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0is paper presents an improved teaching-learning-based optimization (TLBO) algorithm for solving optimization problems,
called RLTLBO. First, a new learning mode considering the effect of the teacher is presented. Second, the Q-Learning method in
reinforcement learning (RL) is introduced to build a switching mechanism between two different learning modes in the learner
phase. Finally, ROBL is adopted after both the teacher and learner phases to improve the local optima avoidance ability of
RLTLBO. 0ese two strategies effectively enhance the convergence speed and accuracy of the proposed algorithm. RLTLBO is
analyzed on 23 standard benchmark functions and eight CEC2017 test functions to verify the optimization performance. 0e
results reveal that proposed algorithm provides effective and efficient performance in solving benchmark test functions. Moreover,
RLTLBO is also applied to solve eight industrial engineering design problems. Compared with the basic TLBO and seven state-of-
the-art algorithms, the results illustrate that RLTLBO has superior performance and promising prospects for dealing with real-
world optimization problems. 0e source codes of the RLTLBO are publicly available at https://github.com/WangShuang92/
RLTLBO.

1. Introduction

In recent years, real-world optimization problems have
become increasingly complex and diverse in a wide range of
fields and disciplines. Traditional (mathematical) optimi-
zation methods, such as Newton’s method and the gradient
descent method can no longer meet the needs for solving
current optimization problems. 0us, nontraditional
methods, especially metaheuristic algorithms, are becoming
increasingly pervasive among researchers [1–3]. Meta-
heuristics are algorithms based on intuition or experience,
that can provide a feasible solution at an acceptable cost
(referring to computing time and computational resources),

and the deviation between the feasible solution and the
optimal solution may not be predicted in advance. Meta-
heuristic optimization algorithms have the merits of being
flexible, having few parameters and avoiding local optima.
Additionally, they can be rapidly deployed and thus have
been utilized for solving various optimization problems over
the past decades [4, 5]. Some of the most representative
meta-heuristic algorithms are listed as follows: genetic al-
gorithms (GA) [6], differential evolution algorithm (DE) [7],
simulated annealing (SA) [8], arithmetic optimization al-
gorithm (AOA) [9], heat transfer relation-based optimiza-
tion algorithm (HTOA) [10], particle swarm optimization
(PSO) [11], salp swarm algorithm (SSA) [12], grey wolf

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 1535957, 24 pages
https://doi.org/10.1155/2022/1535957

mailto:wang_shuang9279@163.com
mailto:jiaheminglucky99@126.com
https://github.com/WangShuang92/RLTLBO
https://github.com/WangShuang92/RLTLBO
https://orcid.org/0000-0003-2584-7892
https://orcid.org/0000-0001-5933-074X
https://orcid.org/0000-0002-3081-5185
https://orcid.org/0000-0002-2203-4549
https://orcid.org/0000-0002-4339-8464
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1535957


optimizer (GWO) [13], whale optimization algorithm
(WOA) [14], aquila optimizer (AO) [15], remora optimi-
zation algorithm (ROA) [16], etc.

Teaching-learning-based optimization (TLBO) is a
meta-heuristic algorithm proposed by Rao et al. in 2011 [17].
0e TLBO method is inspired by the teaching-learning
process in a class and simulates the influence of a teacher on
learners. Due to the advantages of rapid convergence, ab-
sence of algorithm-specific parameters and easy imple-
mentation, TLBO has become a viral optimization algorithm
and has been successfully applied to real-world problems in
diverse fields. Aouf et al. [18] applied TLBO to optimize the
parameters of the ANFIS structure to obtain the optimal
trajectory and traveling time to address the navigation
problem of themobile robot in a strange environment. Singh
et al. [19] studied the application of TLBO for optimal
coordination of directional overcurrent relays (DOCRs) in a
looped power system. Multiobjective TLBO was applied to
solve the motif discovery problem (MDP) in the bio-
informatics field by Gonzalez-Alvarez et al. [20], and ob-
tained better solutions than other biology-based
multiobjective evolutionary algorithms. All the above ap-
plications have suggested that TLBO can be effectively ap-
plied to many optimization problems in various fields.

0e improvement and hybrid algorithms of TLBO and
their applications have also been studied by several re-
searchers [21]. Kumar and Singh [22] developed a chaotic
version of TLBO with different chaotic mechanisms. A local
search method was also incorporated to guide the search
direction between local and global search and to improve the
quality of solution. 0e application of clustering problems
proved the effectiveness of this algorithm. Taheri et al. [23]
proposed a balanced TLBO with three modifications, called
BTLBO. A weighted mean replaced the mean value in the
teacher phase to maintain the diversity. 0e tutoring phase
was added as a powerful local search mechanism for
exploiting regions around the best solution. 0e restarting
phase was introduced to improve the exploration ability by
replacing inactive learners with randomly initialized
learners. Ma et al. [24] proposed amodified TLBO (MTLBO)
by introducing a population groupmechanism into the basic
TLBO. All students were divided into two groups and
updated by different updating strategies. 0e MTLBO was
also applied to establish the NOx emission model of a
circulation fluidized bed boiler. Xu et al. [25] introduced
dynamic-opposite learning (DOL) strategy into TLBO to
overcome premature convergence. 0e asymmetric search
space and the dynamic change in the characteristics of DOL
help DOLTLBO to holistically improve the exploitation and
exploration capabilities. Dong et al. [26] presented a KTLBO
algorithm to achieve computationally expensive constrained
optimization. 0e kriging-assisted two-phase optimization
framework was used to alternately conduct global and local
searches, achieving the search acceleration. KTLBO was also
adopted to design the structure of a blended-wing-body
underwater glider. Ren et al. [27] developed a multiobjective
elitist feedback TLBO (MEFTO) for multiobjective opti-
mization problems.0e elitism strategy was used to store the
best solutions obtained thus far. 0e proposed feedback

phase allowed students to choose whether to study directly
with the teacher or tomotivate themselves, providing a novel
way for students to improve themselves. Zhang et al. [28]
proposed a hybrid algorithm based on TLBO and a neural
network algorithm (NNA) named TLNNA to solve engi-
neering optimization problems. 0e experimental results
suggested that TLNNA has improved global search ability
and fast convergence speed. By considering the features of
the WOA and TLBO, Lakshmi and Mohanaiah [29] pro-
posed a hybrid WOA-TLBO algorithm. 0is was also ap-
plied to solve the facial emotion recognition (FER)
functional problem, and the reported results showed its
effectiveness and high accuracy.

0e TLBO variants proposed previously have improved
searchability and accelerated the convergence process, but
they still struggle with premature convergence and insuf-
ficient learning processes. 0us, in this paper we propose an
improved TLBO algorithm to solve industrial engineering
optimization problems. Given the characteristics of TLBO,
reinforcement learning (RL) in machine learning is intro-
duced to the learner phase, and enables the algorithm to
choose a more suitable learning mode, which can train the
search agents to perform more beneficial actions. In addi-
tion, a random opposition-based learning (ROBL) strategy is
added after the whole learner phase to facilitate the con-
vergence acceleration and avoid local optima. 0e proposed
improved TLBO with RH and ROBL strategies is called
RLTLBO. 0e standard and CEC2017 benchmark functions
and eight engineering design problems are used to test the
exploration and exploitation capabilities of the proposed
method. 0e RLTLBO algorithm is compared with some
existing algorithms, including the basic TLBO and the Salp
Swarm Algorithm (SSA), which are considered the classical
algorithms, the Aquila Optimizer (AO), Harris Hawks
Optimization (HHO) [30], and Horse herd Optimization
Algorithm (HOA) [31], which are the recent new methods,
and thememory-based GreyWolf Optimizer (mGWO) [32],
modified Ant Lion Optimizer (MALO) [33] and dynamic
Sine Cosine Algorithm (DSCA) [34], which are the latest
improved algorithms.0e experimental results show that the
proposed RLTLBOmethod is superior to the state-of-the-art
algorithms in exploration and exploitation capabilities.
Moreover, eight industrial engineering design problems are
applied to evaluate the effectiveness of the algorithm when
solving real-world optimization problems.

0e rest of this paper is organized as follows: Section 2
provides a brief overview of the basic TLBO, RL, and ROBL
strategies. Section 3 describes the proposed RLTLBO al-
gorithm in detail. Simulations, experiments and an analysis
of the results are presented in Section 4. Section 5 describes
industrial engineering design problems. Finally, Section 6
concludes the paper.

2. Related Work

2.1. Teaching-Learning-Based Optimization. 0e TLBO al-
gorithm mimics the influence of a teacher on the output of
learners, which can be reflected by learners’ grades. As a
highly learned person, the teacher gives their knowledge to
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the learners. 0e outcome of the learners is affected by the
quality of the teacher. It is obvious that learners trained by a
good teacher can achieve better results in terms of their
grades. 0e optimization process of TLBO is divided into
two phases: the teacher phase and the learner phase.

