiable functions, satisfying for allt � 0:

0 � �i(t) � hi; _�i(t) � di < 1; i = 1; 2: (3)

�i(t) are continuous functions, satisfying for allt � 0, 0 � �i(t) �
hi, i = 1; 2.
Note that in the past, the Razumikhin’s approach was the only one

that was to cope with Case I) of fastly varying delays. The Krasovskii
approach for this case was introduced recently in [11].

We seek a control law

u(t) = Kx(t) (4)

that will asymptotically stabilize the system.

A. Stability Issue

In this section, we considerB = 0. Representing (1) in an equivalent
descriptor form [9]

_x(t) =y(t) (5a)

0 =� y(t) +

2

i=0

Ai x(t)�

2

i=1

Ai

t

t�� (t)

y(s)ds (5b)

or

E _�x(t) =
_x(t)

0

=
0 I

2

i=0

Ai �I
�x(t)�

2

i=1

0

Ai

t

t�� (t)

y(s)ds (5c)
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with �x(t) = colfx(t); y(t)g, E = diagfI; 0g, the following Lya-
punov–Krasovskii functional is applied:

V (t) = �xT (t)EP �x(t) + V2 + V3 (6)

where

P =
P1 0

P2 P3
; P1 > 0 EP = P

T
E � 0

V2 =

2

i=1

0

�h

t

t+�

y
T (s)Riy(s)dsd�

V3 =

2

i=1

t

t�� (t)

x
T (� )Six(�)d�: (7a-e)

The following result is obtained for Case I).
Lemma 1: Under Case I), (1), with B = 0, is

asymptotically stable if there exist n � n matrices
0 < P1; P2; P3; Si; Yi1; Yi2; Zi1; Zi2; Zi3, andRi > 0, i = 1; 2
that satisfy the following linear matrix inequalities (LMIs):

� =

	 P T
0

A1
� Y T

1 P T
0

A2
� Y T

2

� �S1(1� d1) 0

� � �S2(1� d2)
<0

and
Ri Yi

� Zi

�0; i = 1; 2 (8a,b)

where

Yi = [Yi1 Yi2] Zi =
Zi1 Zi2

� Zi3
; i = 1; 2

	 =PT 0 I

A0 �I
+

0 I

A0 �I

T

P

+

2

i=1

hiZi +

2

i=1

Si 0

0
2

i=1

hiRi

+

2

i=1

Yi

0
+

2

i=1

Yi

0

T

: (9a-c)

Proof: Note that

�xT (t)EP �x(t) = x
T (t)P1x(t)

and, hence, differentiating the first term of (6) with respect tot gives

d

dt
�xT (t)EP �x(t) = 2xT (t)P1 _x(t) = 2�xT (t)PT _x(t)

0
: (10)

Substituting (5) into (10), we obtain (11), as shown at the bottom of the
page, where

��
�
=PT

0 I
2

i=0

Ai �I
+

0
2

i=0

AT

i

I �I
P

+

2

i=1

Si 0

0
2

i=1

hiRi

�i(t)
�
=� 2

t

t��

�xT (t)PT 0

Ai

y(s)ds: (12)

Since, by [13], for anya 2 Rn, b 2 R2n,N 2 R2n�n,R 2 Rn�n,
Y 2 Rn�2n, Z 2 R2n�2n, the following holds:

�2bTNa �
a

b

T
R Y �N T

Y T �N Z

a

b

where
R Y

Y T Z
�0 (13)

we apply the latter on the expression we have previously obtained for

�i. From (13), takingN = Ni = P T
0

Ai

, R = Ri, Z = Zi,

Y = Yi, a = y(s) andb = �x(t), we obtain, fori = 1; 2, (14) found
at the bottom of the page. Substituting the latter and (12) into (11), we
obtain that

dV (t)

dt
� �

T (t)�1�(t)

where the first equation shown at the bottom of the next page holds,
and where�(t) = colfx(t); y(t); x(t��1); x(t��2)g. Since�1 = �
the LMIs in (8) lead to_V < 0, whileV � 0 and, thus, (1) withB = 0
is asymptotically stable [5], [15].

