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Instantaneous frequency estimation of rolling bearing is a key step in order tracking without tachometers, and time-frequency
analysis method is an effective solution. In this paper, a new method applying the variational mode decomposition (VMD) in
association with the synchroextracting transform (SET), named VMD-SET, is proposed as an improved time-frequency analysis
method for instantaneous frequency estimation of rolling bearing. The SET is a new time-frequency analysis method which
belongs to a postprocessing procedure of the short-time Fourier transform (STFT) and has excellent performance in energy
concentration. Considering nonstationary broadband fault vibration signals of rolling bearing under variable speed conditions,
the time-frequency characteristics cannot be obtained accurately by SET alone. Thus, VMD-SET method is proposed. Firstly, the
signal is decomposed into several intrinsic mode functions (IMFs) with different center frequency by VMD. Then, effective IMFs
are selected by mutual information and kurtosis criteria and are reconstructed. Next, the SET method is applied to the
reconstructed signal to generate the time-frequency representation with high resolution. Finally, instantaneous frequency
trajectory can be accurately extracted by peak search from the time-frequency representation. The proposed method is free from
time-varying sidebands and is robust to noise interference. It is proved by numerical simulated signal analysis and is further
validated by lab experimental rolling bearing vibration signal analysis. The results show this method can estimate the in-

stantaneous frequency with high precision without noise interference.

1. Introduction

Rolling bearing is a key part and most widely used in rotating
machinery. Its working status directly affects the operation
efficiency and service life of mechanical system, therefore, it
is very important to diagnose fault of rolling bearing [1-5].
In practice, rolling bearing often works under variable speed
conditions when the vibration signal shows strong non-
stationary characteristics, which increases difficulty of fault
diagnosis. In the field of rolling bearing fault diagnosis under
variable speed [6, 7], order tracking is one of the most ef-
fective method [8]. There are a lot of ways for order tracking.
Among them, order tracking based on time-frequency
representation is the most popular method because it
does not need to install the tachometer, so that it saves space
and costs, while instantaneous frequency estimation is the
most preliminary and vital step. Therefore, how to effectively
estimate instantaneous frequency from complex vibration

signal with strong noise is a significant issue for further fault
diagnosis of rolling bearing under variable speed conditions.

There are many sorts of methods for instantaneous
frequency estimation, and the first class is based on the phase
demodulation method. For example, Coats [9] presented the
multistep iterative method to realize phase demodulation
and extracted instantaneous frequency information. Feng
et al. [10] put forward time-varying demodulation analysis
method by applying ConceFT. Such methods are restricted
because the cross terms between the adjacent harmonics will
be generated when the rotating speed varies widely. The
second class is based on the time-frequency analysis method,
to name a few for example, Guo et al. [11] proposed the
short-time Fourier transform (STFT) combined with peak
search and applied the method to instantaneous frequency
estimation for variable speed motor. But it shows poor
property under strong noise interference. Zhao et al. [12]
devised STFT combined with the Viterbi algorithm to
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estimate instantaneous frequency of variable speed vibration
signal. But the Viterbi algorithm’s complexity results in this
method’s low computational efficiency, so it is hard to apply
to actual working conditions.

To sum up, instantaneous frequency estimation method
based on the time-frequency analysis is simple in principle
and free from speed fluctuation which has broader practical
value, so, much attention should be paid to it. For this kind
of method, the key to success is time-frequency analysis
method, which should possess high time-frequency reso-
lution and good antinoise property. Widely used traditional
time-frequency analysis methods include short-time Fourier
transform (STFT), wavelet transform (WT), S transform,
and Wigner-Ville distribution (WVD), etc. These methods
have been applied in many fields and acquired some good
achievements. But, restricted, respectively, by the Heisen-
berg uncertainty principle, ineradicable cross-terms, and
large computational costs, these methods reveal some lim-
itations for practical purposes. In recent years, some new
time-frequency analysis methods have been put forward.
Among these methods, synchrosqueezed wavelet transforms
(SST) attract the most attention, which was proposed by
Daubechies et al. [13] in 2011. This method’s essence is the
combination of wavelet transform and time-frequency reas-
signment. Time-frequency aggregation is improved by
compressing wavelet transform coeflicient in frequency/scale
direction. However, SST still has many problems, like poor
antinoise property and deficiency in processing multicom-
ponents signal. Therefore, a lot of scholars proposed various
improved methods. For example, Feng et al. [14] proposed
iterative generalized synchrosqueezing transform to address
the issue of time-frequency blurs of multicomponent and
time-variant frequency signals and applied it to fault diagnosis
of wind turbine planetary gearbox under nonstationary
conditions. Wang et al. [15] introduced a matching syn-
chrosqueezing transform to process signals composed of
multiple components with fast varying instantaneous fre-
quency that achieved a highly concentrated time-frequency
representation.