2.1.1. Teacher Phase. 0e teacher phase simulates the
teaching process of a teacher. 0e best one in the class is
selected as the teacher, and then the teacher tries their best to
improve the overall level of the class. 0e teaching process
can be formulated as follows:

Xnew � Xold + rand Xteacher − TF · Mean( 􏼁, (1)

where Xnew and Xold represent the positions of the indi-
vidual after and before learning, that is, the candidate so-
lutions after and before updating. Xteacher is the position of
the teacher, which is the best individual of the population.
Mean indicates the average level of search agents in the
population. TF is a teaching factor that determines the
change of the mean value, and rand is a random number
between 0 and 1. 0e value of TF can be either 1 or 2, which
is a heuristic step and randomly decided with equal prob-
ability as TF� round (1 + rand (0, 1){2–1}).

2.1.2. Learner Phase. In addition to learning new knowledge
from the teacher, learners can also increase knowledge
through interaction. In the mutual learning process, a
learner can randomly learn knowledge from another learner
with a better grade randomly. 0e expression of the learner
phase can be written as follows:

Xnew �
Xold + rand Xr1 − Xr2( 􏼁f Xr1( 􏼁<f Xr2( 􏼁

Xold + rand Xr2 − Xr1( 􏼁otherwise
􏼨 , (2)

where Xr1 and Xr2 indicate the positions of two learners
randomly selected from the population. f (·) is the fitness
value. 0e comparison between two learners determines the
learning direction. 0e individual with a poor grade learns
from the individual with a better grade. 0e new individual
with improvements after learning will be accepted, otherwise
rejected.

0e flow chart of the TLBO algorithm is shown in
Figure 1.

2.2. Reinforcement Learning (RL). Machine learning algo-
rithms are also widely used to solve various optimization
problems [35]. Machine learning methods generally consist
of four categories, as shown in Figure 2: supervised learning,
unsupervised learning, semisupervised learning, and rein-
forcement learning (RL). In RL algorithms, the agent is
trained to learn optimal actions in a complex environment.
0e agent is trained in different ways and uses its training
experience in the subsequent actions. RL methods generally
consist of model-free and model-based approaches. 0e
model-free approaches can be divided into two subgroups:
value-based and policy-based methods. 0e value-based
algorithms are convenient for coordinating with

meta-heuristic algorithms because they are model-free and
policy-free, providing higher flexibility [36]. In the value-
based RL approaches, the reinforcement agent learns from
its actions and experience in the environment, such through
reward and penalty. 0e agent measures the success of the
action in completing the task goal through the reward
penalty and then makes a decision based on its achievement.

0e Q-Learning method is one of the representative
algorithms among the value-based RL methods. In the
Q-Learning method, the agent takes random actions and
then obtains a reward or penalty. An experience is gradually
constructed based on the agent’s actions. 0roughout
process of building experience, a table called Q-Table is
defined [37]. 0e agent considers all possible actions and
tries to update its state according to the Q-Table values to
select the best action that maximizes the current state’s
maximal rewards. 0erefore, the agent in action determines
whether to explore or exploit the environment.

Compared to RL methods, meta-heuristic algorithms
often require deep expert knowledge to establish the balance
between different phases. RL methods can help discover
optimal designs of parameters and more balanced strategies
allowing the algorithm to switch between the exploration
and exploitation phases. Metaheuristic methods usually
operate with specific policies in certain situations, and thus,
the dynamism is lower than that of RL algorithms, especially
value-based methods. 0e agent in the value-based methods
is online and operates beneficial actions through a reward-
penalty mechanism without following any policy. Many
types of research have been presented in the literature re-
garding the combination of meta-heuristics and RL [38–44].

2.3. Random Opposition-Based Learning (ROBL).
Random opposition-based learning (ROBL) is a variant of
opposition-based learning (OBL) [45] proposed by Long
et al. in 2019 [46]. OBL is a powerful optimization tool that
simultaneously considers the fitness of an estimate and its
corresponding opposite estimate to achieve a better can-
didate solution. In contrast from the basic OBL, ROBL
utilizes a random term to improve the OBL strategy, which is
defined as follows:

􏽢xj � lj + uj − rand × xj, j � 1, 2, . . . , n, (3)

where 􏽢xj and xj indicate the opposite and original solutions,
uj and lj are the upper and lower bound of the problem in jth
dimension.0e opposite solution is randomly selected in the
opposite half of the search space. 0is solution is not only
opposite, but also random, with a wider range of distribu-
tions. An example of ROBL solutions is shown in Figure 3.
0e opposite solution with a random term described by
equation (3) is more stochastic than the basic OBL and can
effectively help the algorithm jump out of the local optima.

3. The Proposed RLTLBO Algorithm

3.1. New Learning Mode. 0e basic TLBO algorithm per-
forms the learner phase after the teacher phase in each it-
eration.0e search agent learns from other individuals in the
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Figure 2: Classification of the reinforcement learning algorithms.
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Figure 1: 0e flowchart of TLBO.
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learner phase. However, in the actual learning process,
students learning from each other varies from person to
person. Different students might choose different learning
modes, such as formal communications, group discussions,
presentations, etc. Moreover, the students might adjust the

learning mode according to their learning situation during
the learning process. 0erefore, in this paper, we introduce
another learning mode to diversify the learning methods of
the students, which can be described in the equations as
follows:

Xnew �

Xold + rand 1 −
t

T
􏼒 􏼓Xr3 +

t

T
􏼒 􏼓Xteacher − Xold􏼔 􏼕f Xr3( 􏼁<f Xold( 􏼁

Xold + rand 1 −
t

T
􏼒 􏼓Xold +

t

T
􏼒 􏼓Xteacher − Xr3􏼔 􏼕otherwise

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, (4)

where Xr3 is the position of a learner randomly selected
from the population. t and T are the current and maximum
number of iterations.

In this learning mode, the effect of the teacher is in-
troduced. Sometimes the mutual learning between students
is not always beneficial, and the partial intervention of the
teacher is more helpful to students’ improvement. Students
will not only learn from each other but also ask the teacher
for help. At the beginning of the iterations, the weight of
mutual learning among students is larger, and the algorithm
paysmore attention to random learning, which canmaintain
population diversity and increase global searchability. In the
later iteration stage, students consult more from the teacher
and approach the teacher, enhancing the algorithms local
searchability.

3.2. Learner Phase with RL Strategy. To enable students to
adjust their learning mode more effectively, Q-Learning in
RL is introduced to complete the switching between both
learning modes. 0e student uses Q-Table values as a guide
to decide between different learning modes. 0e Q-table is

updated using a reward-penalty mechanism. 0e student
selects the best state by calculating the benefit degree of each
possible state and taking the leaning mode with the highest
Q-values for the next step. 0e student obtains a reward or a
penalty according to its actions after each step. 0e general
pattern of the RL agent and environmental framework is
shown in Figure 4.

In the Q-Learning method, a reward table is used to
reward or penalize the agent for its action or state
compositions, which users can provide. 0e reward table
in this work contains the positive (+1) or negative (− 1)
rewards for each state and action couple. 0e Q-Table can
be considered the agents experience, which should be
assigned a zero value for all units in the beginning.
Consequently, the student updates Q-Table using the
Bellman equation (5) and prepares the Q-Table for the
next iteration [44].

Q(t+1) st, at( 􏼁←Qt st, at( 􏼁

+ λ rt+1 + cMaxQt st+1 ,a( )
− Qt st, at( 􏼁􏼔 􏼕,

(5)
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positions, but also with a wider range of distributions.
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where st and st + 1 indicate the current and the next state
respectively, Qt and Qt + 1 are the current Q-value and pre-
estimated Q-value for the next state st + 1, and at represents
the current action. λ and c are the learning rate value and
discount factor, respectively, which are numbers between 0
and 1. 0e learning rate determines how fast the algorithm
should learn and controls the convergence of the learning
process.0e discount factor defines howmuch the algorithm
learns from the mistake and controls the importance of
future rewards. rt + 1 indicates the immediate reward or
penalty an agent gets for taking current action.

In each iteration, the agent uses equation (5) to calculate
and weight each possible state and action for the next step,
before choosing the best action (learning mode 1 or learning
mode (2) with the highest likelihood to get closer to the best
optimal solution. Examples of the reward table and Q-Table
are displayed in Figure 5. 0is RL strategy helps establish a
switching mechanism between different learning modes in
the learner phase and find themost suitable decision scheme.
Four optional actions can occur as listed below:

(1) When the student is learning in learning mode 1,
they still decides to stay in learning mode 1

(2) When the student is learning in learning mode 2,
they still decides to stay in learning mode 2

(3) When the student learns in learning mode 1, they
decides to transition to learning mode 2

(4) When the student learns in learning mode 1, they
decides to transition to learning mode 2

0emost important value of the RL strategy is to help the
algorithm switch between different learning modes as and
when needed during the learner phase. For the above reason,
the algorithm can find better solutions faster and more
effectively in the search space, considerably increasing the
search efficiency. 0erefore, the convergence speed of the
algorithm can be improved effectively.