Choosing in Lemma 1Si ! 0 andYi = [ 0 AT

i ]P T we obtain
the following result for the case B.

Corollary 1: Under Case II), (1), withB = 0, is asymptotically
stable if there existn � n matrices0 < P1; P2; P3; Zi1; Zi2; Zi3

andRi > 0, i = 1; 2 that satisfy the following LMIs:

	1 < 0 and
Ri [ 0 AT

i ]P T

� Zi

� 0; i = 1; 2

dV (t)

dt
� �xT (t)���x(t)�

2

i=1

(1� di)x
T (t� �i)Six(t� �i) +

t

t�h

y
T (�)Riy(�)d� � �i (11)

�i(t) �
t

t��

[ yT (s) �xT (t) ]
Ri Yi � [ 0 AT

i ]P

Y T

i � P T
0

Ai

Zi

y(s)

�x(t)
ds

=
t

t��

y
T (s)Riy(s)ds+ 2

t

t��

y
T (s)(Yi � [ 0 AT

i ]P )�x(t)ds+
t

t��

�x(t)TZi�x(t)ds

=
t

t��

y
T (s)Riy(s)ds+ 2

t

t��

_xT (s)(Yi � [ 0 AT

i ]P )�x(t)ds+ �i�x(t)
T
Zi�x(t)

�
t

t�h

y
T (s)Riy(s)ds+ 2xT (t)(Yi � [ 0 AT

i ]P )�x(t)� 2xT (t� �i)(Yi � [ 0 AT

i ]P )�x(t) + hi�x(t)
T
Zi�x(t): (14)
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where

Zi =
Zi1 Zi2
� Zi3

; i = 1; 2

	1 =P
T

0 I
2

i=0

Ai �I
+

0 I
2

i=0

Ai �I

T

P

+

2

i=1

hiZi +
0 0

0
2

i=1

hiRi
:

Remark 1: It follows from (8a) that the diagonal elements�Si(1�
di), i = 1,2 are negative and, thus,Si > 0, since by assumption
di < 1.

Remark 2: A question may arise as to whether the standard Lya-
punov criterion can be restored when lettingh go to 0. TakingRi = I ,
Zi = ��1=2, �!1, Yi = [ 0 AT

i ]P and0 < Si ! 0 we obtain

	 =PT 0 I

A0 �I
+

0 I

A0 �I

T

P

+

2

i=1

Yi
0

+

2

i=1

Yi
0

T

=
P T
2 (

2

i=0

Ai) + (
2

i=0

AT
i )P2 P1 � P T

2 + (
2

i=0

AT
i )P3

� �P3 � P T
3

:

ForP3 = �I; � ! 0 andP2 = P1 > 0 the requirement that	 < 0
becomes

P1(

2

i=0

Ai) + (

2

i=0

AT
i )P1 < 0; P1 > 0: (15)

It follows from (15) that if the system withh = 0 is asymptotically
stable, then there existsP1 > 0 that solves (15) and, thus, (8a),(b)
possess a solution for small enoughh > 0.

The latter can be readily used to verify the stability of (1) over the
uncertainty polytope (2) [1]:

�
 =

N

j=1

fj �
j ; for some 0 � fj � 1;

N

j=1

fj = 1

where theN vertices of the polytope are described by

�
j = [A
(j)
0 A

(j)
1 A

(j)
2 ]

by solving the LMI simultaneously for all theN vertices, applying the
sameP1, Pi, Si, Yi1, Yi2, andRi, i = 1,2.

In the sequel, it will be important to determine the conditions for
achievingH1 norm of (1) less than 1, whereu is the input vector and
the controlled output is given by

z(t) = Lx(t) + L1x(t� �1) + L2x(t� �2): (16)

Similarly to the derivation of the bounded real lemma (BRL) in [11],
we obtain the following.

