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An Improved Stabilization Method for Linear P € R"*", means thaP is symmetric and positive definite. The space
Time-Delay Systems of vector functions that are square integrable over {@) is denoted
by L.

Emilia Fridman and Uri Shaked
Il. A NEW STABILIZATION METHOD

Abstract—in this note, we combine a new approach for linear time- We consider the following linear system with time-varying delays:
delay systems based on a descriptor representation with a recent result
on bounding of cross products of vectors. A delay-dependent criterion for 2
determining the stability of systems with time-varying delays is obtained.  &(t) = Z A;z(t — () + Bu(t), x(t) = o(t), t € [=h,0]
This criterion is used to derive an efficient stabilizing state-feedback design i—o
method for systems with parameter uncertainty, of either the polytopic or (1)
the norm-bounded types. wherex(t) € R" is the system state,(t) € RY is the control input,
Index Terms—Delay-dependent stability, linear matrix inequality (LMI), 7o = 0, 4; and B are constant x n matrices,¢ is a continuously
stabilization, time-delay systems, time-varying delay. differentiable initial function, and. is an upper-bound on the time-

delaysr;, i = 1, 2. For simplicity only, we took two delays, andr.
The results of this section can be easily applied to the case of multiple
delaysm, ..., Tm.
The problem of reducing the conservatism entailed in applying fi- The matrices of the system are not exactly known. Denoting
nite-dimensional techniques to asses the stability of linear systems with
time delay has attracted much attention in the past few years [1]-[6]. Q=[4 A A4 B]
All these techniques provide sufficient conditions only for the asymp-
totic stability of these systems and they entail a considerable cons¥f assume that
vatism which stems from two main sources. The first cause for conser- N N
vatism is the model transformation used to describe the system which Q= ijQ]», forsome 0< f; <1, ij =1 (2)
makes it more amenable for analysis [7], [8] and the second reason j=1
for conservatism is the bounding method used to derive the bounds B} . .
on weighted cross products of the state and its delayed version Wmﬁlgere thelV" vertices of the polytope are described by
trying to secure a negative value to the derivative of the corresponding
Lyapunov—Krasovskii functional. The search for the most appropriate

model transformation has led to four main approaches [9]-{11]. The section 111, we extend our results to the case where the uncertainty

most recent one [_9], t_he onc_e that is based pq a descriptor rt_epre_sentqﬂqﬂe system parameters obeys the norm-bounded model [17].
of the system, which is equivalent to the original system, minimizes theAS in [11], we consider two different cases for time-varying delays
overdesign that stems from the model transformation source of conser-

vatism [11]. 7i(t) are differentiable functions, satisfying for al>> 0:
The conservatism that stems from the bounding of the cross terms

has also been significantly reduced in the past few years. An important

result for improving the standard bounding technique of, e.g., [2], hasTi(t) are continuous functions, satisfying for alb 0,0 < 7,(¢) <

been proposed in [12]. Indeed, combining the later with the descriptorh“ i =1,2.

model transformation lead in [10] and [11] to an efficient delay-de- ngie that in the past, the Razumikhin’s approach was the only one

pendent stability criterion that was also used in synthesis for stabilizfz; was to cope with Case 1) of fastly varying delays. The Krasovskii

tion ar_ld optima_l performance. Only recently, an improvement pft proach for this case was introduced recently in [11].
bounding technique has been proposed [13]. The latter generalizes th@e seek a control law

one in [12] and the resulting criteria that are obtained in [13] are, there-

fore, more efficient than those found in [12]. w(t) = Ka(t) (4)
Itis the purpose of this note to combine the bounding method of [13]

with the descriptor model transformation of [9] and [11] in order to dethat will asymptotically stabilize the system.

rive a most efficient stability criterion for systems with time-varying

delays. This criterion is then applied to solve the problem of robust s#a- Stability Issue

bilizing the system in presence of either norm-bounded or polytopiclnthis section, we considé?