3.3. <e Detail of RLTLBO. In the improved TLBO algo-
rithm, the teacher phase of basic TLBO is carried out first.
0en, the learner phase with RL strategy is implemented to

achieve effective and efficient investigation in the search
space. Finally, ROBL is added to enhance the ability of local
optima avoidability.0e random opposite solution increases
the probability of the algorithm finding a better solution.
0is variant of TLBO, which incorporates RL, is named
RLTLBO.0e pseudocode and the flowchart of the proposed
RLTLBO algorithm are shown in Algorithm 1 and Figure 6,
respectively.

3.4. Computational Complexity Analysis. RLTLBO mainly
consists of three components: initialization, fitness evalua-
tion, and position updating. In the initialization phase, the
computational complexity of positions generated is O(N).
0en, the computational complexity of fitness evaluation for
the solution is O(2×N) during the iteration process. Finally,
we utilize ROBL to keep the algorithm from falling into local
optima. 0us, the computational complexities of position
updating of RLTLBO is O(2×N×D), where D is the di-
mension size of the problem. 0erefore, the total compu-
tational complexity of the proposed RLTLBO algorithm is
O(3×N+ 2×N×D).

4. Numerical Experiments and Results

In this section, two different kinds of benchmark func-
tions are performed to evaluate the performance of the
proposed RLTLBO algorithm. Standard benchmark
functions are first tested to assess the algorithm in solving
twenty-three simple numerical problems. 0en, the
CEC2017 benchmark functions are utilized to evaluate the
algorithm in solving complex numerical problems. 0e
RLTLBO is compared with three types of existing algo-
rithms, including the classic methods, TLBO and SSA, the
recently proposed algorithms, HOA [31], AO, and HHO
[30], and the improved algorithms, mGWO [32], MALO
[33] and DSCA [34]. For the consistency of all tests, we set
the population size to N � 30, the dimension size to D � 30,
and the maximum number of iterations to T � 500. All
algorithms are run 30 times independently, and the av-
erage values and standard deviations are presented as the
final experimental results. All experiments are imple-
mented in MATLAB R2020b on a PC with Intel (R) Core
(TM) i5-9500 CPU @ 3.00 GHz and RAM 16GB memory
on OS windows 10.

4.1. Standard Benchmark Function Experiments. Standard
benchmark functions [47] can be divided into three types:
unimodal, multimodal and fixed-dimension multimodal
functions. Unimodal functions only have one global opti-
mum and no local optima, which can be used to evaluate an
algorithm’s convergence rate and exploitation capability.
Multimodal and fixed-dimension multimodal functions
have a global optimum and multiple local optima. 0is
characteristic makes these functions effective for testing the
exploration and local optima avoidance abilities of an al-
gorithm. 0e benchmark function details are listed in
Tables 1–3.

Agent Environment

action at

reward rt

state st

rt+1 st+1

Figure 4: Reinforcement learning agent and environment
framework. at represents the current action st and st + 1 indicate
the current and the next state, rt and rt + 1 indicate the current and
the next reward, respectively.
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(1) Set the initial values of the population size N and the maximum number of iterations T
(2) Initialize positions of the population X
(3) Initialize the reward table and Q-Table
(4) While t<T
(5) Update Xteacher and Mean
(6) Update individual using equation (1) % teacher phase
(7) If rand<0.5% learner phase
(8) If (learning mode 1 value> learning mode 2 value) % learning mode values is obtained by Q-Table
(9) Calculate new fitness value using equation (2) % learning mode 1
(10) If (new fitness value< current fitness value)
(11) Reward� 1
(12) Else
(13) Reward� − 1
(14) End
(15) Else
(16) Calculate new fitness value using equation (4) % learning mode 2
(17) If (new fitness value< current fitness value)
(18) Reward� 1
(19) Else
(20) Reward� − 1
(21) End
(22) End
(23) Else
(24) If (learning mode 1 value> learning mode 2 value) % learning mode values is obtained by Q-Table
(25) Calculate new fitness value using equation (2) % learning mode 1
(26) If (new fitness value< current fitness value)
(27) Reward� 1
(28) Else
(29) Reward� − 1
(30) End
(31) Else
(32) Calculate new fitness value using equation (4) % learning mode 2
(33) If (new fitness value< current fitness value)
(34) Reward� 1
(35) Else
(36) Reward� − 1
(37) End
(38) End
(39) End
(40) Update Q-Table using equation (5)
(41) ROBL strategy using equation (3)
(42) End while
(43) Return Xteacher

ALGORITHM 1: Pseudocode of RLTLBO.
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4.1.1. Qualitative Results. 0e data results of the 23 standard
benchmark functions are shown in Table 4, and the optimal
results are bolded. For the unimodal functions F1–F7, the
RLTLBO algorithm achieves the best results among all

comparative algorithms on most functions in average values
and standard deviations, and only obtains worse results on
F5–F6. 0e RLTLBO obtains the theoretical optimum of F1
and F3. It can be concluded from the comparison results that

Start

Initialize number of students (population) and termination criterion 

Initialize the Q-Table and reward table

Calculate Mean

Update the best solution (Xteacher) 

learning mode 1 value 
> learning mode 2 value 

Update Xnew usingEq.(4)Update Xnew using Eq.(2)

Yes No

Update Xnew using Eq.(1)

Is new fitness better than
current fitness?

Reward=1 Reward=-1

Yes No

Update the Q-Tableusing Eq.(5)

ROBL strategy using Eq.(3)

t<T?

Return the best solution (Xteacher) 

Yes

No

End

Learner Phase
with RL strategy 

Teacher
Phase 

Figure 6: 0e flowchart of RLTLBO.

Table 1: Unimodal benchmark functions.

Function Dim Range fmin

F1(x) � 􏽐
n
i�1 x2

i 30 [− 100, 100] 0
F2(x) � 􏽐

n
i�1 |xi| + 􏽑

n
i�1 |xi| 30 [− 10, 10] 0

F3(x) � 􏽐
n
i�1(􏽐

i
j− 1 xj)

2 30 [− 100, 100] 0
F4(x) � maxi |xi|, 1≤ i≤ n􏼈 􏼉 30 [− 100, 100] 0
F5(x) � 􏽐

n− 1
i�1 [100(xi+1 − x2

i )2 + (xi − 1)2] 30 [− 30, 30] 0
F6(x) � 􏽐

n
i�1 (xi + 5)2 30 [− 100, 100] 0

F7(x) � 􏽐
n
i�1 ix4

i + random[0, 1) 30 [− 1.28, 1.28] 0

8 Computational Intelligence and Neuroscience



Table 2: Multimodal benchmark functions.

Function Dim Range fmin

F8(x) � 􏽐
n
i�1 − xi sin(

���
|xi|

􏽰
) 30 [− 500, 500] − 418.9829×Dim

F9(x) � 􏽐
n
i�1[x2

i − 10 cos(2πxi) + 10] 30 [− 5.12, 5.12] 0

F10(x) � − 20 exp(− 0.2
���������
1/n 􏽐

n
i�1 x2

i

􏽱
) − exp(1/n 􏽐

n
i�1 cos(2πxi)) + 20 + e 30 [− 32, 32] 0

F11(x) � 1/4000􏽐
n
i�1 x2

i − 􏽑
n
i�1 cos(xi/

�
i

√
) + 1 30 [− 600, 600] 0

F12(x) �
π
n

10 sin(πy1) + 􏽘
n− 1
i�1 (yi − 1)

2
[1 + 10 sin2(πyi+1)] + (yn − 1)

2
􏼚 􏼛

+􏽘
n

i�1u(xi, 10, 100, 4),whereyi � 1 + xi + 1/4,

u(xi, a, k, m) �

k(xi − a)
m

xi > a

0 − a<xi < a

k(− xi − a)
m

xi < − a

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

30

[− 50, 50] 0

F13(x) � 0.1(sin2(3πx1) + 􏽘
n

i�1(xi − 1)
2
[1 + sin2(3πxi + 1)] + (xn − 1)

2
[1 + sin2(2πxn)])

+􏽘
n

i�1u(xi, 5, 100, 4)

30 [− 50, 50] 0

Table 3: Fixed-dimension multimodal benchmark functions.

