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Abstract. The Soil and Water Assessment Tool (SWAT) is

a globally applied river basin ecohydrological model used in

a wide spectrum of studies, ranging from land use change

and climate change impacts studies to research for the devel-

opment of the best water management practices. However,

SWAT has limitations in simulating the seasonal growth cy-

cles for trees and perennial vegetation in the tropics, where

rainfall rather than temperature is the dominant plant growth

controlling factor. Our goal is to improve the vegetation

growth module of SWAT for simulating the vegetation vari-

ables – such as the leaf area index (LAI) – for tropical ecosys-

tems. Therefore, we present a modified SWAT version for

the tropics (SWAT-T) that uses a straightforward but robust

soil moisture index (SMI) – a quotient of rainfall (P ) and

reference evapotranspiration (ETr) – to dynamically initiate

a new growth cycle within a predefined period. Our results

for the Mara Basin (Kenya/Tanzania) show that the SWAT-T-

simulated LAI corresponds well with the Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) LAI for evergreen

forest, savanna grassland and shrubland. This indicates that

the SMI is reliable for triggering a new annual growth cy-

cle. The water balance components (evapotranspiration and

streamflow) simulated by the SWAT-T exhibit a good agree-

ment with remote-sensing-based evapotranspiration (ET-RS)

and observed streamflow. The SWAT-T model, with the pro-

posed vegetation growth module for tropical ecosystems, can

be a robust tool for simulating the vegetation growth dynam-

ics in hydrologic models in tropical regions.

1 Introduction

The Soil and Water Assessment Tool (SWAT; Arnold et al.,

1998) is a process-oriented, spatially semi-distributed and

time-continuous river basin model. SWAT is one of the most

widely applied ecohydrological models for the modelling of

hydrological and biophysical processes under a range of cli-

mate and management conditions (Arnold et al., 2012; Bres-

siani et al., 2015; Gassman et al., 2014; van Griensven et al.,

2012; Krysanova and White, 2015). SWAT has been used in

many studies in tropical Africa to investigate the basin hy-

drology (e.g. Dessu and Melesse, 2012; Easton et al., 2010;

Mwangi et al., 2016; Setegn et al., 2009) as well as to study

the hydrological impacts of land use change (e.g. Gebremi-

cael et al., 2013; Githui et al., 2009; Mango et al., 2011) and

climate change (Mango et al., 2011; Mengistu and Sorteberg,

2012; Setegn et al., 2011; Teklesadik et al., 2017). Notwith-

standing the high number of SWAT model applications in

tropical catchments, only a few studies discussed the limi-

tation of its plant growth module for simulating the growth

cycles of trees and of perennial and annual vegetation in this

region of the world (Mwangi et al., 2016; Strauch and Volk,

2013; Wagner et al., 2011).

It is worthwhile to note that phenological changes in veg-

etation affect the biophysical and hydrological processes in

the basin and thus play a key role in integrated hydrologic

and ecosystem modelling (Jolly and Running, 2004; Kiniry

and MacDonald, 2008; Shen et al., 2013; Strauch and Volk,

2013; Yang and Zhang, 2016; Yu et al., 2016). The leaf area

index (LAI) – the area of green leaves per unit area of land

– is a vegetation attribute commonly used in ecohydrological

modelling, as it strongly correlates with the vegetation phe-
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nological development. Thus, an enhanced representation of

the LAI dynamics can improve the predictive capability of

hydrologic models, as already noted in several studies (An-

dersen et al., 2002; Yu et al., 2016; Zhang et al., 2009).

Arnold et al. (2012) underscored the need for a realistic rep-

resentation of the local and regional plant growth processes

to reliably simulate the water balance, the erosion and the nu-

trient yields using SWAT. For instance, the LAI and canopy

height are needed to determine the canopy resistance and the

aerodynamic resistance to subsequently compute the poten-

tial plant transpiration in SWAT. Therefore, inconsistencies

in the vegetation growth simulations could result in uncer-

tain estimates of the actual evapotranspiration (ET), as noted

in Alemayehu et al. (2015).

SWAT utilizes a simplified version of the Environmental

Policy Impact Climate (EPIC) crop growth module to sim-

ulate the phenological development of plants, based on ac-

cumulated heat units (Arnold et al., 1998; Neitsch et al.,

2011). It uses dormancy, which is a function of day length

and latitude, to repeat the annual growth cycle for trees and

perennials. Admittedly, this approach is suitable for temper-

ate regions. However, Strauch and Volk (2013) showed that

the temporal dynamics of the LAI are not well represented

for perennial vegetation (savanna and shrubs) and evergreen

forest in Brazil. Likewise, Wagner et al. (2011) reported a

mismatch between the growth cycle of deciduous forest and

the SWAT dormancy period in the Western Ghats (India), and

they subsequently shifted the dormancy period to the dry sea-

son.

Unlike temperate regions where the vegetation growth dy-

namics are mainly controlled by the temperature, the primary

controlling factor in tropical regions is the rainfall (i.e. the

water availability) (Jolly and Running, 2004; Lotsch, 2003;

Pfeifer et al., 2012, 2014; Zhang, 2005). A study of Zhang et

al. (2005) explored the relationship between the rainfall sea-

sonality and the vegetation phenology across Africa. They

showed that the onset of the vegetation green-up can be pre-

dicted using the cumulative rainfall as a criterion for the sea-

son change. Jolly and Running (2004) determined the tim-

ing of leaf flush in an ecosystem process simulator (BIOME-

BGC) after a defined dry season in the Kalahari, using events

where the daily rainfall (P ) exceeded the reference evap-

otranspiration (ETr). They showed that the modelled leaf

flush dates compared well with the leaf flush dates estimated

from the normalized difference vegetation index (NDVI).

This points to the feasibility of using a proxy derived from P

and ETr to pinpoint a season change in the tropics. Sacks et

al. (2010) made a global study of the relations between crop

planting dates and temperature, P and ETr, using 30-year

climatological values. They noted that in rainfall-limited re-

gions the ratio of P to ETr is a better proxy for the soil mois-

ture status than P alone. Using a soil moisture index (SMI)

derived from the ratio of P to ETr to trigger a new growth cy-

cle in hydrological modelling is appealing because the SMI

can be determined a priori. On the other hand, Strauch and

Volk (2013) used the SWAT-simulated soil moisture in the

top soil layers to indicate the start of a wet season (SOS) and

thus of a new vegetation growth cycle. Their results showed

an improved simulation of the seasonal dynamics of the LAI

and a good match with the Moderate Resolution Imaging

Spectroradiometer (MODIS) 8-day LAI. However, such an

approach requires a calibration of the SWAT parameters that

govern the soil water balance dynamics. The latter is not ob-

vious when only observed streamflow data are used for the

calibration (Yu et al., 2016).