uncertainties by means of state-feedback control. The resulting Cri&‘ae'scriptor form [9]

rion is applied to an example taken from [13], and its superiority to the

results of the latter is demonstrated. a(t) =y(t) (5a)
Notation: Throughout this note, the superscripstands for matrix 9 9 .

transpositionR"™ denotes the-dimensional Euclidean spacg;” ™ 0=—y(t)+ {24,} x(t) — ZA"? / y(s)ds (5b)

is the set of alln x m real matrices, and the notatiddh > 0, for =1 t—7i(t)

|. INTRODUCTION

j=1

Q; =[AY AP 4P BO.

0<m(t)<hi H(H<di<l, i=L2 (3

= 0. Representing (1) in an equivalent

i=0
or
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ioA,. _Iz}:z'(t)—iui}/tl y(s)ds (5¢)

= i=1 —7i(0)
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with z(¢t) = col{x(¢t), y(t)}, E = diag{I, 0}, the following Lya-
punov—Krasovskii functional is applied:

V(t) = 2L () EPE(t) + Vo + Vs (6)
where
P1 0 T
— / = >
P {P2 P3]7 Pr>0 EP=P E>0
2 0 t
v zz/ / o7 (s)Ruy(s)dsdd
=1 J—hi Jito
2 t
Vy = Z / aT(7)Siw(7)dr. (7a-e)
i=1 Jt—Ti(t)
The following result is obtained for Case ).
Lemma 1:Under Case 1), (1), with B = 0, is
asymptotically stable if there existn x =n matrices
0< P, Po, P, Si, Vi1, Yia, Zin, Zi2,Z;3,andR; > 0,i=1,2

that satisfy the following linear matrix inequalities (LMIs):

o] w0
=8
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and, hence, differentiating the first term of (6) with respedat ¢ives

d

= { (t)EP% (t)} = 2.7 () Pri(t) = 227 (1) P” [‘f)t)] . (10)

Substituting (5) into (10), we obtain (11), as shown at the bottom of the
page, where

a0 1 0 3 A7
=Pt | H|, =
=0 ' I _I
2
S 0
+ i=1 )
0 S R
i=1

ww2=2 [ & wrt [2] y(s)ds.

1

(12)

Since, by [13], forany € R™,b € R*™, N € R**", R € R"*",
Y € R"X2", Z € R?"*2" the following holds:

. .
Ty r a R Y - N a
-2 '/V”’S{b} {YT—N z ] [b]

A : -
=1, _sia-a) 0 where [;} }Z] >0 (13)
* * —52(1 - dz)
<0 we apply the latter on the expression we have previously obtained for
and [RZ ?} >0, i=1,2 (8a,b) m:- From (13), taking' = \; = P7 2 R =R, Z = Z,
' ’ Y =Y, a = y(s) andb = z(¢), we obtain, fori = 1,2, (14) found
where at the bottom of the page. Substituting the latter and (12) into (11), we
v v Zi— i 7o - obtain that
i = [Ya i2 i = v =1, ;
[ * ZZ"] d‘d(t) <" (Brig(t)
sT0 T o 17" t
v=pr |:Ao —I} + [ Ao —I} P where the first equation shown at the bottom of the next page holds,
2 and wherg(t) = col{x(t), y(t), «(t—71), @(t—72)}.Sincel'y =T
2 2.5 0 the LMIs in (8) lead td”" < 0, whileV > 0 and, thus, (1) withB = 0
+ Z hiZi+ | = 2 is asymptotically stable [5], [15]. m|
i=1 0 Y hR Choosing in Lemma 5; — 0 andY; = [0 A ]P" we obtain
s i o the following result for the case B.
+ Z {L} + Z P } (9a-c) Corollary 1: Under Case ll), (1), withB = 0, is asymptotically
i=1 0 = L0 stable if there exist x n matrices) < Py, Pz, Ps, Zi1, Zia, Zis
andR; > 0,: = 1, 2 that satisfy the following LMIs:
Proof: Note that B (0 AY)P!
g 1) = 27 () P () ¥, <0 and {* 7 ]20, i=1,2
v (t 2 t
( ) <z (HTE(t) — Z {(1 —d)a"(t =) St — ) + / y" (T)Riy(r)dT — 771'] (11)
i=1 Jt—h;