Lemma 2: Under Case I) the H1 norm of (1) and
(16) is less than one if there existn � n matrices
0 < P1; P2; P3; Si; Yi1; Yi2; Zi1; Zi2; Zi3 andRi, i = 1,2 that
satisfy (17), as shown at the bottom of the page, and (8b), where	
is given by (9c).

Proof: Adding the termzT (t)z(t)�w(t)Tw(t) to dV (t)=dt in
(11) and substituting forz(t) from (16), the result follows from the
arguments used to derive Lemma 1 where the last column and row
blocks in (17) are obtained by applying the standard Schur’s formula
[1].

B. State-Feedback Stabilization

The results of Lemma 1 can also be used to verify the stability of
the closed loop obtained by applying (4) to (1) (withB 6= 0) if we re-
placeA0 in (8a) byA0 + BK and verify that the resulting inequality
is feasible over the polytope defined in (2) by solving the LMI simulta-
neously for all theN vertices, applying the sameP1, Pi, Si, Yi1, Yi2,
andRi, i = 1,2.

The problem with (8a) is that it is linear in its variables, only when
the state-feedback gainK is given. In order to findK, consider the
inverse ofP . It is obvious from the requirement of0 < P1, and the fact
that in (8)�(P3+P T

3 )must be negative definite, thatP is nonsingular.
Defining

P�1 =Q =
Q1 0

Q2 Q3
(18a)

� =diagfQ; Ig (18b)

we multiply (8a) by�T and�, on the left and on the right, respec-
tively, and (8b), on the left and on the right, bydiagfR�1i ; QT g
and diagfR�1i ; Qg, respectively . Applying Schur formula
to the emerging quadratic term inQ, denoting �Si = S�1i ,

�Zi =
�Zi1 �Zi2
�ZT
i2

�Zi3
= QTZiQ and �Ri = R�1i , i = 1,2 and choosing

[Yi1 Yi2] = "iA
T
i [P2 P3] , where"i 2 Rn�n is a diagonal

matrix, we obtain, similarly to [14], the following.
Theorem 1: The control law of (4) asymptotically stabilizes (1) for

all the delays that belong to Case I) and for all the system parameters
that reside in the uncertainty polytope, if for some diagonal matrices

�1 =

�� +
2

i=1

hiZi +
I

0
(Yi � [ 0 AT

i ]P ) + Y T
i � P T 0

Ai
[ I 0 ] �Y T

1 + P T 0

A1
�Y T

2 + P T 0

A2

� �S1(1� d1) 0

� � �S2(1� d2)

	 P T 0

B
P T 0

A1
� Y T

1 P T 0

A2
� Y T

2 [LT ]

� �Iq 0 0 0

� � �S1(1� d1) 0 LT
1

� � � �S2(1� d2) LT
2

� � � 0 �Ir

< 0 (17)
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"1; "2 2 R
n�n, there exist:0 < Q1; Q

(j)
i+1;

�Si; �Ri > 0; �Z
(j)
ij 2

Rn�n, i = 1,2,j = 1,2,3 and�Y 2 Rq�n that satisfy the LMIs shown
in (19) at the bottom of the page, where

�(j) = Q
(j)
3 �Q

(j)T
2 +Q1(A

(j)T
0 +

2

i=1

"iA
(j)T
i )

+

2

i=1

hi �Z
(j)
i2 + �Y T

B
(j)T

; j = 1; 2; . . . ; N:

The state-feedback gain is then given by

K = �Y Q�11 : (20)

The previous result represents a delay-dependent sufficient condition
for the controller of (4) to guarantee, for Case I), stability over the entire
uncertainty polytope. The corresponding delay-independent result is
obtained, still for Case I), by substituting"i = 0, �Ri = �In and
�Zi = 0 in (19) and taking the limit where� tends to infinity. The
last two row and column blocks of (19a) will disappear due to�Ri !

1. Considering, still in the delay-independent case, the more general
control law

u(t) =

2

i=0

Kix(t� �i) (21)

we replaceA(j)
i in (19) byA(j)

i +B(j)Ki and obtain the following.