Considering these issues, inspired by SST and the
theory of ideal time-frequency analysis, Yu et al. [16]
proposed a novel time-frequency analysis method named
SET in 2017, which belongs to a postprocessing procedure
of the STFT. Different from the squeezing manner of SST,
the main idea of SET is to only retain the time-frequency
information of STFT results most related to time-varying
features of the signal and to remove most smeared time-
frequency energy, so the time-frequency energy concen-
tration can be improved significantly. And Yu successfully
applied it to analyze instantaneous frequency of bat signal
and mechanical vibration signal. Chen et al. [17] dealt with
seismic signals making use of SET and realized hydro-
carbon detection.

SET is very suitable to analyze time-frequency in-
formation of nonstationary signals and can achieve high time-
frequency resolution. However, rolling bearing fault vibration
signal is nonstationary and multicomponent with complex
amplitude modulation features, frequency modulation fea-
tures, and strong noise interference. SET alone is not sufficient
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to accurately extract time-frequency information. Therefore,
the authors consider using a preprocessing method to denoise
and decompose multicomponent signal into monocompo-
nent signal and then performing SET, in which time-
frequency resolution and antinoise property both can be
enhanced very well.

Recently, a new adaptive signal decomposition method
named variational mode decomposition (VMD) was pro-
posed by Dragomiretskiy et al. [18] in 2014, which can select
the relevant frequency bands of fault signal suppressing
noise interference and decompose the signal into several
monocomponent signal with high precision. VMD can ef-
ficiently overcome the mode mixing and misclassification
problem of empirical mode decomposition (EMD) and
ensemble empirical mode decomposition (EEMD) due to
noniterative decomposition. Thus, it has been widely used in
signal decomposition and denoising field, and many scholars
applied it to fault diagnosis and other fields in practice
[19-21]. VMD can decompose signal into several intrinsic
mode functions (IMFs); however, some IMFs are redundant
components irrelevant to original signal, and so how to
select efficient components is a key step. Given this, mutual
information (MI) and kurtosis are introduced to select ef-
fective IMFs, which can guarantee that the selected com-
ponents contain the useful information to the utmost extent
and purify the signal.

In this paper, we propose an improved time-frequency
analysis method combining VMD with SET to estimate
instantaneous frequency of rolling bearing under variable
speed conditions. First, the signal is decomposed into
some IMFs by VMD. Next, the effective components are
selected via MI and kurtosis and reconstructed. Then, SET
is carried out for the reconstructed signal. Last, peak
search is performed on SET time-frequency representa-
tion, and instantaneous frequency can be accurately
extracted.

Hereafter, this paper is structured as follows. In Section 1,
we produce the relevant principles including VMD, mutual
information, kurtosis, SET, and peak search and illustrate
concrete steps of the proposed method. In Section 2, firstly,
we compare VMD with EMD, then numerical simulated
signals are analyzed to prove effectiveness of the proposed
method and debate antinoise property and estimate accu-
racy. In Section 3, the lab experimental vibration signals of
rolling bearing with rising speed and fluctuate speed
are employed to further validate the practicability of the
proposed method. At last, the conclusions are given in
Section 4.