Function Dim Range fmin

F14(x) � (1/500 + 􏽐
25
j�11/j + 􏽐

2
i�1 (xi − aij)

6)− 1 2 [− 65, 65] 0.998
F15(x) � 􏽐

11
i�1[ai − x1(b2i + bix2)/b2i + bix3 + x4]

2 4 [− 5, 5] 0.00030
F16(x) � 4x2

1 − 2.1x4
1 + 1/3x6

1 + x1x2 − 4x2
2 + x4

2 2 [− 5, 5] − 1.0316
F17(x) � (x2 − 5.1/4π2x2

1 + 5/πx1 − 6)2 + 10(1 − 1/8π)cos x1 + 10 2 [− 5, 5] 0.398

F18(x) � [1 + (x1 + x2 + 1)
2
(19 − 14x1 + 3x

2
1 − 14x2 + 6x1x2 + 3x

2
2)]

×[30 + (2x1 − 3x2)
2

× (18 − 32x2 + 12x
2
1 + 48x2 − 36x1x2 + 27x

2
2)]

2 [− 2, 2] 3

F19(x) � − 􏽐
4
i�1 ci exp(− 􏽐

3
j�1 aij(xj − pij)

2) 3 [− 1, 2] − 3.86

F20(x) � − 􏽐
4
i�1 ci exp(− 􏽐

6
j�1 aij(xj − pij)

2) 6 [0, 1] − 3.32
F21(x) � − 􏽐

5
i�1[(X − ai)(X − ai)

T + ci]
− 1 4 [0, 10] − 10.1532

F22(x) � − 􏽐
7
i�1[(X − ai)(X − ai)

T + ci]
− 1 4 [0, 10] − 10.4028

F23(x) � − 􏽐
10
i�1[(X − ai)(X − ai)

T + ci]
− 1 4 [0, 10] − 10.5363

Table 4: Results of algorithms on 23 standard benchmark functions.

Function RLTLBO TLBO mGWO MALO DSCA HOA AO HHO SSA

F1 Mean 0.00E+ 00 3.90E − 79 4.26E − 19 1.37E − 03 2.55E − 288 3.13E − 136 2.34E − 104 8.97E − 98 1.30E − 07
Std 0.00E+ 00 6.59E − 79 1.08E − 18 1.56E − 03 0.00E+ 00 1.21E − 135 1.08E − 103 4.16E − 97 1.09E − 07

F2 Mean 1.29E − 223 4.17E − 40 3.37E − 12 6.86E+ 01 5.92E − 171 4.44E − 68 2.82E − 53 1.34E − 48 1.79E+ 00
Std 0.00E+ 00 3.21E − 40 2.54E − 12 4.90E+ 01 0.00E+ 00 2.42E − 67 1.13E − 52 5.75E − 48 1.15E+ 00

F3 Mean 0.00E+ 00 2.50E − 17 6.41E − 01 4.81E+ 03 1.43E − 241 2.23E+ 02 2.22E − 101 7.16E − 79 1.61E+ 03
Std 0.00E+ 00 4.35E − 17 1.46E+ 00 2.18E+ 03 0.00E+ 00 5.03E+ 02 1.22E − 100 3.56E − 78 1.03E+ 03

F4 Mean 3.07E − 221 1.72E − 32 2.42E − 03 1.64E+ 01 1.97E − 134 5.04E − 65 3.20E − 53 2.51E − 48 1.11E+ 01
Std 0.00E+ 00 1.76E − 32 3.02E − 03 4.23E+ 00 1.08E − 133 1.84E − 64 1.75E − 52 8.46E − 48 3.74E+ 00

F5 Mean 2.65E+ 01 2.42E+ 01 2.64E+ 01 9.86E − 01 2.85E+ 01 2.89E+ 01 6.82E − 03 1.22E − 02 2.55E+ 02
Std 4.01E − 01 7.41E − 01 8.44E − 01 5.21E+ 00 3.59E − 01 7.45E − 02 1.66E − 02 1.79E − 02 3.44E+ 02

F6 Mean 9.03E − 02 2.57E − 06 4.54E − 01 5.00E − 04 6.01E+ 00 6.46E+ 00 4.43E − 05 9.58E − 05 1.28E − 07
Std 1.15E − 01 7.98E − 06 3.20E − 01 3.05E − 04 1.61E − 01 4.76E − 01 6.15E − 05 1.24E − 04 1.13E − 07

F7 Mean 3.57E − 05 1.12E − 03 4.61E − 03 1.05E − 04 2.54E − 04 5.88E − 02 9.62E − 05 1.68E − 04 1.81E − 01
Std 4.71E − 05 3.06E − 04 1.64E − 03 7.89E − 05 2.88E − 04 4.10E − 02 7.92E − 05 1.36E − 04 8.96E − 02

F8 Mean − 7.36E+ 03 − 7.85E+ 03 − 6.58E+ 03 − 1.22E+ 04 − 3.96E+ 03 − 4.30E+ 03 − 8.92E+ 03 − 1.25E+ 04 − 7.56E+ 03
Std 6.78E+ 02 9.32E+ 02 1.24E+ 03 1.08E+ 03 4.31E+ 02 7.82E+ 02 3.77E+ 03 8.42E+ 01 7.07E+ 02
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RLTLBO has strong competitiveness in the unimodal
functions, which indicates that the excellent exploitation
capability comes from the RL mechanism.

For the multimodal and fixed-dimension multimodal
functions F8–F23, it can be seen from Table 4 that RLTLBO
achieves the smallest average values and standard deviations
on 12 of all 16 test functions compared to other methods,
which indicates a very high accuracy and stability. Several
poor results appear on F8 and F12–F14, but they are not the
worst results. 0e satisfying results on the multimodal and
fixed-dimension multimodal functions prove that the ex-
ploration and local optima avoidance capabilities of the
RLTLBO are excellent, which might be derived from the
ROBL strategy.

Figure 7 provides the convergence curves of
RLTLBO and the comparative algorithms for 23 standard
benchmark functions. 0e convergence rate reflected by
convergence curves can show us the improvement of
exploration and exploitation more intuitively. For F1–F4,
F7, F9–F11, and F15–F21, the RLTLBO presents a faster
convergence speed than other meta-heuristic algorithms,
and the convergence accuracy is also the best. 0e
RLTLBO is ranked in the second position in terms
of convergence speed for F22 and F23. For benchmark
functions F5–F6, F8, and F12–F14, the RLTLBO
does not perform very well, the same as the results in
Table 4.

4.1.2. <eWilcoxon Test. 0eWilcoxon rank-sum test [48]
results are listed in Table 5, which can assess the statistical
performance differences between the RLTLBO algorithm
and the comparative algorithms. A p-value less than 0.05
indicates a substantial difference between the two compared
methods. It is obvious that the overwhelming majority
p-values in Table 5 are less than 0.05, indicating that there
are statistically and substantial differences between RLTLBO
and the other methods. Combining the results in Table 4, it
can be concluded that the RLTLBO algorithm outperforms
the others. 0e competitive results of RLTLBO indicate that
this algorithm has high capabilities of exploration and ex-
ploitation. In summary, the RLTLBO algorithm provides
better results than other comparative algorithms.

4.2. CEC2017 Benchmark Function Experiments. Standard
benchmark function experiments prove the superior per-
formance on simple optimization problems of the proposed
RLTLBO algorithm. CEC2017 [49], one of the most chal-
lenging test suites, can help check the performance of
complex optimization problems. Some hybrid and com-
position functions are selected to further test the perfor-
mance of RLTLBO. 0ese types of functions are precisely
what the standard test functions do not have. 0e functional
details and the comparison results are presented in Tables 6
and 7. As mentioned above, each method runs 30 times with

Table 4: Continued.