Corollary 2: In Case I), the control law of (21) asymptotically sta-
bilizes (1) independently of the delay lengths, for all the system param-
eters that reside in the uncertainty polytope, if there exist:Q1 > 0, �S1,
�S2, Q(j)

2 , Q(j)
3 2 Rn�n and �Yi 2 R

q�n, i = 0; 1; 2 that satisfy the
equations shown at the bottom of the page where

�(j)
g = Q

(j)
3 �Q

(j)T
2 +Q1A

(j)T
0 + �Y T

0 B
(j)T

; j = 1; 2; . . . ; N:
(22a,b)

The state-feedback gains are then given by

K0 = �Y0Q
�1
1 Ki = �Yi �S

�1
i ; i = 1; 2: (23)

Remark 3: In Case I), the control law of (21) cannot be readily in-
corporated in the result of Theorem 1 because of the quadratic term
that will emerge in (19b) whenA(j)

i is replaced byA(j)
i + B(j)Ki.

One can, however, solve the design problem with the feedback law of
(21) by applying the method of [14] which converts the problem of
dealing with delayed components in the input to one with the control
law of (4) by adding, in series to the input, simple linear components.
The transference of these components is almostI and the augmented
system that results can be readily solved using the LMIs of Theorem 1.

The delay-dependent result for Case II) is obtained by deletingV3 in
(6) and choosing"i = In, i = 1,2. The theory then develops along the
lines that led to Theorem 1. Thus, the result for Case II) is the following.

Corollary 3: The control law of (4) asymptotically stabilizes (1) for
all the delays that belong to Case II) and for all the system parameters
that reside in the uncertainty polytope, if there exist:Q1 > 0, Q(j)

2 ,

Q
(j)
2 +Q

(j)T
2 +

2

i=1

hi �Z
(j)
i1 �(j) 0 0 Q1 Q1

� �Q
(j)
3 �Q

(j)T
3 +

2

i=1

hi �Z
(j)
i3 A

(j)
1 (In � "1) �S1 A

(j)
2 (In � "2) �S2 0 0

� � �(1� d1) �S1 0 0 0

� � � �(1� d2) �S2 0 0

� � � � � �S1 0

� � � � � � �S2
� � � � � �

� � � � � �

� � � � � �

h1Q
(j)T
2 h2Q

(j)T
2

h1Q
(j)T
3 h2Q

(j)T
3

0 0

0 0

0 0

0 0

�h1 �R1 0

� �h2 �R2

< 0 (19a)

�Ri 0 �Ri"iA
(j)T
i

� �Z
(j)
i1

�Z
(j)
i2

� � �Z
(j)
i3

� 0; i = 1; 2 (19b)

Q2 +QT
2 �

(j)
g 0 0 Q1 Q1

� �Q
(j)
3 �Q

(j)T
3 �A

(j)
1

�S1 +B(j) �Y1 �A
(j)
2

�S2 +B(j) �Y2 0 0

� � �(1� d1) �S1 0 0 0

� � � �(1� d2) �S2 0 0

� � � � � �S1 0

� � � � � � �S2

< 0
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Q
(j)
3 , �R1, �R2 2 R

n�n and �Y 2 Rq�n that satisfy the LMIs shown in
the equation at the bottom of the page, and (19b), where"i = I , and
where

�̂(j) = Q
(j)
3 �Q

(j)T
2 +Q1(

2

i=0

A
(j)T
i )

+

2

i=1

hi �Z
(j)
i2 + �Y T

B
(j)T

; j = 1; 2; . . . ; N:

The state-feedback gain is then given by (20).