The main objective of this study is to improve the vege-

tation growth module of SWAT for trees and perennials in

the tropics. Towards this, the use of the SMI as a dynamic

trigger for a new vegetation growth cycle within a prede-

fined period will be explored. The modified SWAT (SWAT-T)

model will be evaluated for the Mara River basin using 8-

day MODIS LAI and remote-sensing-based ET (Alemayehu

et al., 2017). Additionally, the model will be evaluated using

observed daily streamflow data.

2 Materials and methods

2.1 The study area

The Mara River, a transboundary river shared by Kenya

and Tanzania, drains an area of 13 750 km2 (Fig. 1a). This

river originates from the forested Mau Escarpment (about

3000 m a.s.l.). It meanders through diverse agroecosystems,

subsequently crosses the Maasai Mara game reserve in

Kenya and the Serengeti National Park in Tanzania and fi-

nally feeds Lake Victoria. The Amala River and the Nyan-

gores River are its only perennial tributaries. The Talek River

and the Sand River are the two most notable seasonal rivers

stemming from Loita Hills.

Rainfall varies spatially mainly due to its equatorial lo-

cation and the topography. The rainfall pattern in most part

of the basin is bimodal, with a short rainy season (October–

December) driven by convergence and southward migration

of the Intertropical Convergence Zone (ITCZ) and a long

rainy season (March–May) driven by south-easterly trades.

In general, rainfall decreases from west to east across the

basin, while temperature increases southwards. The Mara

Basin is endowed with significant biodiversity features, in-

cluding moist montane forest on the escarpment, dry upland

forest, scattered woodland and extensive savanna grasslands

(Fig. 1b). The upper forested basin is dominated by well-

drained volcanic origin soils, while the middle and lower

parts of the basin are dominated by poorly drained soil types

with high clay content.

2.2 The SWAT model description

SWAT (Arnold et al., 1998, 2012; Neitsch et al., 2011) is a

comprehensive, process-oriented and physically based eco-

hydrological model for river basins. It requires specific in-
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Figure 1. The Mara Basin (a) and its land cover classes (b). Note the sample site locations (dashed areas) for the major natural vegetation

classes that are used to mask the Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI).

formation about weather, soil properties, topography, vege-

tation and land management practices in the watershed to

directly simulate physical processes associated with water

movement, sediment movement, crop growth, nutrient cy-

cling, etc. In SWAT, a basin is partitioned into sub-basins

using topographic information. The sub-basins, in turn, are

subdivided into hydrological response units (HRUs) that rep-

resent a unique combination of land use, soil type and slope

class. All the hydrologic processes are simulated at HRU

level on a daily or sub-daily time step. The flows are then
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aggregated to sub-basin level for routing into a river network

(Neitsch et al., 2011). SWAT considers five storages to cal-

culate the water balance: snow, the canopy storage, the soil

profile (with up to 10 layers), a shallow aquifer and a deep

aquifer. The global water balance is expressed as

1S =

N
∑

i=1

(P − Qtotal − ET − losses) , (1)

where 1S is the change in water storage (mm) and N is the

time in days. P , Qtotal, ET and losses are the amounts of pre-

cipitation (mm), the total water yield (mm), the evapotranspi-

ration (mm) and the groundwater losses (mm), respectively.

The total water yield represents an aggregated sum of the

surface runoff, the lateral flow and the return flow. In this

study, the surface runoff is computed using the Soil Con-

servation Service (SCS) curve number (CN) method (USDA

SCS, 1972).

SWAT provides three options for estimating ETr: the Har-

greaves (Hargreaves and Samani, 1985), Priestley–Taylor

(Priestley and Taylor, 1972) and Penman–Monteith (Mon-

teith, 1965; Neitsch et al., 2011) methods. The model simu-

lates evaporation from soil and plants separately, as described

in Ritchie (1972). The potential soil evaporation is simulated

as a function of ETr and the LAI. The actual soil water evap-

oration is estimated by using exponential functions of soil

depth and water content (Neitsch et al., 2011). The simulated

LAI is also required to calculate the potential plant transpira-

tion, with a formulation that varies depending on the selected

ETr method (Alemayehu et al., 2015; Neitsch et al., 2011).

The actual plant transpiration (i.e. the plant water uptake) is

reduced exponentially for soil water contents below field ca-

pacity. Therefore, the ET refers to the sum of the evaporation

from the canopy and from the soil as well as plant transpira-

tion.

In this study, we use the Penman–Monteith method (Mon-

teith, 1965) to compute the ETr for alfalfa reference crop as

(Neitsch et al., 2011)

ETr =
1 · (Hnet − G) + ρair · cp ·

[

eo
z − ez

]

/ra

1 + γ · (1 + rc/ra)
, (2)

where ETr is the maximum transpiration rate (mm d−1), 1

is the slope of the saturation vapour pressure–temperature

curve (kPa ◦C−1), Hnet is the net radiation (MJ m−2 d−1), G

is the heat flux density to the ground (MJ m−2 d−1), ρair is the

air density (kg m−3), Cp is the specific heat at constant pres-

sure (MJ kg−1 ◦C−1), e0
z is the saturation vapour pressure of

air at height z (kPa), ez is the water vapour pressure of air at

height z (kPa), γ is the psychrometric constant (kPa ◦C−1), rc

is the plant canopy resistance (s m−1) and ra is the diffusion

resistance of the air layer (aerodynamic resistance) (s m−1).

The plant growth module in SWAT simulates the LAI and

the canopy height, which are required to calculate the canopy

and the aerodynamic resistance.

2.3 The vegetation growth and leaf area index

modelling in SWAT

SWAT simulates the annual vegetation growth based on the

simplified version of the EPIC plant growth model (Neitsch

et al., 2011). The potential plant phenological development

is hereby simulated on the basis of accumulated heat units

under optimal conditions; however, the actual growth is

constrained by temperature, water, nitrogen or phosphorous

stress (Arnold et al., 2012; Neitsch et al., 2011).

Plant growth is primarily based on temperature, and hence

each plant has its own temperature requirements (i.e. min-

imum, maximum and optimum). The fundamental assump-

tion of the heat unit theory is that plants have a heat unit

requirement that can be quantified and linked to the time

of planting and maturity (Kiniry and MacDonald, 2008;

Neitsch et al., 2011). The total number of heat units re-

quired for a plant to reach maturity must be provided by

the user. The plant growth modelling includes the simula-

tion of the leaf area development, the light interception and

the conversion of intercepted light into biomass, assuming

a plant species-specific radiation-use efficiency (Neitsch et

al., 2011). The plant growth model assumes a uniform, sin-

gle plant species community; thereby, plant mixtures such

as trees and grass cannot be simulated in SWAT (Kiniry and

MacDonald, 2008).