R; Y;—[0

w0z [ e #o)

A;

PT{U] Z;

Rl

:/ yT(s)R,;y(s)ds—i-?/ y (s)(Y: = [0 A;T]P):E(t)ds-i—/ #(t)T Zi3(t)ds

1 2 7

1

=/' "(s)Riy(s )ds+2/ @' (s)(Yi— [0 Al P)E(t)ds + mz(t)" Z:z(t)

1 7

g/tl Y(s)Riy(s)ds + 22" ()(Yi = [0 AV P)z(t) = 22" (t = ) (YV; = [0 AV P)&E(t) + hiz(t)” Z;2(t).

(14)
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where
Ziv  Zi» .
Zi_|:* Zi3:|’ i1=1,2
1.0 I ,0 1"
=Py Crlt i ya 1| T
=0 =0
2 0 , 0
+ z}hizi + 0 2_: hiR;
= =1

Remark 1: It follows from (8a) that the diagonal elemenrts; (1 —
d;), i = 1,2 are negative and, thus, > 0, since by assumption
d; < 1.

Remark 2: A question may arise as to whether the standard Ly

punov criterion can be restored when lettingo to 0. TakingR; = I,
[0 AT]Pand0 < S; — 0 we obtain

e

e

Z; :p_1/2,p — 00, Y

I+La
22l

2 2 2
(XA + (X ADPR Pi— P+ (X AP
=0 =0 =0

* —Pa—P3T

0
Ao

I
-1

I

_pT
v =P { _I

P

ForP; = A, A — 0andP. = P, > 0 the requirement tha¥ < 0
becomes

2 2
P> A+ Al <o, P00 (15)
=0 =0

It follows from (15) that if the system with = 0 is asymptotically

stable, then there exis®® > 0 that solves (15) and, thus, (8a),(b)

possess a solution for small enough> 0.

1933

In the sequel, it will be important to determine the conditions for
achievingH .. norm of (1) less than 1, whereis the input vector and
the controlled output is given by

z(t) = La(t) + Liaw(t — 71) + Lax(t — 72). (16)
Similarly to the derivation of the bounded real lemma (BRL) in [11],
we obtain the following.

Lemma 2:Under Case 1) the H., norm of (1) and
(16) is less than one if there existt x n matrices
0 < Ph P27 P‘% Si, }:1 Y','Q, Z,'17 Z,jQ,Z,‘,g andRi, 1= 1,2 that
satisfy (17), as shown at the bottom of the page, and (8b), wliere
is given by (9c).

Proof: Adding the terme” (¢)2(t) — w(#)Tw(t) to dV (t)/dt in
?il) and substituting foe(¢) from (16), the result follows from the
arguments used to derive Lemma 1 where the last column and row
blocks in (17) are obtained by applying the standard Schur’s formula

1.

B. State-Feedback Stabilization

The results of Lemma 1 can also be used to verify the stability of
the closed loop obtained by applying (4) to (1) (wBhs# 0) if we re-
placeA, in (8a) by Ay + BK and verify that the resulting inequality
is feasible over the polytope defined in (2) by solving the LMI simulta-
neously for all theV vertices, applying the sani® , P, S;, Yi1, Yio,
andR;,i = 1,2.