2. Theory

2.1. Variational Mode Decomposition (VMD). The aim of
VMD is to decompose multicomponent signal into a series
of band-limited monocomponents with specific sparsity
properties in the bandwidth, and all components are
compact around a center pulsation, moreover, the decom-
posed components support reconstruction. It is carried out
by working out the following constrained variational opti-
mization problem:
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where . is the kth component of the original signal, {u}
denotes a series of modes {u;,u,,...,u}, w; is the center
frequency corresponding to the kth component, {w,} de-
notes a series of center frequencies corresponding to {u;}
which is represented as {w;, w,, . .., w;}, f (t) is the original
signal, and §(t) is the Dirac function.

For this model, first, the analytical signal and its single
side spectrum are obtained via Hilbert transform. Then, it is
multiplied with the exponential factor to modulate the all
modes’ spectrum to the corresponding baseband. Last, the
constraint variational problem is transformed into a non-
constrained variational problem by extending the Lagrange
function and then solved. The expression is as follows:
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where a denotes the balancing parameter of the data-fidelity
constraint and A is the Lagrange multiplier.

The Lagrange saddle point is acquired using alternate
direction method of multipliers algorithm, which is the
optimal solution of the original variational model. During
the solution process, each mode is updated according to the
following equation:
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where f(w),ﬁi(w),X(w),ﬁZ“ (w), respectively, denote the
corresponding Fourier transform and # is iterations.

The center frequency is estimated according to the updated
modes’ power spectrum, the center frequency is updated by
Equation (4). Further, A also can be updated. The updating
process ends until the iteration stop condition shown in
Equation (5) is satisfied. Then K IMFs can be obtained.
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2.2. Mutual Information (MI). MI derived from the entropy
of information theory, which is the difference value of two
random variables uncertainty represents the statistical
correlation, and the larger the value, the greater the cor-
relation. MI is often used to identify fake components of
EMD, EEMD, and VMD. Some scholars compared MI with
correlation coefficient, and the result shows that the MI is
more accurate [22]. The expression of MI is as follows:

MI(X,Y) = H(Y) - H(Y|X), (6)

where MI(X,Y) denotes MI of X and Y, H(Y) denotes
the entropy of Y, and H (Y|X) is the conditional entropy of
Y at X.

The normalized expression is

M ;
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The threshold value is set for «;, and the correlation

between the decomposed modes and original signal can be

judged by the threshold value, and if «; is larger than the

threshold value, the corresponding modes are effective

components, otherwise, the corresponding modes are fake
and should be removed.

2.3. Kurtosis. Kurtosis is a dimensionless parameter de-
scribing the waveform peak, which is sensitive to the impulse
characteristics of signal. For the discrete variable x, the
normalized fourth order central moment is called kurtosis,
which is defined as follows:

4
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where K is kurtosis value, E (x — y)4 denotes the fourth order
mathematic expectation, u is the mean value, and o is the
standard deviation.

When the rolling bearing is under normal working
condition, the amplitude probability density of the vibration
signal is close to the normal distribution, when the kurtosis
value is about 3, which is a stationary or weak stationary
process. However, when there is damage impulse due to the
rolling bearing elements pitting or cracks, the amplitude
probability density will deviate from the normal distribu-
tion, and the kurtosis value increases, that is, the more
impulsive the signal is, the larger the kurtosis value becomes.
Thus, the mode with larger kurtosis contains more abundant
fault information [23].

2.4. Synchroextracting Transform (SET). SET is a novel time-
frequency analysis method, and it is a postprocessing pro-
cedure of the STFT, which is a more energy concentrated
time-frequency representation than classical time-frequency
analysis methods and can effectively describe time-
frequency characteristics.

For a multicomponent signal s(¢), which can be seen as
the sum of »n nonstationary modes, its expression is as
follows:
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where s;, Ay, ¢, respectively, denote the kth mode, the
corresponding instantaneous amplitude, and instantaneous
phase; ¢, is the first-order derivative of ¢, and denotes
instantaneous frequency; and A is the frequency support of
window function.

SET is based on STFT, and the STFT representation
G, (t,w) of original signal s(t) is shown as the following
form:

G(tbw) = Y A®g(0-gi(0)™,  (10)
k=1

where g(-) denotes the Fourier transform of the window
function g, g € L*(R).