During the initial period of the growth, the optimal leaf

area development is modelled (Neitsch et al., 2011) as

frLAImx =
frPHU

frPHU + exp(l1 − l2 · frPHU)
, (3)

where frLAImx is the fraction of the plant’s maximum leaf area

index corresponding to a given fraction of the potential heat

units for the plant, frPHU is the fraction of potential heat units

accumulated for the plant on a given day during the growing

season, and l1 and l2 are shape coefficients. Once the maxi-

mum leaf area index is reached, the LAI will remain constant

until the leaf senescence begins to exceed the leaf growth.

Afterwards, the leaf senescence becomes the dominant

growth process, and hence the LAI follows a linear decline

(Neitsch et al., 2011). However, Strauch and Volk (2013)

suggested a logistic decline curve instead, in order to avoid

the LAI dropping to zero before entering the dormancy stage.

We adopted this change in SWAT2012, whereby the LAI dur-

ing leaf senescence for trees and perennials is calculated as

(Strauch and Volk, 2013)

LAI =
LAImx − LAImin

1 + exp(−t)
(4)

with t = 12(r − 0.5)

and r =
1 − frPHU

1 − frPHU,sen
, frPHU ≥ frPHU,sen,

where the term used as exponent is a function of time (t),

and LAImx and LAImin are the maximum and minimum (i.e.
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during dormancy) leaf area index, respectively. frPHU,sen is

the fraction of the potential heat units for the plant at which

senescence becomes the dominant growth process and frPHU

is the fraction of potential heat units accumulated for the

plant on a given day during the growing season.

As detailed in Neitsch et al. (2011), the daily LAI calcula-

tions for perennials and trees are slightly different, as for the

latter the years of development are considered.

For perennials, the LAI for a day i is calculated as

LAIi = LAIi−1 + 1LAIi, (5)

and the change of LAI on day i is calculated as

1LAIi =
(

frLAImx,i − frLAImx,i−1

)

· LAImx (6)

· (1 − exp(5 · (LAIi−1 − LAImx))) .

2.4 The limitation of the annual vegetation growth

cycle simulation in SWAT for the tropics

Dormancy is the period during which trees and perennials do

not grow. It is commonly considered to be a function of lati-

tude and day length. It is assumed that dormancy starts as the

day length nears the minimum day length of the year. At the

beginning of the dormancy period, a fraction of the biomass

is converted to residue and the leaf area index is set to the

minimum value (Neitsch et al., 2011) and thereby resets the

annual growth cycle. Also, SWAT offers two management

settings options for the start and the end of the growing sea-

son, either based on a calendar date scheduling or based on

heat units (the default).

In the tropics, however, dormancy is primarily controlled

by precipitation (Bobée et al., 2012; Jolly and Running,

2004; Lotsch, 2003; Zhang et al., 2010; Zhang, 2005).

Hence, the default growth module of SWAT cannot realis-

tically represent the seasonal growth dynamics for trees and

perennials in the tropics.

2.5 A soil moisture index-based vegetation growth

cycle for the tropics

As several studies demonstrated (Jolly and Running, 2004;

Zhang, 2005; Zhang et al., 2006), the water availability in

the soil profile is one of the primary governing factors of the

vegetation growth in the tropics. Thus, we propose to imple-

ment a soil moisture index (SMI) to trigger a new growth

cycle for tropical ecosystems in SWAT within a predefined

period. The SMI is computed as

SMI =
P

ETr
, (7)

where P and ETr denote daily or aggregated rainfall and

reference evapotranspiration (mm d−1), respectively. In this

study, we used 5-day (i.e. pentad) aggregated P and ETr to

determine the SMI, in order to assure sufficient soil mois-

ture availability to initiate a new growth cycle. The SMI is

somewhat similar to the water requirement satisfaction in-

dex (WRSI) (McNally et al., 2015; Verdin and Klaver, 2002),

which is a ratio of ET to ETr.

Figure 2 presents the seasonal pattern of SMI, based on

long-term precipitation for several gauge stations in the Mara

Basin and ETr data from Trabucco and Zomer (2009). It is

apparent from Fig. 2 that the dry season (mostly from June

to September) shows low SMI values (less than 0.5). Addi-

tionally, these patterns resemble well the long-term monthly

average LAI for the savanna ecosystem (the dominant cover

in the midsection of the Mara Basin). In areas with a humid

climate (i.e. the headwater regions of the basin), the SMI val-

ues are high and the rainfall regime is different, yet in the rel-

atively drier months (January and February) the SMI is low.

As shown in Fig. 2, the LAI and the SMI seasonal dynam-

ics match well, when a lag time of approximately 1 month is

considered. From this, we conclude that the SMI can be used

as a proxy for the start of the wet season (SOS) and hence to

trigger the vegetation growth cycle. This approach enables a

dynamic simulation of the growth cycle by SWAT, without

the need to define the exact dates of the beginning and the

end of the growing season (the “plant” and “kill” dates).

To avoid false starts of the new growing cycle during the

dry season due to short-spell rainfall, the end of the dry sea-

son and the beginning of the rainy season (SOS1 and SOS2,

respectively) should be provided by the user. These months

are determined using a long-term monthly climatological P

to ETr ratio (Fig. 2). For a river basin with a single rain-

fall regime, a single set of SOS months are required. How-

ever, in a basin with multiple rainfall regimes (i.e. mostly

large basins), different sets of SOS months should be pro-

vided at sub-basin level. In our study area, two distinct rain-

fall regimes are observed, and therefore two different SOS

months were needed. For most sub-basins, October (SOS1)

and November (SOS2) were used as transitions (Fig. 2).

2.6 The adaptation of the SWAT plant growth

module in SWAT-T

Based on the rationale elaborated in the preceding sections,

we modified the standard SWAT2012 (revision 627) plant

growth subroutine for basins located between 20◦ N and

20◦ S:

i. If the simulation day is within SOS1 and SOS2 for a

given HRU and a new growing cycle is not initiated yet,

the SMI is calculated as the ratio of P to ETr.

ii. If the SMI exceeds or equals a user-defined threshold, a

new growing cycle for trees and perennials is initiated.

Subsequently, frPHU is set to 0 and the LAI is set to the

minimum value. Plant residue decomposition and nutri-

ent release is calculated as if dormancy would occur.

iii. In the case where the SMI is still below a user-defined

threshold at the end of month SOS2, a new growing cy-

cle is initiated immediately after the last date of SOS2.
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Figure 2. The moisture index (SMI) derived from historical precipitation observations (P ) across the Mara Basin and the global reference

evapotranspiration data of Trabucco and Zomer (2009) (ETr). The dotted line represents the leaf area index (LAI) for the savanna ecosystem.

SOS1 and SOS2 represent the start of the wet season (SOS) transition months to trigger growth.