The problem with (8a) is that it is linear in its variables, only when
the state-feedback gaiR is given. In order to findK', consider the
inverse ofP. Itis obvious from the requirement 6f< P;, and the fact
thatin (8)(Ps + P; ) must be negative definite, thatis nonsingular.
Defining

e 0
pPr=e= {Qz Q%] (182)
A =diag{Q, I} (18b)

The latter can be readily used to verify the stability of (1) over the

uncertainty polytope (2) [1]:
— l\f —
Q=3 £9,
Jj=1

where theN vertices of the polytope are described by

J\r
forsome 0< f; <1,y fi=1

j=1

Q=4 AP 4Y]

by solving the LMI simultaneously for all th& vertices, applying the
samel, P;, S;,Y;1,Y;s, andR;,i = 1,2.

we multiply (8a) byA” andA, on the left and on the right, respec-

tively, and (8b), on the left and on the right, lyag{R'. Q*}

and diag{R;"', @}, respectively . Applying Schur formula

to the emerging quadratic term if), denoting5; = S;!,

7, = %’j %2] =Q"Z;QandR; = R;',i = 1,2 and choosing
Zi? Zi3

[Yii Y] = AT [P Ps], wheres; € R™*" is a diagonal

matrix, we obtain, similarly to [14], the following.

Theorem 1: The control law of (4) asymptotically stabilizes (1) for
all the delays that belong to Case I) and for all the system parameters
that reside in the uncertainty polytope, if for some diagonal matrices

2
T+ {hiZi+ {é] (Yi=[0 A71P)+ <Y,;T—PT {2 D[I 0]] S H ] =Y+ PT “) }
_ i=1 A A1 Az
I = x —Si(1—d) 0
* * —52(1—(12)
0 0 0 ,
T T _ 7T T T T
v P {B] P {Al] v/ P {AJ vy (L7
* -1 0 0 0
% * —Si(1—dy) 0 7| <0 17
* * * —Sy(1—dy) Ly
E3 ES * 0 —Ir
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£1, €2 € R™*", there existd) < Q1, QEQU Si, R >0, Zf]) € Corollary 2: In Case I), the control law of (21) asymptotically sta-
R™X™ i =1,2,j =1,2,3andt” € R7*™ that satisfy the LMIs shown bilizes (1) independently of the delay lengths, for all the system param-
in (19) at the bottom of the page, where eters that reside in the uncertainty polytope, if there eQist> 0, 51,

. 55, Q% , QY € R™™™ and¥; € R**",i = 0,1,2 that satisfy the
—(; ; i i ~ ; equations shown at the bottom of the page where
20 = QF - QYT+ QAP 43P q bad

= 20 =@V - QYT + Ay +Y BV, j=1.2,....N

2 AN
WZ9 + Y BOT j=1,2,...,N. . . (22a,b)
+ ; wln Y T The state-feedback gains are then given by
The state-feedback gain is then given by Ko =Y,Q,' K, =Y,5'  i=1L12 (23)
K=YqQ" (20) Remark 3: In Case I), the control law of (21) cannot be readily in-

corporated in the result of Theorem 1 because of the quadratic term
The previous result represents a delay-dependent sufficient conditibat will emerge in (19b) whemﬁj) is replaced by4§j) + BUEK;.
for the controller of (4) to guarantee, for Case 1), stability over the entif@ne can, however, solve the design problem with the feedback law of
uncertainty polytope. The corresponding delay-independent resul{24) by applying the method of [14] which converts the problem of
obtained, still for Case 1), by substituting = 0, R, = pI. and dealing with delayed components in the input to one with the control
Z; = 0in (19) and taking the limit wherg tends to infinity. The law of (4) by adding, in series to the input, simple linear components.
last two row and column blocks of (19a) will disappear dugto—  The transference of these components is almiastd the augmented

oo. Considering, still in the delay-independent case, the more genesgstem that results can be readily solved using the LMIs of Theorem 1.