According to (10), we can calculate instantaneous fre-
quency by

9 (o) =) gi(tw) =~
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In order to enhance the time-frequency resolution, Yu
designed an operator to only retain the time-frequency
information most related to time-frequency characteristics
of the target signal from STFT representation, which can
remove the irrelevant interference and smeared time-
frequency energy. The SET is formulated as

T,(t,w) =G, (t,w)8 (0 —¢' (t, ), (12)
Sw—g a) =10 ©=9 bW

named the synchroextracting operator (SEO).
According to (10) and (12), the following expression can
be deduced:
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In this way, we can obtain a sharper time-frequency
representation than STFT and extract instantaneous fre-
quency with a highly precise degree.

2.5. Peak Search. After obtaining the time-frequency rep-
resentation, we need to extract the instantaneous frequency
curve from it. For a time-frequency analysis method with
high precision and high time-frequency aggregation, the
peak search algorithm can extract the instantaneous fre-
quency from the time-frequency diagram accurately, and the
peak search principle is simple and the efficiency is high.
Therefore, this paper uses the peak search method to extract
the instantaneous frequency curve. The steps to extract
instantaneous frequency curve from the time-frequency
diagram by peak search are as follows:

(1) Time-frequency representation is obtained.
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(2) Select the starting point of search. In the time fre-
quency diagram, a point is selected as the starting
point in the region where the peak value of the
tracking component is prominent. After selecting the
starting point, the peak value of the time frequency
diagram is searched according to the following
equation:

IFE(n,,k,) = argmax {SPEC(ny,k)},
ko—p<k<kyt+p

argmax {SPEC (n,k)}, (14)
n=n;;,
ki1 —p<k<k, +p

IFE (n;, k;) =

wheren; =n, £ 1,n, £2,...,n, € (0,M—1);k; € (0,N-1);
M denotes the number of time lines in the time-frequency
grid, N denotes the number of frequency lines in the time-
frequency grid, IFE is the peak search function, argmax is the
parameter when the objective function takes the maximum
value, and SPEC is the corresponding time-frequency rep-
resentation. (n,,k;) is the first instantaneous frequency
coordinate obtained from peak search with (n,k;) as the
starting point. p denotes the range of peak search; (n;, k;) is
the instantaneous frequency coordinate corresponding to
each time after peak search.

(3) Instantaneous frequency curve fitting. The least
squares fit is performed on the discrete in-
stantaneous frequency obtained above. According to
the trend of instantaneous frequency change of each
point, the number of polynomials is selected. Nor-
mally, the rotation speed will not be abrupt, so we
can choose low-order polynomial fitting. Take the
second-order polynomial as an example. The fitting
formula is as follows:

F(t)=at® +bt +c, (15)

where ¢ is time; f (f) denotes instantaneous frequency fitting
function; and a, b, and ¢ are undetermined coeflicients.
The squared error is as follows:

Fab.c)= ) [7(t) -7 )] (16)

According to these restrictive conditions: 0F/da = 0,
0F/0b = 0,0F/dc = 0, a, b, and ¢ can be determined.

2.6. VMD-SET Analysis Procedure for Rolling Bearing Fault
Signal. Considering rolling bearing fault signal shows
strong nonstationary under variable speed condition and
is complex multicomponent signal contaminated by
strong noise, it is difficult to accurately estimate in-
stantaneous frequency for time-frequency analysis alone
even with high time-frequency resolution. Thus, it is
necessary to preprocess signal to denoise and decompose
the original. VMD has a solid theoretical foundation,
which decomposes a multicomponent signal into a set of
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quasiorthogonal IMFs with different center frequency in
nonrecursively way and is suitable to process the rolling
bearing fault vibration signal. However, not all IMFs are valid,
so we select the effective IMFs by MI and kurtosis, which not
only removes the noise interference but also obtains the
monocomponent signal containing the most useful in-
formation. After that, we perform SET and can eliminate the
most-smeared time-frequency energy and get clear time-
frequency representation.

For an actual rolling bearing vibration signal, the pro-
posed method can be generated following the procedure
listed below:

(1) Decompose the original signal into a number of
IMFs by VMD. The VMD parameters are set as the
default value. & = 2000, 7 = 0.