Function RLTLBO TLBO mGWO MALO DSCA HOA AO HHO SSA

F9 Mean 0.00E+ 00 1.41E+ 01 1.70E+ 01 8.44E+ 01 0.00E+ 00 5.06E+ 01 0.00E+ 00 0.00E+ 00 5.19E+ 01
Std 0.00E+ 00 6.20E+ 00 9.11E+ 00 3.15E+ 01 0.00E+ 00 9.32E+ 01 0.00E+ 00 0.00E+ 00 1.88E+ 01

F10 Mean 8.88E − 16 7.05E − 15 1.14E+ 00 4.77E+ 00 8.88E − 16 6.10E − 15 8.88E − 16 8.88E − 16 2.62E+ 00
Std 0.00E+ 00 1.60E − 15 1.88E+ 00 2.64E+ 00 0.00E+ 00 2.42E − 15 0.00E+ 00 0.00E+ 00 8.98E − 01

F11 Mean 0.00E+ 00 3.29E − 04 4.86E − 03 6.05E − 02 0.00E+ 00 1.18E − 01 0.00E+ 00 0.00E+ 00 2.24E − 02
Std 0.00E+ 00 1.80E − 03 9.13E − 03 2.33E − 02 0.00E+ 00 2.57E − 01 0.00E+ 00 0.00E+ 00 1.45E − 02

F12 Mean 8.32E − 04 5.38E − 07 3.51E − 02 1.60E − 05 8.37E − 01 1.23E+ 00 3.04E − 06 1.02E − 05 7.22E+ 00
Std 1.52E − 03 2.76E − 06 4.56E − 02 1.16E − 05 1.08E − 01 2.42E − 01 4.59E − 06 1.12E − 05 3.01E+ 00

F13 Mean 2.00E+ 00 7.41E − 02 3.83E − 01 1.70E − 03 2.76E+ 00 3.08E+ 00 4.57E − 05 8.69E − 05 2.19E+ 01
Std 1.17E+ 00 8.70E − 02 2.15E − 01 3.95E − 03 5.11E − 02 1.83E − 01 1.18E − 04 9.70E − 05 1.44E+ 01

F14 Mean 1.06E+ 00 9.98E − 01 9.98E − 01 1.46E+ 00 1.35E+ 00 2.78E+ 00 4.06E+ 00 1.36E+ 00 1.16E+ 00
Std 3.62E − 01 0.00E+ 00 3.81E − 12 7.69E − 01 6.1E − 01 2.07E+ 00 4.46E+ 00 9.52E − 01 4.57E − 01

F15 Mean 3.55E − 04 3.82E − 04 3.04E − 03 1.40E − 03 8.91E − 04 6.77E − 03 5.00E − 04 4.01E − 04 3.55E − 03
Std 1.02E − 04 1.54E − 04 6.91E − 03 3.62E − 03 3.99E − 04 5.47E − 03 1.10E − 04 2.36E − 04 6.71E − 03

F16 Mean − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 9.99E − 01 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00
Std 6.58E − 16 6.95E − 16 3.39E − 08 1.65E − 13 3.99E − 04 3.29E − 02 3.01E − 04 3.76E − 09 1.83E − 14

F17 Mean 3.98E − 01 3.98E − 01 3.98E − 01 3.98E − 01 4.09E − 01 3.99E − 01 3.98E − 01 3.98E − 01 3.98E − 01
Std 0.00E+ 00 0.00E+ 00 6.52E − 09 5.57E − 14 1.06E − 02 1.08E − 03 1.09E − 04 4.60E − 06 7.21E − 15

F18 Mean 3.00E+ 00 3.00E+ 00 3.00E+ 00 3.00E+ 00 3.00E+ 00 4.94E+ 00 3.03E+ 00 3.00E+ 00 3.00E+ 00
Std 4.95E − 16 1.24E − 15 1.03E − 07 5.76E − 13 8.33E − 04 6.82E+ 00 5.73E − 02 3.88E − 07 2.87E − 13

F19 Mean − 3.86E+ 00 − 3.86E+ 00 − 3.86E+ 00 − 3.86E+ 00 − 3.82E+ 00 − 3.86E+ 00 − 3.85E+ 00 − 3.86E+ 00 − 3.86E+ 00
Std 2.71E − 15 3.16E − 15 1.08E − 06 6.39E − 13 2.33E − 02 6.99E − 04 6.96E − 03 2.07E − 03 1.09E − 12

F20 Mean − 3.31E+ 00 − 3.30E+ 00 − 3.23E+ 00 − 3.23E+ 00 − 2.80E+ 00 − 3.25E+ 00 − 3.16E+ 00 − 3.08E+ 00 − 3.23E+ 00
Std 2.95E − 02 4.12E − 02 6.47E − 02 5.14E − 02 2.71E − 01 9.05E − 02 8.91E − 02 1.22E − 01 6.22E − 02

F21 Mean − 1.02E+ 01 − 1.02E+ 01 − 9.98E+ 00 − 7.62E+ 00 − 3.27E+ 00 − 9.43E+ 00 − 1.01E+ 01 − 5.18E+ 00 − 8.07E+ 00
Std 6.04E − 09 1.41E − 03 9.30E − 01 2.82E+ 00 1.54E+ 00 9.62E − 01 2.09E − 02 7.51E − 01 3.28E+ 00

F22 Mean − 1.04E+ 01 − 1.01E+ 01 − 1.04E+ 01 − 7.06E+ 00 − 3.87E+ 00 − 9.36E+ 00 − 1.04E+ 01 − 5.08E+ 00 − 9.32E+ 00
Std 1.23E − 07 1.25E+ 00 4.45E − 04 3.48E+ 00 1.17E+ 00 1.69E+ 00 5.50E − 02 6.94E − 03 2.51E+ 00

F23 Mean − 1.05E+ 01 − 1.01E+ 01 − 1.05E+ 01 − 7.31E+ 00 − 4.19E+ 00 − 9.63E+ 00 − 1.05E+ 01 − 5.24E+ 00 − 7.89E+ 00
Std 1.57E − 07 1.57E+ 00 3.42E − 04 3.55E+ 00 1.11E+ 00 1.52E+ 00 2.23E − 02 9.58E − 01 3.59E+ 00
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Figure 7: Continued.
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Figure 7: Convergence curves of 23 standard benchmark functions.
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Table 5: p-Values from the Wilcoxon rank-sum test for the results in Table 4.

Function
RLTLBO vs.

TLBO mGWO MALO DSCA HOA AO HHO SSA
F1 6.10E − 05 6.10E − 05 6.10E − 05 NaN 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05
F2 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 04 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05
F3 6.10E − 05 6.10E − 05 6.10E − 05 1.56E − 02 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05
F4 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05
F5 6.10E − 05 3.30E − 01 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 8.54E − 04
F6 6.10E − 05 1.22E − 04 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05
F7 6.10E − 05 6.10E − 05 4.89E − 01 6.10E − 04 6.10E − 05 4.89E − 01 7.30E − 02 6.10E − 05
F8 0.010254 6.37E − 02 6.10E − 05 6.10E − 05 6.10E − 05 1.21E − 01 6.10E − 05 5.61E − 01
F9 6.10E − 05 6.10E − 05 6.10E − 05 NaN 1.25E − 01 NaN NaN 6.10E − 05
F10 6.10E − 05 6.10E − 05 6.10E − 05 NaN 6.10E − 05 NaN NaN 6.10E − 05
F11 NaN 1.95E − 03 6.10E − 05 NaN 3.12E − 02 NaN NaN 6.10E − 05
F12 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05
F13 3.05E − 04 6.10E − 04 6.10E − 05 3.89E − 01 2.01E − 03 6.10E − 05 6.10E − 05 3.05E − 04
F14 NaN 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05
F15 8.90E − 01 2.01E − 03 1.83E − 04 6.10E − 05 6.10E − 05 6.10E − 05 8.36E − 03 6.10E − 05
F16 NaN 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 1.22E − 04 6.10E − 05
F17 NaN 6.10E − 05 2.44E − 04 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 9.76E − 04
F18 NaN 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05
F19 NaN 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05
F20 8.52E − 01 4.13E − 02 1.35E − 01 6.10E − 05 2.01E − 03 6.10E − 05 6.10E − 05 3.05E − 04
F21 1.68E − 01 6.10E − 05 4.79E − 02 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 1.03E − 02
F22 6.25E − 02 6.10E − 05 2.56E − 02 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 4.13E − 02
F23 7.81E − 03 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 2.56E − 02

Table 6: Descriptions of the benchmark functions from CEC2017.

Function Name Dim Range fmin

Hybrid functions (N is basic number of functions)
C13 Hybrid function 3 (N� 3) 10 [− 100, 100] 1300
C14 Hybrid function 4 (N� 4) 10 [− 100, 100] 1400
C15 Hybrid function 5 (N� 4) 10 [− 100, 100] 1500
C19 Hybrid function 6 (N� 5) 10 [− 100, 100] 1900

Composite functions (N is basic number of functions)
C22 Composite function 2 (N� 3) 10 [− 100, 100] 2200
C25 Composite function 5 (N� 5) 10 [− 100, 100] 2500
C28 Composite function 8 (N� 6) 10 [− 100, 100] 2800
C29 Composite function 9 (N� 6) 10 [− 100, 100] 2900

Table 7: Comparison results of algorithms on CEC2017.