control law The delay-dependent result for Case Il) is obtained by delé&firig
5 (6) and choosing; = I,.,7 = 1,2. The theory then develops along the
u(t) = Z Kix(t— 1) 21) lines thatled to Theorem 1. Thus, the result for_Case 1) is_t_hefollowing.
= ' Corollary 3: The control law of (4) asymptotically stabilizes (1) for

v . _ all the delays that belong to Case Il) and for all the system parameters
we replace4§” in (19) byAi“ + BYWEK; and obtain the following.  that reside in the uncertainty polytope, if there exigt: > 0, Q.(ZJ),

- .. N 2 . .
Q4+ Q" + Lz =0) 0 0 &
i=1
i) T 2 =(1 i P B =
* QY — QYT + > m 29 AT, — =8 AV, —=)5 0 0
=1
* * —(1—=d1)S: 0 0 0
* * * —(1 —d»)S, 0 0
3 % * % —51 0
% * % * kS —52
L * * * * * *
thx(ZJI)T }LZQEHT 7
thﬁ*’)T th;(gJ)T
0 0
0 0
0 19a
0 o | (19a)
0 0
—hi R, 0
* —haoRs |
Ri 0 R, A07
« ZYZY |20, i=12 (19b)
N
Q2+ Q3 = 0 S0 Q@
« _QgJJ _ Qg])T _A(IJ)S1 + B(j)Y1 _AgJ)SQ +BOWY, 0 0
* * * —(1 bl (]2)52 0 0
* * * —51 0
* * % % _52
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QY Ry, Ry € R™ ™ andY € R7*" that satisfy the LMIs shown in system (24) can be written as
the equation at the bottom of the page, and (19b), wheee T, and

where B(t) =Y Ase(t — i) + Bu(t)
2 1=0
2D =@ - QP + i3 AVT) +¢ 'HA{E, Ei E, Es]
=0

x col{z(t) z(t — 1) z(t — 72) u(t)}.

2
+ Zhizg) +V"BYT j=1,2,...,N. This system can be looked at as (26), wheref (25) is the feed-
i=1 back gain fromz of (26b) tow in (26a). Consider the closed-loop
The state-feedback gain is then given by (20). systemg that is obtained from (26a),(b) by applying the state-feed-
back controller. It follows from the existence of a solution to the above
H.. state-feedback control problem, th@atis asymptotically stable
and that theH., norm of the transference ¢f from w to = is less
than 1. Applying, therefore, the feedback gairit), which satisfies
The results of Section Il were derived for the case where the W25), aroundy, it follows from the small gain theorem [16] that the re-
known parameters of (1) lie in a given polytope. An alternative way @jlting closed-loop system will remain asymptotically stable. Since the
dealing with uncertain systems is to assume that the deviation of {a&er closed-loop system is identical to the closed-loop obtained from
system parameters from their nominal values is norm bounded [17].(fr4) by applying the same state-feedback controller (in the sense that

Ill. STABILIZATION OF SYSTEMS WITH NORM-BOUNDED
UNCERTAINTIES

our case, consider the system x(t) = £(1)), this controller also stabilizes (24).
2 In order to apply the aforementioned argument to (24), one should
i) = Z(Ai + HAMWE:)a(t — 7:(t)) use a BRL criterion that will guaranteeth,. -norm less than one to the
= ‘ closed-loop system obtained from (26). An efficient delay-dependent
+ (B + HA(t)Es3)u(t) BRL has recently been derived in [11]. The latter is based however on
2(5) =¢(s)s < 0 (24) the bounding technique of [12]. In order to benefit from the new method

in [13], we derive the following result from Lemma 2, applying the
wherex(t) andu(#) are defined in Section Il and the time delays aréameatransformation that was used in deriving Theorem 1 and taking
defined in (3). The matrices;, i = 0,1,2,B, H andE;,i =0, ..., 3 6=¢n

are constant matrices of appropriate dimensions. The matixisa  Theorem 2:In case A, (24) is stabilized via the control law of (4)

time-varying matrix of uncertain parameters satisfying for all A(t) that satisfy (25), if for some diagonaj, =, € R"*" and
ascala0 < 6, there exisD < Q1,Qi+1,Si, Ri > 0,Zi;,€ R"™",
AT(t)A(t) <I Y t. (25) i=1,2,j =1,2,3andY € R¢*" that satisfy the LMIs, shown in the