(2) Calculate the MI between each mode and the
original signal and each IMF’s kurtosis value, and
the components are removed that the MI is less
than the threshold value and the kurtosis value is
less than 3, and the other IMFs are selected. In this
paper, the MI threshold value is determined as 0.1.
Through a large number of experimental data
analysis, the results show that it is the most ap-
propriate to set the threshold value as 0.1, when the
signal can retain the most useful information and
eliminate noise effectively.

(3) Add the selected IMFs to get the reconstructed signal,
then apply SET to the reconstructed signal. When
instantaneous frequency features can be shown clearly
in the SET time-frequency representation.

(4) Extract instantaneous frequency curve via peak
search based on SET time-frequency spectrum.

The VMD-SET analysis flowchart for instantaneous
frequency estimation of rolling bearing is shown in Figure 1.

The characteristics and advantages of the proposed
method include (1) the application of VMD, which can
realize the signal decomposing and denoising; (2) VMD’s
effective components are selected by combing MI with
kurtosis, in which the acquired components can guarantee
accuracy and completeness to the utmost extent; and (3) the
proposed method possesses strong noise resistance, excellent
time-frequency resolution, and high estimation precision of
instantaneous frequency.

3. Simulated Signal Analysis and Comparison

Rolling bearing vibration signal under variable speed is
complex multicomponent signal. In different working
conditions, the signal can be demodulated by different
frequency, and the estimation accuracy of instantaneous
frequency will be greatly affected due to strong background
noise. Thus, in this paper, we design two kinds of
demodulated signal (linear frequency modulation and si-
nusoidal frequency modulation multicomponent signals)
to simulate rolling bearing vibration signal under two
working conditions, which can demonstrate the method’s
effectiveness more convincingly.

Rolling bearing vibration signal

;

VMD
[
v v
. Mutua'l Kurtosis
information

v

Reconstructed signal

;

SET

v

Time-frequency
representation

;

Peak search

v

Instantaneous frequency curve

End

FIGURE 1: VMD-SET analysis flowchart for instantaneous fre-
quency estimation of rolling bearing.

3.1. Comparison of Signal Decomposition Effects between
VMD and EMD. First of all, let’s discuss why we choose to
preprocess signals with VMD. In order to illustrate the
rationality of VMD used in this article, we compare VMD
with EMD to test its noise immunity and signal de-
composition accuracy. A multicomponent harmonic signal
is constructed, and the center frequencies of three com-
ponents are 2 Hz, 24 Hz, and 288 Hz, respectively, as shown
in (17), where 7 represents Gaussian additive noise with
a mean of 0 and a variance of 0.1.

1
f(t) =cos(2 x 2nt) + ZCOS(?A X 271t)
(17)
1
+ Ecos(288 X 27t) + 1.

The signal is decomposed by VMD and EMD, re-
spectively, and the waveforms and spectrums of the ob-
tained components are as shown in Figure 2. It can be seen
that the three components of the signal can be completely
separated by VMD, and the center frequency of each
component is consistent with the true value. The de-
composition accuracy is very high, and the noise can be
eliminated very well, and there is no modal aliasing. Five
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FIGURE 2: Signal decomposition comparison: (a) waveforms and spectrums of VMD; (b) waveforms and spectrums of EMD.

modes are obtained by EMD, in which only the center
frequencies of the two modes correspond to the true values
of 24 Hz and 288 Hz. The other modes do not correspond to
an accurate center frequency, and we can see that the modal
aliasing is severe. The waveforms have severe distortion, the
signal decomposition accuracy is very low, and the ability
to eliminate noise is weak.

In order to be a suitable preprocessing method for SET,
good noise immunity and high-precision decomposition

capability are necessary. From the above analysis, it can be
seen that VMD has advantages over EMD. So, we choose
VMD as a preprocessing method for SET.

3.2. Linear Frequency Modulation (LFM) Signal Validating.
The simulated multicomponent vibration signal of line
frequency modulation is established, and the instantaneous
angular frequency is
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w(t) = 2.57t + 307 (18)

So, the instantaneous frequency is
f(t) =1.25¢ + 15. (19)

The simulated signal is

x(t) = sin(Jt w(r)dT) 108 sin<0.66 r w(r)dt)
0 0

+0.7 sin<0.5 Jt w(r)dr) +7(t),
0
(20)

where 7 (t) denotes Gaussian white noise, 0 <t <20s.