Function RLTLBO TLBO mGWO MALO DSCA HOA AO HHO SSA

C13 Mean 4.38E+ 03 6.04E+ 03 4.35E+ 03 1.78E+ 04 6.25E+ 05 1.53E+ 06 1.77E+ 04 1.70E+ 04 1.46E+ 04
Std 2.76E+ 03 4.33E+ 03 2.99E+ 03 1.30E+ 04 4.55E+ 05 1.28E+ 06 1.39E+ 04 1.03E+ 04 1.29E+ 04

C14 Mean 1.46E+ 03 1.47E+ 03 1.47E+ 03 2.75E+ 03 4.78E+ 03 3.87E+ 03 2.36E+ 03 2.20E+ 03 3.35E+ 03
Std 1.81E+ 01 2.40E+ 01 1.98E+ 01 2.02E+ 03 3.76E+ 03 1.99E+ 03 1.12E+ 03 1.05E+ 03 3.10E+ 03

C15 Mean 1.62E+ 03 1.73E+ 03 1.74E+ 03 8.28E+ 03 7.97E+ 03 2.49E+ 04 5.91E+ 03 7.35E+ 03 1.06E+ 04
Std 5.96E+ 01 1.44E+ 02 2.36E+ 02 5.72E+ 03 3.62E+ 03 1.54E+ 04 2.16E+ 03 3.10E+ 03 7.51E+ 03

C19 Mean 2.00E+ 03 2.11E+ 03 2.65E+ 03 1.54E+ 04 3.37E+ 04 1.69E+ 04 2.10E+ 04 1.67E+ 04 8.46E+ 03
Std 9.63E+ 00 3.19E+ 02 1.68E+ 03 1.23E+ 04 3.00E+ 04 1.34E+ 04 2.88E+ 04 1.37E+ 04 6.44E+ 03

C22 Mean 2.30E+ 03 2.30E+ 03 2.30E+ 00 2.30E+ 03 2.55E+ 03 2.47E+ 03 2.31E+ 03 2.41E+ 03 2.33E+ 03
Std 1.99E+ 01 8.68E+ 00 9.25E − 01 2.88E+ 01 8.10E+ 01 4.58E+ 02 5.85E+ 00 3.85E+ 02 1.69E+ 02

C25 Mean 2.92E+ 03 2.93E+ 03 2.92E+ 03 2.93E+ 03 3.12E+ 03 2.97E+ 03 2.94E+ 03 2.93E+ 03 2.92E+ 03
Std 2.32E+ 01 2.41E+ 01 2.33E+ 01 2.38E+ 01 6.48E+ 01 2.35E+ 01 2.50E+ 01 6.24E+ 01 2.45E+ 01

C28 Mean 3.23E+ 03 3.30E+ 03 3.33E+ 03 3.31E+ 03 3.40E+ 03 3.50E+ 03 3.44E+ 03 3.45E+ 03 3.29E+ 03
Std 1.15E+ 02 1.60E+ 02 1.12E+ 02 1.47E+ 02 9.48E+ 01 1.06E+ 02 1.09E+ 02 1.45E+ 02 1.68E+ 02

C29 Mean 3.18E+ 03 3.19E+ 03 3.17E+ 03 3.27E+ 03 3.38E+ 03 3.38E+ 03 3.26E+ 03 3.37E+ 03 3.27E+ 03
Std 1.84E+ 01 2.16E+ 01 2.13E+ 01 6.15E+ 01 5.77E+ 01 6.58E+ 01 5.87E+ 01 1.20E+ 02 7.20E+ 01
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30 search agents and 500 iterations. From Table 7, the
proposed RLTLBO achieves both the best average and
standard deviation values on five of the eight all functions.
For the remaining three functions, RLTLBO obtains one of
the best average and standard deviation values.0e RLTLBO
completely exceeds the TLBO, MALO, HOA, AO, HHO,
and SSA methods completely. 0e statistical results are also
listed in Table 8. 0ere are only seven p-values greater than
0.05 in all test functions, which means considerable dif-
ferences between the RLTLBO and the compared methods.
0ese results suggest that RLTLBO can achieve great results
on complex problems as well.

5. Experiments on Industrial Engineering
Design Problems

In this section, eight well-known constrained industrial
engineering design problems, including the welded beam
design problem, pressure vessel design problem, tension and
compression spring design problem, speed reducer design
problem, three-bar truss design problem, car crashworthi-
ness design problem, tubular column design problem, and
frequency-modulated sound wave design problem, are
solved to further verify the performance of the proposed
RLTLBO algorithm.0e results of RLTLBO are compared to
various optimization methods proposed in previous studies.

5.1. Welded Beam Design Problem. 0e purpose of this
problem is to minimize the cost of the welded beam
(Figure 8). Four variables need to be optimized: the thickness
of weld (h), the thickness of the bar (b), length of the bar (l),
and height of the bar (t). 0e mathematical formulation is
listed as follows:

Consider z
→

� [z1, z2, z3, z4] � [h, l, t, b].

Minimize f( z
→

) � 1.10471z2
1z2 + 0.04811z3z4 (14.0 +

z2), subject to

g1( z
→

) � τ( z
→

) − τmax ≤ 0,

g2( z
→

) � σ( z
→

) − σmax ≤ 0,

g3( z
→

) � δ( z
→

) − δmax ≤ 0,

g4( z
→

) � z1 − z4 ≤ 0,

g5( z
→

) � P − Pc( z
→

)≤ 0,

g6( z
→

) � 0.125 − z1 ≤ 0,

g7( z
→

) � 1.10471z
2
1 + 0.04811z3z4 14.0 + z2( 􏼁 − 5.0≤ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Variable range

0.1≤ z1 ≤ 2,

0.1≤ z2 ≤ 10,

0.1≤ z3 ≤ 10,

0.1≤ z4 ≤ 2,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

where

τ( z
→

) �

����������������

τ′2 + 2τ′τ″
z2

2R
+ τ″2

􏽲

,

τ′ �
P

�
2

√
z1z2

, τ″ �
MR

J
, M � P L +

z2

2
􏼒 􏼓,

R �

�������������

z
2
2
4

+
z1 + z3

2
􏼒 􏼓

2
􏽳

,

J � 2
�
2

√
z1z2

z
2
2

12
+

z1 + z3

2
􏼒 􏼓

2
􏼢 􏼣􏼨 􏼩,

σ( z
→

) �
6PL

z4z
2
3
, δ( z

→
) �

4PL
3

Ez
3
3z4

,

Pc( z
→

) �
4.013E

�������

z
2
3z

6
4/36

􏽱

L
2 1 −

z3

2L

���
E

4G

􏽲

􏼠 􏼡,

P � 6000lb, L � 14in, δmax � 0.25in,

E � 30 × 106psi, G � 12 × 106psi,

τmax � 13600psi, σmax � 30000psi.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

0e RLTLBO is compared to SMA [50], WOA, MPA [51],
MVO [52], GA, and HS [53] methods. 0e comparison results
presented in Table 9 show the superior of the RLTLBO algo-
rithm with a smaller cost than other algorithms.

5.2. Pressure Vessel Design Problem. 0e objective of this
problem is to minimize the fabrication cost of the cylindrical
pressure vessel to meet the pressure requirements. As shown
in Figure 9, four structural parameters in this problem need
to be minimized, including the thickness of the shell (Ts), the
thickness of the head (0), inner radius (R), and the length of
the cylindrical section without the head (L). 0e formulation
of four optimization constraints can be described as follows:

Consider x
→

� [x1 x2 x3 x4] � [Ts Th R L].

Minimize f( x
→

) � 0.6224x1x3x4 + 1.7781x2x
2
3 +

3.1661x2
1x4 + 19.84x2

1x3, subject to

g1( x
→

) � − x1 + 0.0193x3 ≤ 0,

g2( x
→

) � − x3 + 0.00954x3 ≤ 0,

g3( x
→

) � − πx
2
3x4 −

4
3
πx

3
3 + 1296000≤ 0,

g4( x
→

) � x4 − 240≤ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)
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Table 8: p values from the Wilcoxon rank-sum test for the results in Table 7.

Function
RLTLBO vs.

TLBO mGWO MALO DSCA HOA AO HHO SSA
C13 2.90E − 02 3.59E − 01 1.81E − 02 6.10E − 05 6.10E − 05 6.10E − 05 3.36E − 03 1.22E − 04
C14 1.35E − 01 4.37E − 02 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 1.83E − 04 6.10E − 05
C15 3.36E − 03 8.36E − 03 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05
C19 1.24E − 02 3.30E − 02 8.54E − 04 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05
C22 4.27E − 03 4.13E − 02 4.04E − 02 6.10E − 05 6.10E − 05 6.10E − 05 6.10E − 05 8.47E − 02
C25 5.61E − 01 8.47E − 01 8.47E − 01 6.10E − 05 2.01E − 03 1.21E − 02 1.69E − 02 3.62E − 01
C28 2.48E − 02 1.51E − 02 4.79E − 02 1.81E − 02 1.53E − 03 6.10E − 04 5.37E − 03 4.21E − 02
C29 4.54E − 03 6.10E − 04 6.10E − 05 6.10E − 05 6.10E − 05 8.54E − 04 6.10E − 05 1.51E − 02

b h

L

l

t

Figure 8: Welded beam design problem.

Table 9: Comparison results for the welded beam design problem.