Table 1. Summary of the inputs of the SWAT model and the evaluation datasets.

Spatial/temporal

resolution

Source Description

Rainfall 5 km/1-day Roy et al. (2017) Bias-corrected satellite rainfall for Mara Basin

Climate 25 km/3 h Rodell et al. (2004) Max. and min. temperature, relative humidity,

wind, solar radiation

Land cover classes 30 m FAO (2002) Land cover classes for east Africa

DEM 30 m NASA (2014) Digital elevation model

Soil classes 1 km FAO (2009) Global soil classes

Discharge Daily (2002–2008) WRMA (Kenya) River discharge at Bomet

ET 1 km/8-day Alemayehu et al. (2017) ET maps for Mara Basin

MOD15A2 1 km/8-day LPDAAC (2014) Global leaf area index

It is worth noting that the SMI threshold can be set depending

on the climatic condition of the basin.

The SWAT-T executable and the associated changes can

be found in the Supplement.

2.7 The data used for the evaluations

2.7.1 The leaf area index

The remote sensing LAI data used in this study are based

on the MODIS TERRA sensor (Table 1). The LAI product

retrieval algorithm is based on the physics of the radiative

transfer in vegetation canopies (Myneni et al., 2002) and in-

volves several constants (leaf angle distribution, optical prop-

erties of soils and wood, and canopy heterogeneity) (Bobée

et al., 2012). The theoretical basis of the MODIS LAI al-

gorithm and the validation results are detailed in Myneni et

al. (2002). Kraus (2008) validated the MOD15A2 LAI data at

the Budongo Forest (Uganda) and Kakamega Forest (Kenya)

sites and reported an accuracy level comparable to the ac-

curacy of field measurements, indicating the reliability of

MOD15A2 LAI.

We selected relatively homogeneous representative sam-

ple sites (i.e. polygons) for evergreen forest (174 km2),

tea (123 km2), savanna grassland (136 km2) and shrubland

(130 km2) (see Fig. 1b) using the Africover classes and

Google Earth images. This is useful to reduce the effect of

mixed LAI values from different land cover classes while

averaging the coarse-scale (i.e. 1 km) MODIS LAI. The

MOD15A2 pixels with quality flag 0 (i.e. indicating good
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Figure 3. The 8-day raw-median LAI time series for evergreen forest (a), tea (b), grassland (c) and shrubland (d) sample sites. The raw-

median LAI is smoothed using the Breaks For Additive Seasonal and Trend (BFAST) method (Verbesselt et al., 2010).

quality) were masked using the polygons of the sample cov-

ers. Also, pixels with LAI values less than 1.5 during the

peak growing months (i.e. the period with LAI values mostly

above 2.0) were removed. Finally, we extracted the 8-day

median LAI time series for each land cover for 2002–2009

and few gaps in the LAI time series were filled using linear

interpolation. Notwithstanding all the quality control efforts,

we noted breaks and a high temporal variation in the LAI

time series due the inevitable signal noise (Fig. 3). Verbesselt

et al. (2010) developed the Breaks For Additive Seasonal

and Trend (BFAST) method that decomposes the NDVI time

series into trend, seasonal and remainder components. The

trend and seasonal components comprise information that is

pertinent to phenological developments as well as gradual

and abrupt changes, whereas the remainder time series. This

method has been applied to tropical ecosystems to identify

phenological cycles as well as abrupt changes (DeVries et

al., 2015; Verbesselt et al., 2010, 2012). In our study, we used

the BFAST tool to extract the seasonal development pattern

of LAI while excluding the noise and error information from

the LAI time series. Figure 3 demonstrates the smoothed 8-

day LAI time series using BFAST along with the raw-median

LAI values. It is apparent from the smoothed LAI time series

that the high LAI development occurs during the wet months

from March to May, suggesting consistency in the smoothed

LAI time series. Therefore, the smoothed LAI time series

were used to calibrate and evaluate the SWAT-T model veg-

etation growth module for simulating LAI.

2.7.2 The evapotranspiration

ET is one of the major components of a basin water bal-

ance that is influenced by the seasonal vegetation growth cy-

cle. Thus, remote-sensing-based ET estimates can be used

to evaluate (calibrate) the SWAT-T model. Alemayehu et

al. (2017) estimated ET for the Mara River basin using sev-

eral MODIS thermal imageries and the Global Land Data

Assimilation System (GLDAS) (Rodell et al., 2004) weather

dataset from 2002 to 2009 at an 8-day temporal resolution

based on the operational simplified surface energy balance

(SSEBop) algorithm (Senay et al., 2013). The latter mainly

depends on the remotely sensed land surface temperature and

the grass reference evapotranspiration (Senay et al., 2013).

Alemayehu et al. (2017) demonstrated that the SSEBop ET

for the study area explained about 52, 63 and 81 % of the

observed variability in the MODIS NDVI at 16-day, monthly

and annual temporal resolution. Also, they suggested that the

estimated ET can be used for hydrological model parameter-

ization. Therefore, we used this remote-sensing-based ET es-

timate (hereafter ET-RS) to evaluate the SWAT-T-simulated

ET at a land cover level.

2.7.3 Streamflow

Due to the limited availability of observed streamflow, we

used daily observed streamflow series (2002–2008) for the

headwater region (700 km2) at the Bomet gauging station.

The streamflow dataset is relatively complete, with about

11 % missing data distributed throughout the time series.

2.8 Model set-up, calibration and evaluation

2.8.1 The model set-up and data used

The Mara River basin was delineated using a high-resolution

(30 m) digital elevation model (DEM) (NASA, 2014) in Arc-

SWAT2012 (revision 627). The basin was subdivided into 89

sub-basins to spatially differentiate areas of the basin dom-
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inated by different land use and/or soil type with dissimilar

impact on hydrology. Each sub-basin was further discretized

into several HRUs. The model was set up for land use con-

ditions representing the period 2002–2009. The land cover

classes for the basin were obtained from the FAO Africover

project (FAO, 2002). As shown in Fig. 1b, the dominant

portion of the basin is covered by natural vegetation in-

cluding savanna grassland, shrubland and evergreen forest.

These land cover classes were assigned the characteristics of

RNGE, RNGB and FRSE, respectively, in the SWAT plant

database (Neitsch et al., 2011). We extracted the soil classes

for the basin from the Harmonized Global Soil Database

(FAO, 2008). A soil properties database for the Mara River

basin was established using the soil water characteristics tool

(SPAW; http://hydrolab.arsusda.gov/soilwater).