III. STABILIZATION OF SYSTEMS WITH NORM-BOUNDED

UNCERTAINTIES

The results of Section II were derived for the case where the un-
known parameters of (1) lie in a given polytope. An alternative way of
dealing with uncertain systems is to assume that the deviation of the
system parameters from their nominal values is norm bounded [17]. In
our case, consider the system

_x(t) =

2

i=0

(Ai +H�(t)Ei)x(t� �i(t))

+ (B +H�(t)E3)u(t)

x(s) =�(s)s � 0 (24)

wherex(t) andu(t) are defined in Section II and the time delays are
defined in (3). The matricesAi, i = 0,1,2,B,H andEi, i = 0; . . . ; 3
are constant matrices of appropriate dimensions. The matrix�(t) is a
time-varying matrix of uncertain parameters satisfying

�T (t)�(t) � I 8 t: (25)

We consider also, for a given positive scalar"̂, the following aug-
mented system:

_�(t) =

2

i=0

Ai�(t� �i(t)) +Bu(t) + "̂
�1
Hw(t)

�(s) =�(s) s � 0

z(t) ="̂E0�(t) +

2

i=1

"̂Ei�(t� �i) + "̂E3u(t) (26a,b)

with the performance index

J(w) =
1

0

(zT z � w
T
w)d� (27)

wherew 2 L2 is an exogenous signal.
It has been explicitly proved in [17], in the case without delays, that

the existence of a solution to the Riccati equations or LMIs that are
obtained when solving theH1 state-feedback control problem for the
augmented system (26) with the index (27), without delays, guarantees
the stability of (24), under the same feedback law, for all�(t) that
satisfy (25). The proof follows, in fact, from the small gain theorem
[16] which can also be applied to our case of retarded systems. The

system (24) can be written as

_x(t) =

2

i=0

Aix(t� �i) +Bu(t)

+ "̂
�1
H�"̂[E0 E1 E2 E3 ]

� colfx(t) x(t� �1) x(t� �2) u(t)g:

This system can be looked at as (26), where� of (25) is the feed-
back gain fromz of (26b) tow in (26a). Consider the closed-loop
systemG that is obtained from (26a),(b) by applying the state-feed-
back controller. It follows from the existence of a solution to the above
H1 state-feedback control problem, thatG is asymptotically stable
and that theH1 norm of the transference ofG from w to z is less
than 1. Applying, therefore, the feedback gain�(t); which satisfies
(25), aroundG, it follows from the small gain theorem [16] that the re-
sulting closed-loop system will remain asymptotically stable. Since the
latter closed-loop system is identical to the closed-loop obtained from
(24) by applying the same state-feedback controller (in the sense that
x(t) � �(t)), this controller also stabilizes (24).

In order to apply the aforementioned argument to (24), one should
use a BRL criterion that will guarantee aH1-norm less than one to the
closed-loop system obtained from (26). An efficient delay-dependent
BRL has recently been derived in [11]. The latter is based however on
the bounding technique of [12]. In order to benefit from the new method
in [13], we derive the following result from Lemma 2, applying the
same transformation that was used in deriving Theorem 1 and taking
�� = "̂2.

Theorem 2: In case A, (24) is stabilized via the control law of (4)
for all �(t) that satisfy (25), if for some diagonal�"1; �"2 2 Rn�n and
a scalar0 < �̂, there exist0 < Q1; Qi+1; �Si; �Ri > 0; �Zij ;2 Rn�n,
i = 1,2,j = 1,2,3 and�Y 2 Rq�n that satisfy the LMIs, shown in the
equation at the bottom of the next page. where

�g = Q3�Q
T
2 +Q1(A

T
0 +

2

i=1

�"iA
T
i )+

2

i=1

hi �Zi2+�Y T
B

T
: (28a-c)

The state-feedback gain is then given by

K = �Y Q�11 : (29)

Remark 4: The delay-independent version in Case I) is obtained by
solving (28a) and (28c), where�"i = 0, �Zi = 0 and where the eighth
and the ninth row and column blocks are omitted.

In Case II), the corresponding delay-dependent result is obtained by
solving the LMIs of Theorem 2 for�"i = I , i = 1; 2, where in (28a)
the fourth, fifth, sixth, and seventh row and column blocks are deleted.