Algorithm
Optimum variables

Optimum cost
h l t b

RLTLBO 0.205730 3.253000 9.036600 0.205730 1.695200
SMA [50] 0.205400 3.258900 9.038400 0.205800 1.696040
WOA [14] 0.205396 3.484293 9.037426 0.206276 1.730499
MPA [51] 0.205728 3.470509 9.036624 0.205730 1.724853
MVO [52] 0.205463 3.473193 9.044502 0.205695 1.726450
GA [6] 0.248900 6.173000 8.178900 0.253300 2.430000
HS [53] 0.244200 6.223100 8.291500 0.240000 2.380700

Th

Th

2R

L

R

Figure 9: Pressure vessel design problem.
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Variable range

0≤ x1 ≤ 99,

0≤ x2 ≤ 99,

10≤x3 ≤ 200,

10≤x4 ≤ 200.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

From the results in Table 10, it is obvious that RLTLBO
can obtain superior optimal values compared to AO, SMA,
WOA, GWO, MVO, GA, and ES [54].

5.3. Tension/Compression Spring Design Problem. 0is
problem aims to minimize the weight of the tension/com-
pression spring (Figure 10). 0ree variables need to be
optimized, including the wire diameter (d), the number of
active coils (N), and mean coil diameter (D). 0is problem
can be described as follows:

Consider x
→

� [x1 x2 x3] � [d D N].

Minimize f( x
→

) � (x3 + 2)x2x
2
1, subject to

g1( x
→

) � 1 −
x
3
2x3

71785x
4
1
≤ 0,

g2( x
→

) �
4x

2
2 − x1x2

12566 x2x
3
1 − x

4
1􏼐 􏼑

+
1

5108x
2
1
≤ 0,

g3( x
→

) � 1 −
140.45x1

x
2
2x3
≤ 0,

g4( x
→

) �
x1 + x2

1.5
− 1≤ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Variable range

0.05≤x1 ≤ 2.00,

0.25≤x2 ≤ 1.30,

2.00≤x3 ≤ 15.00.

⎧⎪⎪⎨

⎪⎪⎩
(12)

0e RLTLBO is compared to AO, SSA, WOA, GWO,
PSO, GA, and HS algorithms. Results are listed in Table 11
and show that the RLTLBO can obtain the best weight
compared to all other algorithms.

5.4. SpeedReducerDesignProblem. In this case, the purpose is
to minimize the weight of the speed reducer (Figure 11). Seven
variables are considered, including face width (x1), a module of
teeth (x2), a discrete design variable on behalf of the teeth in the
pinion (x3), length of the first shaft between bearings (x4),
length of the second shaft between bearings (x5), diameters of
the first shaft (x6), and diameters of the second shaft (x7). 0e
mathematical formulation is listed as follows:

Minimize

f( x
→

) �0.7854x1x
2
2 + 3.3333x

2
3 + 14.9334x3 − 43.0934􏼑

− 1.508x1 x
2
6 + x

2
7􏼐 􏼑 + 7.4777 x

3
6 + x

3
7􏼐 􏼑,

(13)

subject to

g1( x
→

) �
27

x1x
2
2x3

− 1≤ 0,

g2( x
→

) �
397.5

x1x
2
2x

2
3

− 1≤ 0,

g3( x
→

) �
1.93x

3
4

x2x3x
4
6

− 1≤ 0,

g4( x
→

) �
1.93x

3
5

x2x3x
4
7

− 1≤ 0,

g5( x
→

) �

����������������������

745x4/x2x3( 􏼁
2

+ 16.9 × 106
􏽱

110.0x
3
6

− 1≤ 0,

g6( x
→

) �

�����������������������

745x4/x2x3( 􏼁
2

+ 157.5 × 106
􏽱

85.0x
3
6

− 1≤ 0,

g7( x
→

) �
x2x3

40
− 1≤ 0,

g8( x
→

) �
5x2

x1
− 1≤ 0,

g9( x
→

) �
x1

12x2
− 1≤ 0,

g10( x
→

) �
1.5x6 + 1.9

x4
− 1≤ 0,

g11( x
→

) �
1.1x7 + 1.9

x5
− 1≤ 0.
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(14)

Variable range

2.6≤x1 ≤ 3.6,

0.7≤x2 ≤ 0.8,

17≤ x3 ≤ 28,

7.3≤x4 ≤ 8.3,

7.8≤x5 ≤ 8.3,

2.9≤x6 ≤ 3.9,

5.0≤x7 ≤ 5.5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)
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Table 10: Comparison results for the pressure vessel design problem.

Algorithm
Optimum variables

Optimum cost
Ts 0 R L

RLTLBO 0.7698901 0.4201098 42.536830 171.348900 5926.77920
AO [15] 1.0540000 0.1828060 59.621900 38.8050000 5949.22580
SMA [50] 0.7931000 0.3932000 40.671100 196.217800 5994.18570
WOA [14] 0.8125000 0.4375000 42.098270 176.638998 6059.74100
GWO [13] 0.8125000 0.4345000 42.089200 176.758700 6051.56390
MVO [52] 0.8125000 0.4375000 42.090738 176.738690 6060.80660
GA [6] 0.8125000 0.4375000 42.097398 176.654050 6059.94634
ES [54] 0.8125000 0.4375000 42.098087 176.640518 6059.74560

d

D
*

*

Figure 10: Tension/compression spring design problem.

Table 11: Comparison results for the tension/compression spring design problem.

Algorithm
Optimum variables

Optimum weight
d D N

RLTLBO 0.0551180 0.505900 5.1167000 0.01093800
AO [15] 0.0502439 0.352620 10.542500 0.01116500
SSA [12] 0.0512070 0.345215 12.004032 0.01267630
WOA [14] 0.0512070 0.345215 12.004032 0.01267630
GWO [13] 0.0516900 0.356737 11.288850 0.01266600
PSO [11] 0.0517280 0.357644 11.244543 0.01267470
GA [6] 0.0514800 0.351661 11.632201 0.01270478
HS [53] 0.0511540 0.349871 12.076432 0.01267060

X5 X2 X1 X3

X6

X4

X7

Figure 11: Speed reducer design problem.
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Compared to AO, PSO, AOA, GA, SCA [55], HS, and FA
[56], RLTLBO achieves better results in the speed reducer
problem, as shown in Table 12.

5.5. <ree-Bar Truss Design Problem. 0e three-bar truss
design problem aims to minimize the weight of a
truss with three bars by controlling the length of three
bars (A1, A2, and A3) (Figure 12). 0ree main con-
straints need to be satisfied, including deflection, stress,
and buckling. 0e mathematical form of this problem is
given:

Consider x
→

� [x1 x2] � [A1 A2].

Minimize f( x
→

) � (2
�
2

√
x1 + x2)∗ l subject to

g1( x
→

) �

�
2

√
x1 + x2�

2
√

x
2
1 + 2x1x2

P − σ ≤ 0,

g2( x
→

) �
x2�

2
√

x
2
1 + 2x1x2

P − σ ≤ 0,

g3( x
→

) �
1

�
2

√
x2 + x1

P − σ ≤ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Consider 0≤x1, x2 ≤ 1, where l � 100cm, P � 2KN/
cm2, σ � 2KN/cm2.

0e result of RLTLBO is listed in Table 13, compared
to AO, SSA, AOA, MVO, and GOA [57]. It can be ob-
served that RLTLBO outperforms other algorithms in the
literature.

5.6. Car Crashworthiness Design Problem. 0e car crash-
worthiness design problem aims to minimize the weight by
optimizing eleven influence variables [58], including the
thickness of B-Pillar inner (x1), B-pillar reinforcement (x2),
floor side inner (x3), cross members (x4), door beam (x5),
door beltline reinforcement (x6) and roof rail (x7), materials
of B-Pillar inner (x8) and floor side inner (x9), barrier height
(x10), and barrier hitting position (x11).0is problem can be
formulated as follows.

Minimize

f( x
→

) � weight, (17)

subject to

g1( x
→

) � Fa(load in abdomen)≤ 1 kN,

g2( x
→

) � V × Cu(dummy upper chest)≤ 0.32m/s,

g3( x
→

) � V × Cm(dummymiddle chest)≤ 0.32m/s,

g4( x
→

) � V × Cl(dummy lowere chest)≤ 0.32m/s,

g5( x
→

) � Δur(upper rib deflection)≤ 32mm,

g6( x
→

) � Δmr(middle rib deflection)≤ 32mm,

g7( x
→

) � Δlr(lower rib deflection)≤ 32mm,

g8( x
→

) � F(public force)p ≤ 4kN,

g9( x
→

) � VMBP(velocity of V − pillar at middle point)≤ 9.9mm/ms,

g10( x
→

) � VFD(velocity of front doorat V − pillar)≤ 15.7mm/ms.
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(18)

Variable range

0.5≤ x1 − x7 ≤ 1.5,

x8, x9 ∈ (0.192, 0.345),

− 30≤x10, x11 ≤ 30.