The list of hydroclimatological and spatial data used to

drive the SWAT model is presented in Table 1. In situ mea-

surements of rainfall and other climate variables are sparse,

and thus bias-corrected multi-satellite rainfall analysis data

from Roy et al. (2017) were used. The bias correction in-

volves using historical gauge measurements and a downscal-

ing to a 5 km resolution. Detailed information on the bias-

correction and downscaling procedures can be found in Roy

et al. (2017). The ETr was computed in SWAT using GLDAS

weather data (Rodell et al., 2004) based on the Penman–

Monteith (Monteith, 1965) approach. To remove the biases

in SWAT-computed ETr compared to the observation-based

monthly average (1950–2000) ETr data from Trabucco and

Zomer (2009), the GLDAS solar radiation were adjusted rel-

atively per month and per sub-basin.

2.8.2 Model calibration and evaluation approach

The main purpose of this study is to explore the potential of

the SMI to trigger a new vegetation growth cycle for tropical

ecosystems. To evaluate the effect of the modification on the

SWAT vegetation growth module, we initially intercompared

simulated LAI from the modified (i.e. SWAT-T) and the stan-

dard plant growth module with varying management settings.

This analysis involved uncalibrated simulations with the de-

fault SWAT model parameters, whereby the models thus only

differ regarding the way the vegetation growth is simulated,

and in terms of the management settings. It is worth noting

that the aim of these simulations is mainly to expose the in-

consistencies in the vegetation growth module structure of

the original SWAT model. Afterwards, we calibrated the pa-

rameters related to the simulation of the LAI, the ET and

the streamflow by trial and error, and expert knowledge for

the SWAT-T model. Firstly, the SWAT parameters that con-

trol the shape, the magnitude and the temporal dynamics of

LAI were adjusted to reproduce the 8-day MODIS LAI for

each land cover class. Then, we adjusted the parameters that

mainly control the streamflow and ET simulation, simulta-

neously using the daily observed streamflow and the 8-day

ET-RS. One may put forward that the manual adjustment

may not be as robust as an automatic calibration as the lat-

ter explores a larger parameter space. However, the manual

calibration is believed to be apt to illustrate the impact of

the modification of the vegetation growth cycle and its effect

on the water balance components. The SWAT-T model cali-

bration and validation were done for 2002–2005 and 2006–

2009, respectively.

2.8.3 The model performance metrics

The Pearson correlation coefficient (r) and the percent of

bias (PBIAS; %bias) were used to evaluate the agreement be-

tween the simulated and the remote-sensing-based estimates

of LAI and ET for each land cover class and for the evalu-

ation of the streamflow simulations. Additionally, the model

performance was evaluated using the Kling–Gupta efficiency

(KGE) (Gupta et al., 2009), which provides a compressive

assessment by taking the variability, the bias and the correla-

tion into account in a multi-objective sense.

3 Results and discussion

3.1 The consistency assessment of the vegetation

growth module without calibration

3.1.1 The LAI simulations

To highlight the added value of the modified vegetation

growth module in SWAT-T for simulating the seasonal

growth pattern of trees and perennials, we compared the daily

simulated LAI of the standard SWAT2012 (revision 627)

model and SWAT-T model. At this stage, the models were

uncalibrated (i.e. based on default SWAT parameters).

Figures 4 and 5 present the monthly rainfall along with

SWAT-simulated daily LAI for FRSE and RNGE using the

standard vegetation growth module under different manage-

ment settings as well as the modified version (i.e. SWAT-T).

In the standard plant growth module, whereby the heat unit

management option is selected (“heat unit” in Figs. 4 and 5),

the start and the end of the vegetation growth cycle occur at

the default frPHU values of 0.15 and 1.2, respectively. With

this management setting, the simulated LAI is zero at the be-

ginning of each simulation year for both types of vegetation

cover, which does not correspond to the reality for FRSE and

RNGE in tropical regions. Strauch and Volk (2013), Kilo-

nzo (2014) and Mwangi et al. (2016) reported similar ob-

servations. In this respect, it may be noted that Mwangi et

al. (2016) improved the SWAT LAI simulation for FRSE by

using a frPHU value of 0.001 to start the growing season, with

a minimum LAI of 3.0. However, this change is region spe-

cific and cannot be transferred.

As shown in Figs. 4 and 5, the simulation with the stan-

dard SWAT module can be partly improved by using a date

scheduling (“date”) for the start and the end of the vegeta-

tion growth cycle (i.e. instead of heat unit). Alternatively,
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Figure 4. The daily LAI as simulated standard SWAT plant growth module with different management settings and by the modified plant

growth module (SWAT-T) for evergreen forest (FRSE) using default SWAT parameters. The vertical lines (black) denote monthly rainfall

(see management settings explanations in the text).

Figure 5. The daily LAI as simulated standard SWAT plant growth module with different management settings and by the modified plant

growth module (SWAT-T) for grass (RNGE) using default SWAT parameters. The vertical lines (black) denote monthly rainfall (see man-

agement settings explanations in the text).

all the management settings can be removed (“no mgt”) and

vegetation can growing from the start of the simulation. It

is worthwhile noting the low LAI values during and follow-

ing the rainy months (i.e. March–May), suggesting unreal-

istic growth cycle simulation. Additionally, regardless of the

management setting, the vegetation growth cycle resets annu-

ally on 28 June due to dormancy. In contrast, the simulated

LAI with the modified vegetation growth module (“SWAT-

T”) corresponds with the monthly rainfall distribution, for

FRSE and RNGE (see Figs. 4 and 5). We noted similar re-

sults for tea and RNGB.

3.1.2 The implication of inconsistent LAI simulation on

the water balance components

In SWAT, the LAI is required to compute the potential

transpiration, the potential soil evaporation and the plant

biomass, among others. For instance, to compute the daily

potential plant transpiration, the canopy resistance and the

aerodynamic resistance are determined using the simulated

LAI and the canopy height, respectively (Neitsch et al.,

2011). Therefore, the aforementioned limitations of the an-

nual vegetation growth cycle in the standard SWAT model

growth module also influence the simulation of the transpi-

ration. Figure 6 shows a comparison of the daily potential

transpiration for RNGE as simulated by the SWAT model

with the standard and modified vegetation growth modules,

based on the Penman–Monteith equation. We observe 12 %

of the standard SWAT-simulated daily potential transpiration

time series (2002–2009) for RNGE equal to zero, suggesting

a considerable inconsistency. The inconsistency is consider-

ably reduced when the modified vegetation growth module

(SWAT-T) is used (i.e. less than 2 % zero values). Similar re-

sults are noted for FRSE and RNGB.

These findings should not come as a surprise as several

studies have shown the effect of the selection of the ETr

method in SWAT on the simulated ET and other water bal-

ance components (Alemayehu et al., 2015; Maranda and An-

ctil, 2015; Wang et al., 2006). Alemayehu et al. (2015) re-

ported substantial differences in both potential and actual

transpiration with the choice of the ETr method using a cali-
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Figure 6. Comparison of Penman–Monteith-based daily potential transpiration simulated by the SWAT-T and the standard SWAT models for

grassland. Note that the heat unit scheduling is used in the standard SWAT model.