] ) B ) equation at the bottom of the next page. where
We consider also, for a given positive scafathe following aug-

2 2
mented system: 2y = Qi—QE +Qu (AT +3° 54T+ hiZu+Y BT, (28ac)

2 =1 =1
£(t) = Ai(t = 7i(t)) + Bu(t) + ¢~ Hu(t) The state-feedback gain is then given by
=0

£(s) =g(s) s <0 K=YQr" (29)

Remark 4: The delay-independent version in Case I) is obtained by
solving (28a) and (28c), where = 0, Z; = 0 and where the eighth
and the ninth row and column blocks are omitted.

2(t) =¢Eof(t) + Y 2E:f(t—7:) + éBsu(t)  (26a,b)

=1

with the performance index In Case I}, the corresponding delay-dependent result is obtained by
oo solving the LMIs of Theorem 2 fof; = I,i = 1,2, where in (28a)
J(w) = / (sz — wTw)dT (27)  the fourth, fifth, sixth, and seventh row and column blocks are deleted.
0 Remark 5: The results of Theorems 1 and 2 apply the tuning
wherew € L, is an exogenous signal. parameters; and=,. The question arises how to find the optimal

It has been explicitly proved in [17], in the case without delays, thebmbination of these parameters. One way to address the tuning issue
the existence of a solution to the Riccati equations or LMIs that ai®to choose for a cost function the parameter, that is obtained
obtained when solving thH ., state-feedback control problem for thewhile solving the feasibility problem using Matlab’s LMI toolbox [18].
augmented system (26) with the index (27), without delays, guarantdéss scalar parameter is positive in cases where the combination of the
the stability of (24), under the same feedback law, for/a{k) that tuning parameters is one that does not allow a feasible solution to the
satisfy (25). The proof follows, in fact, from the small gain theorerset of LMIs considered. Applying a numerical optimization algorithm,
[16] which can also be applied to our case of retarded systems. Tdech as the prografminsearchin the optimization toolbox of Matlab

v 2 . . .
Qé]) + QéJ)T + Z h1Z,(f) E(.]) ]thJ)T hQQ;J)T
=1
) 2 B ) "
—QY = QYT+ X miZ3 mQPT hQYT | <o
=1
* * —h Ry 0

* % % —h,g R2
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[19], to the above cost function, a locally convergent solution th = 0.5865 is obtained using = 0.75071, andé = 0.8. The corre-
the problem is obtained. If the resulting minimum value of the cosponding feedback-gain matrix I§ = —[0.3155 4.4417]. Using
function is negative, the tuning parameters that solve the problem &éne method of [11] (an improved version of [10]), which is based on the
found. bounding method of [12], a maximum valuelot= 0.55 was achieved

The latter optimization procedure is time consuming. Our experienaéth § = 0.3,z = —0.2 andK = —[0.0229 52.8656].
shows thattaking: = =2 = £I, wherez is a scalar, a one-dimensional It is noted that the computational complexity of the solutions in [10]
search forz is easily performed. The cost function, or the bound oand [11] and the present method is the same. Comparing to [13], the
delay that still maintains stability, exhibit then a convex behavior wittterations required there almost compensate the increase in the dimen-
respect t&g and a clear optimum value of the latter is obtained. In thgion of the LMIs that is caused by using the descriptor approach.
examples we solved, the single tuning paramesahieved results that  In Case Il) (fastly varying delays), the corresponding resultdase:

are quite close to those obtained by the fminsearch program. 0.496, K = —[0.34 5.168] ands = 0.8 by Remark 2 anch =
0.489, K = —[0.2884 13.8558] and§ = 0.1 by [11].
IV. EXAMPLES It follows from this that the theory of [11] provides stabilization re-