Remark 5: The results of Theorems 1 and 2 apply the tuning
parameters"1 and "2. The question arises how to find the optimal
combination of these parameters. One way to address the tuning issue
is to choose for a cost function the parametertmin that is obtained
while solving the feasibility problem using Matlab’s LMI toolbox [18].
This scalar parameter is positive in cases where the combination of the
tuning parameters is one that does not allow a feasible solution to the
set of LMIs considered. Applying a numerical optimization algorithm,
such as the programfminsearch in the optimization toolbox of Matlab

Q
(j)
2 +Q

(j)T
2 +

2

i=1

hi �Z
(j)
i1 �̂(j) h1Q

(j)T
2 h2Q

(j)T
2

� �Q
(j)
3 �Q

(j)T
3 +

2

i=1

hi �Z
(j)
i3 h1Q

(j)T
3 h2Q

(j)T
3

� � �h1 �R1 0

� � � �h2 �R2

< 0
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[19], to the above cost function, a locally convergent solution to
the problem is obtained. If the resulting minimum value of the cost
function is negative, the tuning parameters that solve the problem are
found.

The latter optimization procedure is time consuming. Our experience
shows that taking"1 = "2 = �"I , where�" is a scalar, a one-dimensional
search for�" is easily performed. The cost function, or the bound on
delay that still maintains stability, exhibit then a convex behavior with
respect to�" and a clear optimum value of the latter is obtained. In the
examples we solved, the single tuning parameter�" achieved results that
are quite close to those obtained by the fminsearch program.

IV. EXAMPLES

We demonstrate the applicability of the above theory by solving the
second example in [13] for a system with norm-bounded uncertainty
and the third example from [2], where we neglect uncertainties.

Example 1: The problem in [13] is one where a state-feedback con-
trol is sought that stabilized (24) for one delay with

A0 =
0 0

0 1

A1 =
�2 �:5

0 �1

B =
0

1

H =0:2I2

E0 =I2:

For the case ofd = 0, the maximum boundh for which the system
is stabilized by a state-feedback was found in [13], after 99 iterations,
to be 0.45. Applying the result of Theorem 2, a maximum bound of

h = 0:5865 is obtained using" = 0:7507I2 and� = 0:8. The corre-
sponding feedback-gain matrix isK = � [ 0:3155 4:4417 ]. Using
the method of [11] (an improved version of [10]), which is based on the
bounding method of [12], a maximum value ofh = 0:55 was achieved
with � = 0:3; " = �0:2 andK = �[ 0:0229 52:8656 ].

It is noted that the computational complexity of the solutions in [10]
and [11] and the present method is the same. Comparing to [13], the
iterations required there almost compensate the increase in the dimen-
sion of the LMIs that is caused by using the descriptor approach.

In Case II) (fastly varying delays), the corresponding results are:h =
0:496, K = � [ 0:34 5:168 ] and� = 0:8 by Remark 2 andh =
0:489,K = � [ 0:2884 13:8558 ] and� = 0:1 by [11].

It follows from this that the theory of [11] provides stabilization re-
sults that are superior to those obtained in [13]. This is true in spite of
the fact that the former applies the old bounding method of [12] and
that it handles time-delays that can vary very fast. The results that are
obtained using the theory of the present note surpass those found by
the methods of [11]. The combination of the descriptor approach and
the new bounding method of [13] is shown to be superior to all other
solutions that were proposed in the literature.