Figure 7. The MODIS LAI and the SWAT-T model-simulated, HRU-weighted, aggregated 8-day LAI time series (2002–2009). The grey

shading indicate the boundaries of the 25th and 75th percentiles. The vertical line marks the end of the calibration period and the beginning

of the validation period.

brated SWAT model, which was partly ascribed to the unre-

alistic LAI growth cycle.

We also notice the SWAT-T-simulated potential transpira-

tion is consistent regardless of the ETr method selection in

SWAT (results not shown here), and therefore the improved

vegetation growth module in the SWAT-T can reduce the un-

certainty arising from the model structure and thus minimize

the uncertainties in model simulation outputs.

3.2 The evaluation of the calibrated SWAT-T model

3.2.1 The performance of the LAI simulation

Table 2 presents the SWAT model parameters that are ad-

justed during the manual calibration process. Initially, the

minimum LAI (ALAI_MIN) for each land cover class was

set based on the long-term MODIS LAI. Also, the PHU was

computed using the long-term climatology, as suggested in

Strauch and Volk (2013). The shape coefficients for the LAI

curve (FRGW1, FRGW2, LAIMX1, LAIMX2 and DLAI)

and the remaining parameters were adjusted during the cal-

ibration period by a trial-and-error process such that the

SWAT-T-simulated 8-day LAI mimics the MODIS 8-day

LAI.

Figure 7 presents the comparison of 8-day MODIS LAI

with the calibrated SWAT-T-simulated LAI aggregated over

several land cover classes for the calibration and validation

periods. We evaluated the degree of agreement qualitatively

(by visual comparison) and quantitatively (by statistical mea-

sures). From the visual inspection, it is apparent that the
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Table 2. List of SWAT parameters used to calibrate LAI, ET and streamflow with their default and calibrated values.

Parameter Parameter definition (unit) Variable Default (calibrated)

FRSE RNGE RNGB

BIO_E Radiation-use efficiency ((kg/ha)/(MJ/m2)) LAI 15 (17) 34 (10) 34 (10)

BLAI Maximum potential leaf area index (m2 m−2) LAI 5 (4.0) 2.5 (3.5) 2 (3.5)

FRGW1 Fraction of PHU corresponding to the first point on the

optimal leaf area development curve

LAI 0.15 (0.06) 0.05 (0.2) 0.05 (0.2)

LAIMX1 Fraction of BLAI corresponding to the first point on the

optimal leaf area development curve

LAI 0.7 (0.15) 0.1 (0.1) 0.1 (0.1)

FRGW2 Fraction of PHU corresponding to the second point on

the optimal leaf area development curve

LAI 0.25 (0.15) 0.25 (0.5) 0.25 (0.5)

LAIMX2 Fraction of BLAI corresponding to the second point on

the optimal leaf area development curve

LAI 0.99 (0.30) 0.7 (0.99) 0.7 (0.99)

DLAI Fraction of total PHU when leaf area begins to decline LAI 0.99 (0.30) 0.35 (0.99) 0.35 (0.99)

T_OPT Optimal temperature for plant growth (◦C) LAI 30 (25) 25 (30) 25 (30)

T_BASE Minimum temperature for plant growth (◦C) LAI 0 (5) 12 (5) 12 (5)

ALAI_MIN Minimum leaf area index for plant during dormant pe-

riod (m2 m2)

LAI 0.75 (2.0) 0 (0.75) 0 (0.75)

PHU Total number of heat units needed to bring plant to ma-

turity

LAI 1800 (3570) 1800 (4100) 1800 (4100)

SOL_Za Soil layer depths (mm) ET 300 [1000]

(480 [1600])

300 [1000]

(480 [1600])

300 [1000]

(480 [1600])

SOL_AWCb Soil available water (mm) ET/flow 0.26–0.31

[0.27–0.29]

(0.18–0.21

[0.18–0.20])

0.26–0.31

[0.27–0.29]

(0.18–0.21

[0.18–0.20])

0.26–0.31

[0.27–0.29]

(0.18–0.21

[0.18–0.20])

ESCO Soil evaporation compensation factor (–) ET 0.95

(0.88)

0.95

(1)

0.95

(1)

EPCO Plant uptake compensation factor (–) ET 1

(1)

1

(1)

1

(1)

GSI Maximum stomatal conductance at high solar radiation

and low vapour pressure deficit (m s−1)

ET 0.002

(0.006)

0.005

(0.0035)

0.005

(0.004)

REVAPMN Depth of water in the aquifer for revap (mm) ET 750

(100)

750

(100)

750

(100)

CN2c Initial SCS curve number II value (–) flow 55 [70]

(38 [48])

69 [79]

(81 [92])

61 [74]

(71 [87])

SURLAG Surface runoff lag time (day) flow 4(0.01) 4(0.01) 4(0.01)

ALPHA_BF Baseflow recession constant (day) flow 0.048

(0.2)

0.048

(0.2)

0.048

(0.2)

GWQMN Shallow aquifer minimum level for base flow flow 1000

(50)

1000

(50)

1000

(50)

GW_REVAP Groundwater “revap” coefficient (–) ET 0.02

(0.1)

0.02

(0.02)

0.02

(0.02)

RCHRG_DP Deep aquifer percolation fraction (–) flow 0.05

(0.3)

0.05

(0.1)

0.05

(0.1)

a SOL_Z values for the top (and lower) soil layers depth. b SOL_AWC values range for the top (and lower) soil layers depending on soil texture and bulk density. c CN2 values

for soil hydrologic group B(C).

intra-annual LAI dynamics (and hence the annual growth cy-

cle of each land cover class) from the SWAT-T model corre-

sponds well with the MODIS LAI data. This observation is

supported by correlations as high as 0.94 (FRSE) and 0.92

(RNGB) during the calibration period (Table 3). As shown in

Table 3, the model also shows a similar performance during

the validation period, with low average bias and correlation

as high as 0.93 (FRSE). Overall, the results indicate that the

SMI can indeed be used to dynamically trigger a new grow-

ing season within a predefined period.

Despite the overall good performance of SWAT-T in simu-

lating the LAI, we observed biases for FRSE and tea, mainly

during the rainy season (see top row of Fig. 7). This is partly

attributed to the cloud contamination of the MODIS LAI in
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Table 3. Summary of the performance metrics for the SWAT-T for simulating LAI, ET and streamflow. Note that the performance for LAI

and ET refers to 8-day aggregated data, whereas daily streamflow data are considered.