S ) sults that are superior to those obtained in [13]. This is true in spite of
We demonstrate the applicability of the above theory by solving thee tact that the former applies the old bounding method of [12] and

second example in [13] for a system with norm-bounded uncertainfy,; it handles time-delays that can vary very fast. The results that are

and the third example from [2], where we neglect uncertainties.  gptained using the theory of the present note surpass those found by
Example 1: The problem in [13]is one where a state-feedback CORe methods of [11]. The combination of the descriptor approach and

trol is sought that stabilized (24) for one delay with the new bounding method of [13] is shown to be superior to all other

0 0 solutions that were proposed in the Iiterature.. _
Ag = {0 1} E)_(gmple 2[2]: We address _the problem of flndlr_lg a state-fee(jbgck
stabilizing controller for (24) with one delay and without uncertainties
4, = {—02 —f] (H = E; = 0), where
00
5= =[5 1]
-1 -1
H =0.2I A = { 0 _0.9}
E[) :IZ. 0
5=[1]
For the case offl = 0, the maximum bound for which the system 1
is stabilized by a state-feedback was found in [13], after 99 iterationspplying the method of [2, Cor. 3.2], it was found that, foe 0, the
to be 0.45. Applying the result of Theorem 2, a maximum bound sf/stem is stabilizable for alt < 1. For, say,r = .999 a minimum
- 2
Q2+ Q3 + Y hiZa gy 0 0 0 Q1 Q1 Qi
1=1
* —Qs — Q4 + i hiZiz 6H Ai(I, —21)5 As(I, —5)5 0 0 Qi
=1
* * I 0 0 0 0 0
* % % —(1 - d] )§1 0 0 0 0
* * * * —(1—=d2)55 0 0 0
* * * * * -5 0 0
* * * * * * -5 0
* * * * * * * —hrlfh
* £ % £ % * % B3
L * * * * * * * *
h2Qi  QuEs + Y E{
h2Q3 0
0 0
0 S ET
0 5‘2E3T
0 0 <0
0 0
0 0
—}LzE’,g 0
* —61 i
R, 0 R;E;AZT_
x  Zn Zio >0, 1=1,2
% * Z,‘g i
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value of v = 1.8822 results for K = —[.10452 749058]. Ultimate Periodicity of Orbits for Min—Max Systems
By [11], the system is stabilizable fok < 1.408.. By The-

orem 1, the corresponding value is = 1.51 for = = 0.59 and Yiping Cheng and Da-Zhong Zheng

K = —[58.31 294.933].

Abstract—The ultimate periodicity theorem is an important result in
min—-max systems theory. It was first proved by Olsder and Perennes in
their unpublished work. In this note, we present a new proof. This proof
is also based on two important theorems: the existence of cycle time for

Th bl f findi feedback I h any min—max function and the Nussbaum-Sine theorem. However, two dif-
€ problem of finding a state-feedback controller that asymlﬂe’renttechniques, pure min—max function and conditional redundancy, are

totically stabilizes a linear time-delay system with either polytopigsed to obtain two important intermediate results. The purpose of this note
or norm-bounded uncertainty has been solved. A delay-dependisrit provide a simple alternate proof to the ultimate periodicity theorem.
solution has been derived using a special Lyapunov—KrasovsKiingex Terms—Discrete-event systems, min-max functions, ultimate pe-
functional. The result is based on a sufficient condition and it thusdicity.
entails an overdesign. This overdesign is considerably reduced due

to the fact that is based on the descriptor representation and since it
applies a new bounding method.

V. CONCLUSION

|. INTRODUCTION

Min—max functions (e.g., [1] and [2]) arise in modeling the dynamic
behavior of discrete-event systems with maximum and minimum
constraints, such as digital circuits, computer networks, manufacturing
plants, etc. Mathematically, a min—-max functiéh : R* — R"
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