⎧⎪⎪⎨

⎪⎪⎩
(19)

0e RLTLBO and DE, GA, FA, CS [59], GOA, and
EOBL-GOA [58] are applied to solve the car crashworthi-
ness problem. As shown in Table 14, compared to other
methods, the proposed RLTLBO achieves the best result
than others.

5.7. Tubular Column Design Problem. 0e main intention is
to find a minimum cost for a uniform column, making the
tubular section be able to carry a compressive load P� 2,500
kgf. 0e column is made of a material with a yield stress (σy)
of 500 kgf/cm2, a modulus of elasticity (E) of 0.85×106 kgf/
cm2, and a density (ρ) equal to 0.0025 kgf/cm3. 0e length
(L) of the column is 250 cm. 0e cost of the column consists
of material and construction costs. 0is problem is shown in
Figure 13, and the optimization model of the problem is
listed as follows.

Minimize f(d, t) � 9.8dt + 2 d subject to
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Table 12: Comparison results for the speed reducer design problem.

Algorithm
Optimum variables

Optimum weight
x1 x2 x3 x4 x5 x6 x7

RLTLBO 3.497600 0.7000 17.0000 7.30000 7.800000 3.350060 5.285530 2995.43740
AO [15] 3.502100 0.7000 17.0000 7.30990 7.747600 3.364100 5.299400 3007.73280
PSO [11] 3.500100 0.7000 17.0002 7.51770 7.783200 3.350800 5.286700 3145.92200
AOA [9] 3.503840 0.7000 17.0000 7.30000 7.729330 3.356490 5.286700 2997.91570
GA [6] 3.510253 0.7000 17.0000 8.35000 7.800000 3.362201 5.287723 3067.56100
SCA [55] 3.508755 0.7000 17.0000 7.30000 7.800000 3.461020 5.289213 3030.56300
HS [53] 3.520124 0.7000 17.0000 8.37000 7.800000 3.366970 5.288719 3029.00200
FA [56] 3.507495 0.7001 17.0000 7.719674 8.080854 3.351512 5.287051 3010.13749

A1
A2

A3

A1=A3

D D

D

Figure 12: 0reE − bar truss design problem.

Table 13: Comparison results for the threE − bar truss design problem.

Algorithm
Optimum variables

Optimum weight
x1 x2

RLTLBO 0.788420000000000 0.408110000000000 263.852300000000
AO [15] 0.792600000000000 0.396600000000000 263.868400000000
SSA [12] 0.788665410000000 0.408275784000000 263.895840000000
AOA [9] 0.793690000000000 0.394260000000000 263.915400000000
MVO [52] 0.788602760000000 0.408453070000000 263.895849900000
GOA [57] 0.788897555578973 0.407619570115153 263.895881496069

Table 14: Comparison results for the car crashworthiness design problem.

Algorithm RLTLBO DE [7] GA [6] FA [55] CS [59] GOA [57] EOBL-GOA [58]
x1 0.50000 0.50000 0.50005 0.50000 0.50000 0.50000 0.50000
x2 1.11621 1.11670 1.28017 1.36000 1.11643 1.11670 1.11643
x3 0.50000 0.50000 0.50001 0.50000 0.50000 0.50000 0.50000
x4 1.30215 1.30208 1.03302 1.20200 1.30208 1.30208 1.30208
x5 0.50000 0.50000 0.50001 0.50000 0.50000 0.50000 0.50000
x6 1.50000 1.50000 0.50000 1.12000 1.50000 1.50000 1.50000
x7 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
x8 0.34500 0.34500 0.34994 0.34500 0.34500 0.34500 0.34500
x9 0.332814 0.192000 0.192000 0.192000 0.192000 0.192000 0.192000
x10 − 19.58840 − 19.54935 10.31190 8.87307 − 19.54935 − 19.54935 − 19.54935
x11 0.019066 − 0.004310 0.001670 − 18.998080 − 0.004310 − 0.004310 − 0.004310
Optimal weight 22.84240 22.84298 22.85653 22.84298 22.84294 22.84474 22.84294
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(20)

From the comparison results in Table 15, we can see that
RLTLBO can obtain superior optimal cost compared to
mGWO, DSCA, HOA, AO, HHO, and CS.

5.8. Frequency-Modulated Sound Waves Design Problem.
0is problem aims to optimize the frequency-modulated (FM)
synthesizer parameter in six dimensions [60]. 0e following
equation is given for optimizationX � a1,ω1, a2ω2, a3,ω3􏼈 􏼉 as
a sound wave, where ai (i� 1, 2, 3) is the amplitude and ωi
(i� 1, 2, 3) is the angular frequency. 0is problem has the
lowest value f(X

→
sol) � 0. 0e objective function is calculated

based on the square errors between the target wave and the
estimated wave. 0is problem is modeled as follows.

Minimize

f(X
→

) � 􏽘
100

t�0
y(t) − y0(t)( 􏼁

2
, (21)

where

d0

Section
A – A

di

t
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d

Figure 13: Tubular column design problem [59].
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y(t) � a1 · sin ω1 · t · θ + a2 · sin ω2 · t · θ + a3 · sin ω3 · t · θ( 􏼁( 􏼁( 􏼁,

y0(t) � (1.0) · sin((5.0) · t · θ − (1.5) · sin((4.8) · t · θ +(2.0) · sin((4.9) · t · θ))),

θ �
2π
100

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

0e RLTLBO is compared with GWO, MFO [61], PSO,
TSA [62], and FFA [63] algorithms, and the comparison
results are listed in Table 16. It is obvious that the proposed
method found a much better solution than the comparative
algorithms.

In general, the excellent performance in solving in-
dustrial engineering design problems suggests that
RLTLBO can be widely used in real-world optimization
problems.

6. Conclusion

0is study presents an improved teaching-learning-based
optimization algorithm (RLTLBO) by incorporating re-
inforcement learning (RL) and random opposition-based
learning (ROBL) strategies. Because of the defect of the
insufficient learning processes, a new learning model is
proposed in the learner phase. 0e two different modes
uniting the inherent learning mode are switched through
the Q-learning mechanism in RL. 0is mechanism helps
the individuals learn thoroughly, resulting in accelerating
the convergence speed of the RLTLBO. To improve the
ability of local optima avoidance, the ROBL strategy is
appended after the teacher and learner phases. 0e pro-
posed RLTLBO algorithm is tested using 23 standard and
eight CEC2017 benchmark functions to analyze its search
performance. Experimental results illustrate competitive

results compared to other state-of-the-art meta-heuristic
algorithms. To further verify the superiority of RLTLBO,
eight industrial engineering design problems are solved.
0e results are also very competitive with other com-
parative algorithms.

0e code for RLTLBO is provided at https://github.com/
WangShuang92/RLTLBO and can be used formore practical
problems. However, this algorithm still suffers with pre-
mature convergence on several benchmark functions, which
can be studied in the future. Moreover, RLTLBO can only
solve single objective problems. For future research, binary
and multiobjective versions of RLTLBO can be considered.
More applications of this algorithm in different fields are
valuable works, including text clustering, scheduling
problems, appliances management, parameter estimation,
feature selection, test classification, image segmentation
problems, network applications, sentiment analysis, etc.
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0e data used to support the findings of this study are
available from the corresponding author upon request.
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Table 15: Comparison results for the tubular column design problem.

Algorithm
Optimum variables

Optimum cost
d t

RLTLBO 5.45120 0.29196 26.53130
mGWO 5.45080 0.29201 26.53270
DSCA 5.50250 0.29214 26.79030
HOA 5.26260 0.35487 28.86470
AO 5.46300 0.29656 26.83540
HHO 5.44380 0.29313 26.55820
CS [59] 5.45139 0.29196 26.53217

Table 16: Comparison results for the frequency-modulated sound waves design problem.

Algorithm
Optimum variables

Optimum cost
a1 ω1 a2 ω2 a3 ω3

RLTLBO − 0.97498 − 5.0327 − 1.5640 − 4.7840 − 2.0060 4.9055 0.21738
GWO [13] − 0.66540 − 0.1684 1.5173 − 0.1287 − 4.1335 − 4.8997 8.47250
MFO [61] 0.61410 0.0432 − 4.3251 4.7923 0.8339 0.1278 11.89690
PSO [11] − 0.58860 5.0145 − 3.2779 − 4.9324 − 0.8562 − 0.1476 13.18070
TSA [62] 0.34150 4.7881 1.4309 0.1158 0.0975 0.5480 25.10520
FFA [63] − 0.56270 0.0525 − 3.4797 4.8930 1.1491 − 4.8345 17.42910
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