LAI calibration (validation) ET calibration (validation) Streamflow calibration

(validation)

FRSE Tea RNGE RNGB FRSE Tea RNGE RNGB Flow

r 0.94 (0.93) 0.83 (0.83) 0.89 (0.86) 0.92 (0.88) 0.71 (0.68) 0.67 (0.64) 0.72 (0.77) 0.66 (0.72) 0.72 (0.76)

%bias 1.5 (0) 0.1 (0.2) −3.7 (−0.4) −1.3 (4.6) 3.7 (6.6) −1.7 (0.5) 7.8 (11) 1.2 (2.9) 3.5 (15.5)

KGE 0.50 (0.62) 0.42 (0.44) 0.86 (0.85) 0.88 (0.86) 0.71 (0.67) 0.62 (0.62) 0.69 (0.74) 0.66 (0.72) 0.71 (0.71)

Figure 8. The long-term (2002–2009) average monthly LAI pooled scatter plot (a) and temporal dynamics (b). FRSE: evergreen forest;

RNGE: grassland; RNGB: shrubland.

the mountainous humid part of the basin, as shown in Fig. 3a

and b. Similar observations were also made by Kraus (2008).

Also, the senescence seems to occur slightly early for tea (see

Fig. 3b), whereby we note a mismatch between the SWAT-

simulated LAI and the MODIS LAI. This suggests the need

to further adjust the fraction of total PHU when the leaf area

begins to decline (DLAI).

3.2.2 The seasonal vegetation growth pattern

The seasonal patterns of the LAI for FRSE, tea, RNGE and

RNGB are analysed using 8-day aggregated LAI data time

series (2002–2009) from the calibrated SWAT-T model and

MODIS LAI. Generally, and not surprisingly, the seasonal

dynamics of the SWAT-T-simulated LAI and the MODIS

LAI agree well (Fig. 8a) with a pooled correlation of 0.97.

As shown in Fig. 8b, the SWAT-T-simulated monthly aver-

age LAI shows a higher seasonal variation as compared to the

variation observed from MODIS LAI for FRSE; the peak-to-

trough difference of the SWAT-T data is about 48 % of the

average annual MODIS LAI, while the amplitude is 31 % for

the MODIS data. The seasonal variation from MODIS LAI is

comparable to the results of Myneni et al. (2007), who noted

25 % seasonal variation in the Amazon forest. We also notice

a correlation of 0.66 between the seasonal LAI and the rain-

fall in the humid part of the basin. Our observations are in

agreement with Kraus (2008), who reported an association

of the LAI dynamics for forest sites located in Kenya and

Uganda with interannual climate variability.

In the part of the basin where there is a marked dry season,

the LAI exhibits a notable seasonal variation, with an ampli-

tude that is up to 79 % of the mean annual LAI (1.4 m2 m−2)

for RNGE. Unlike the LAI of FRSE and tea in the hu-

mid part, the seasonal rainfall pattern is strongly correlated

(r = 0.81) with lagged LAI for RNGE and RNGB. This re-

sult is in agreement with several studies that noted that the

LAI dynamics for natural ecosystems in Sub-Saharan Africa

are associated with the rainfall distribution pattern (Bobée et

al., 2012; Kraus et al., 2009; Pfeifer et al., 2014).

In addition to improving the seasonal dynamics of LAI in

SWAT without the need for management settings, the SMI

accounts for the year-to-year shifts in the SOS due to cli-

matic variations. This is particularly important for long-term

land use change and climate change impact studies. Fig-

ure 9 demonstrates the year-to-year shifts as well as the spa-

tial variation of the SOS dates for part of the Mara River

basin dominated by savanna grassland. Generally, the season

change tends to occur in the month of October (i.e. Julian

date 278–304). Yet, we acknowledge the need of further veri-

fication studies in basins with sufficient forcing data and field

measurements.
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Figure 9. The interannual and spatial variation of the start of the rainy season for the savanna vegetation in the Mara River basin for 2002–

2005. Note that HRU level Julian dates are used and the sub-basins are overlaid.

Figure 10. The comparison of remote-sensing-based evapotranspiration (ET-RS) and SWAT-T-simulated ET (ET-SWAT-T) aggregated per

land cover class. Note that for SWAT-T HRU level ET is aggregated per land cover. The vertical black lines mark the end of the calibration

period and the beginning of the validation period.
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Figure 11. SWAT-T-simulated monthly ET (a) and LAI (b) for April (wet) and August (dry) 2002 at HRU level.

3.2.3 The spatial simulation of the evapotranspiration

As presented in Table 2, several SWAT parameters were cal-

ibrated by comparing SWAT-T model simulated ET with ET-

RS. The higher water use by FRSE as compared to other

land cover classes is reflected by a lower ESCO and a higher

GW_REVAP and GSI (Table 2). The lower ESCO indicates

an increased possibility of extracting soil water to satisfy

the atmospheric demand at a relatively lower soil depth.

Also, the higher GW_REVAP points to an increased extrac-

tion of water by deep-rooted plants from the shallow aquifer

or pumping. Similar findings were reported by Strauch and

Volk (2013).

Figure 10 presents the comparison of 8-day ET-RS and

SWAT-T-simulated ET for the calibration (2002–2005) and

validation (2006–2009) periods for FRSE, tea, RNGE and

RNGB. Visually, the ET simulated by the SWAT-T fairly

agrees with the ET-RS for all the covers. As shown in Ta-

ble 3, the statistical performance indices show a modest per-

formance in simulating ET for the dominant cover types in

the basin. The average model biases for the simulated ET

range from 7.8 % (RNGE) to 1.2 % (RNGB) during the cal-

ibration period. Additionally, the correlation between 8-day

ET from the SWAT-T and the ET-RS varies from 0.67 (tea)

to 0.72 (grassland). Overall, we notice similar performance

measures during the calibration and validation periods, sug-

gesting a fair representation of the processes pertinent to ET.

The variability of the ET is controlled by several biotic

and abiotic factors. The 8-day ET time series as simulated

by the SWAT-T model illustrates the variation of the tempo-

ral dynamics of ET in the study area. For land cover types

located in the humid part of the basin (FRSE and tea), there

is no clear temporal pattern (Fig. 10). In contrast, the areas

covered by RNGE and RNGB show a clear seasonality of

the simulated ET. These observations are consistent with the

seasonality of the simulated LAI, as discussed in Sect. 3.2.2.