Example 2 [2]: We address the problem of finding a state-feedback
stabilizing controller for (24) with one delay and without uncertainties
(H = Ei = 0), where

A0 =
0 0

0 1

A1 =
�1 �1

0 �0:9

B =
0

1
:

Applying the method of [2, Cor. 3.2], it was found that, for_� � 0, the
system is stabilizable for all� < 1. For, say,� = :999 a minimum

Q2 +QT
2 +

2

i=1

hi �Zi1 �g 0 0 0 Q1 Q1 h1Q
T
2

� �Q3 �QT
3 +

2

i=1

hi �Zi3 �̂H A1(In � �"1) �S1 A2(In � �"2) �S2 0 0 h1Q
T
3

� � ��̂I 0 0 0 0 0

� � � �(1� d1) �S1 0 0 0 0

� � � � �(1� d2) �S2 0 0 0

� � � � � � �S1 0 0

� � � � � � � �S2 0

� � � � � � � �h1 �R1

� � � � � � � �

� � � � � � � �

h2Q
T
2 Q1E

T
0 + �Y TET

3

h2Q
T
3 0

0 0

0 �S1E
T
2

0 �S2E
T
3

0 0

0 0

0 0

�h2 �R2 0

� ��̂I

< 0

�Ri 0 �Ri�"iA
T
i

� �Zi1
�Zi2

� � �Zi3

� 0; i = 1; 2
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value of 
 = 1:8822 results forK = � [ :104 52 749 058 ].
By [11], the system is stabilizable forh � 1:408:. By The-
orem 1, the corresponding value ish = 1:51 for " = 0:59 and
K = �[ 58:31 294:935 ].

V. CONCLUSION

The problem of finding a state-feedback controller that asymp-
totically stabilizes a linear time-delay system with either polytopic
or norm-bounded uncertainty has been solved. A delay-dependent
solution has been derived using a special Lyapunov–Krasovskii
functional. The result is based on a sufficient condition and it thus
entails an overdesign. This overdesign is considerably reduced due
to the fact that is based on the descriptor representation and since it
applies a new bounding method.
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Ultimate Periodicity of Orbits for Min–Max Systems

Yiping Cheng and Da-Zhong Zheng

Abstract—The ultimate periodicity theorem is an important result in
min–max systems theory. It was first proved by Olsder and Perennes in
their unpublished work. In this note, we present a new proof. This proof
is also based on two important theorems: the existence of cycle time for
any min–max function and the Nussbaum–Sine theorem. However, two dif-
ferent techniques, pure min–max function and conditional redundancy, are
used to obtain two important intermediate results. The purpose of this note
is to provide a simple alternate proof to the ultimate periodicity theorem.

Index Terms—Discrete-event systems, min–max functions, ultimate pe-
riodicity.

I. INTRODUCTION

Min–max functions (e.g., [1] and [2]) arise in modeling the dynamic
behavior of discrete-event systems with maximum and minimum
constraints, such as digital circuits, computer networks, manufacturing
plants, etc. Mathematically, a min–max functionF : n ! n

is built from terms of the formxi + a, where1 � i � n and
a 2 , by application of finitely many max and min operations in
each component. In such a model, if we denote the time of thekth
occurrence of eventi by xi(k), thenx(k + 1) = F (x(k)).

Min–max functions are homogeneous

8x 2 n
; 8h 2 ; F (x+ h) = F (x) + h

monotonic with respect to the usual product ordering onn

8x; y 2 n
; x � y ) F (x) � F (y)

and nonexpansive in the sup norm

8x; y 2 n
; kF (x)� F (y)k � kx� yk:

In this note, we study a min–max function as a dynamical system,
and we are concerned with the behavior of the orbits of a min–max
systemF , namely the sequencesx(0), x(1), andx(2), . . ., where
x(0) 2 n andx(k + 1) = F (x(k)). Therefore, we shall be using
“function” and “system” interchangeably in the sequel, depending on
the context.

In studying the behavior of min–max functions, one is tempted to
find out whether all or some min–max functions exhibit the following
properties.

PropertyC(F ): The limit �(F; �) = limk!1 F k(�)=k exists.
It is to be noted that if for some� the limit�(F; �) exists, then for all

� this limit exists and is independent of�, becauseF is nonexpansive
in the sup norm. This limit is called cycle time ofF , and we will denote
it by �(F ) in the sequel.

PropertyI(F ): F has a cycle time with identical coordinates, i.e.,
there is a� 2 such that�(F ) = (�; . . . ; �).
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