To shed light on the consistency of SWAT-T-simulated LAI

and ET, we selected simulation outputs at HRU level for

April and August (Figs. 11 and 12). Figure 11a exhibits the

monthly ET at HRU level for the wet month (April) and the

dry month (August) in 2002. The lower portion of the basin,

with dominant savanna cover, experiences a monthly ET be-

tween 16 and 63 mm month−1 in August and between 41 and

93 mm month−1 in April. These estimates are also well re-

flected in the spatial distribution of the average monthly sim-

ulated LAI (Fig. 11b). We notice that the linear relationship

between ET and LAI is stronger, in general, for grassland and

shrubs than for evergreen forest and tea. The lower correla-

tion for tea and evergreen forest could be partly attributed

to the high evaporation contribution of the wet soil, as the

upper portion of the basin receives ample rainfall all year

round. Also, the tea harvesting activities in the upper part of

the basin are not taken into account in the model. Finally,

we observe that during the wet month the spatial variabil-

ity of ET is higher than that of the LAI (Fig. 11). Further

comparison research is needed to evaluate the added value of

the improved vegetation growth module on spatial ET sim-

ulations compared to remote-sensing-based ET. This will be

addressed in our ongoing research on ET evaluation.
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Figure 12. The average seasonal and spatial distribution of ET (2002–2009) in the Mara Basin, as simulated by the SWAT-T model at HRU

level.

3.2.4 The performance of the streamflow simulations

Figure 13 presents the comparison of daily SWAT-T-

simulated streamflow with observed streamflow, for the cal-

ibration and validation periods. Visually, the simulated hy-

drograph fairly reproduced the observations. The average bi-

ases of the SWAT-T-simulated streamflow as compared to ob-

servations amount to 3.5 and 15.5 % during the calibration

and validation periods, respectively (Table 3). The correla-

tion is about 0.72 (0.76) during calibration (validation) pe-

riod. A KGE of 0.71 points to the overall ability of the cali-

brated SWAT-T model to reproduce the observed streamflow.

However, the model tends to underestimate the baseflow and

this is more pronounced during the validation period. This is

partly associated with the overestimation of the ET for ev-

ergreen forest (6.6 %) during the validation, since ET has a

known effect on the groundwater flow.

4 Summary and conclusions

We presented an innovative approach to improve the simu-

lation of the annual growth cycle for trees and perennials –

and hence improve the simulation of the evapotranspiration

and the streamflow – for tropical conditions in SWAT. The

robustness of the changes made to the standard SWAT2012
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Figure 13. Observed and simulated flows for the Nyangores River at Bomet.

revision 627 have been assessed by comparing the model

outputs with remotely sensed 8-day composite MODIS LAI

data, as well as with remote-sensing-based evapotranspira-

tion (ET-RS) and observed streamflow data. Towards this,

we presented a straightforward but robust SMI, a quotient of

rainfall (P ) and reference evapotranspiration (ETr), to trig-

ger a new growing season within a predefined period. The

new growing season starts when the SMI exceeds or equals a

certain user-defined threshold.

The structural improvements of the LAI simulation have

been demonstrated by comparing uncalibrated SWAT model

simulations of the LAI using the modified (i.e. SWAT-T)

and the standard SWAT vegetation growth module. The re-

sults indicate that the modified module structure for the veg-

etation growth exhibits temporal progression patterns that

are consistent with the seasonal rainfall pattern in the Mara

Basin. Further, we note a better consistency of the SWAT-

T-simulated potential transpiration for perennials and trees,

suggesting the usefulness of the vegetation growth module

modification in reducing the model structural uncertainty.

Our calibrated SWAT-T model results also show that the cal-

ibrated SWAT-T-simulated LAI corresponds well with the

MODIS LAI for various land cover classes with correlations

of up to 0.94, indicating the realistic representation of the

start of the new growing season using the SMI within a pre-

defined period. The improvement of the vegetation growth

cycle in SWAT is also supported by a good agreement of the

simulated ET with ET-RS, particularly for the grassland. Ad-

ditionally, the daily streamflow simulated with the SWAT-T

mimic well the observed streamflow for the Nyangores River.

Therefore, the SWAT-T developed in this study can be a ro-

bust tool for simulating the vegetation growth dynamics in a

consistent way in hydrologic model applications.

Data availability. The modified SWAT model for tropics is pro-

vided in the Supplement.
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Yu, X., Lamačová, A., Duffy, C., Krám, P., and Hruška, J.:

Hydrological model uncertainty due to spatial evapotranspi-

ration estimation methods, Comput. Geosci., 90, 90–101,

https://doi.org/10.1016/j.cageo.2015.05.006, 2016.

Zhang, K., Kimball, J. S., Nemani, R. R., and Running, S. W.: A

continuous satellite-derived global record of land surface evapo-

transpiration from 1983 to 2006, Water Resour. Res., 46, 1–21,

https://doi.org/10.1029/2009WR008800, 2010.

Zhang, X.: Monitoring the response of vegetation phenol-

ogy to precipitation in Africa by coupling MODIS and

TRMM instruments, J. Geophys. Res., 110, D12103,

https://doi.org/10.1029/2004JD005263, 2005.

Zhang, X., Friedl, M. A., and Schaaf, C. B.: Global vegetation

phenology from Moderate Resolution Imaging Spectroradiome-

ter (MODIS): Evaluation of global patterns and comparison

with in situ measurements, J. Geophys. Res.-Biogeo., 111, 1–14,

https://doi.org/10.1029/2006JG000217, 2006.

Zhang, Y., Chiew, F. H. S., Zhang, L., and Li, H.: Use of Remotely

Sensed Actual Evapotranspiration to Improve Rainfall–Runoff

Modeling in Southeast Australia, J. Hydrometeorol., 10, 969–

980, https://doi.org/10.1175/2009JHM1061.1, 2009.

www.hydrol-earth-syst-sci.net/21/4449/2017/ Hydrol. Earth Syst. Sci., 21, 4449–4467, 2017

https://doi.org/10.1016/j.scitotenv.2016.06.238
https://doi.org/10.1016/j.cageo.2015.05.006
https://doi.org/10.1029/2009WR008800
https://doi.org/10.1029/2004JD005263
https://doi.org/10.1029/2006JG000217
https://doi.org/10.1175/2009JHM1061.1

	Abstract
	Introduction
	Materials and methods
	The study area
	The SWAT model description
	The vegetation growth and leaf area index modelling in SWAT
	The limitation of the annual vegetation growth cycle simulation in SWAT for the tropics
	A soil moisture index-based vegetation growth cycle for the tropics
	The adaptation of the SWAT plant growth module in SWAT-T
	The data used for the evaluations
	The leaf area index
	The evapotranspiration
	Streamflow

	Model set-up, calibration and evaluation
	The model set-up and data used
	Model calibration and evaluation approach
	The model performance metrics


	Results and discussion
	The consistency assessment of the vegetation growth module without calibration
	The LAI simulations
	The implication of inconsistent LAI simulation on the water balance components

	The evaluation of the calibrated SWAT-T model
	The performance of the LAI simulation
	The seasonal vegetation growth pattern
	The spatial simulation of the evapotranspiration
	The performance of the streamflow simulations


	Summary and conclusions
	Data availability
	Competing interests
	Acknowledgements
	References