The signal’s sampling frequency is 100 Hz, and we added
strong noise to the signal to get SNR (signal-to-noise ratio)
of =12 dB, which can make the advantage of the proposed
method in antinoise more prominent. The signal’s waveform
is shown in Figure 3. The VMD result is shown in Figure 4
(IMF1 to IMF3 from top to bottom), from which we can see
three components of original signal with different frequency
are separated completely (the number of VMD’s mode is set
as 3 according to the signal). Then, calculate each compo-
nent’s kurtosis value and the MI between each component
and the original signal; the results are displayed in Table 1. It
is observed that three components are effective according to
the above principle. The SET time-frequency representation
of the reconstructed signal is shown in Figure 5, from which
the frequency curves containing base frequency, 0.66 and 0.5
times frequency are clearly seen without noise interference,
which can accurately describe the time-frequency in-
formation of the signal.

In order to highlight the advantage and necessity of the
proposed method, we provided the time-frequency repre-
sentation of SET alone for comparison, as Figure 6. It is seen
that the representation is seriously influenced by noise, and
the instantaneous frequency curve with base frequency is
weakly displayed, and the other frequency components al-
most disappear. At last, the instantaneous frequency is
extracted from SET time-frequency representation and
VMD-SET time-frequency representation, respectively, by
peak search. The comparison result is displayed in Figure 7,
as you can see, the instantaneous frequency estimated by the
proposed method is mainly in accordance with the real
instantaneous frequency, while the instantaneous frequency
estimated based on SET differs greatly from the true result.

In order to illustrate quantitatively the estimation ac-
curacy of the two methods, we calculated the percentage
value of the estimation error using Equation (21). By cal-
culation, the estimation error of the proposed method is
2.83%, and the error of SET is 46.82%.

. VI, (f () - F (m))?

VEN T ()

where & denotes the percentage value of the estimated error,

f (n) denotes estimated frequency, f (1) denotes real fre-
quency. and N is the corresponding point.

(21)

Amplitude

-10

-15

0 5 10 15 20
Time (s)

FIGURE 3: Waveform of LFM signal.

3.3. Sinusoidal Frequency Modulation (SFM) Signal
Validating. The simulated multicomponent vibration signal
of sinusoidal frequency modulation is established, and the
instantaneous angular frequency is

w(t) =21 (7.5-2.5 cos(t)). (22)

So, the instantaneous frequency is
f(t)=75-2.5 cos(t). (23)

The simulated signal is

t t
x(t) = sin(J w('r)dr) +0.6 sin(ZJ w(r)dr)
0 0

, (24)
+0.4 sin(4 J w(r)dr) + 7 (1),
0

where 7 (t) denotes Gaussian white noise, 0 <t <20s.

The signal’s sampling frequency is also 100 Hz. We still
added strong noise to the signal, and the SNR is equal to
—12dB. The signal’s waveform is shown in Figure 8, and
the VMD result is shown in Figure 9 (IMF1 to IMF3 from
top to bottom), from which we can see three components of
original signal with different frequency are separated
completely (the number of VMD’s mode is set as 3 according
to the signal). Then calculate each component’s kurtosis
value and the MI between each component and the original
signal; the results are displayed in Table 2. It is observed that
three components are effective according to the above
principle, so the reconstructed signal is obtained by adding
three IMFs. The SET time-frequency representation of the
reconstructed signal is shown in Figure 10, from which three
modulated frequency curves are clearly displayed without
noise interference, which can accurately describe the time-
frequency information of the signal. However, the time-
frequency representation of SET alone is displayed in Fig-
ure 11. It is seen that the representation is seriously influ-
enced by noise, and the instantaneous frequency curve is
submerged in the strong noise hard to identify. At last, the
instantaneous frequency is extracted from SET time-
frequency representation and VMD-SET time-frequency
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FIGURE 4: Waveform and spectrum of IMFs by VMD for LFM signal.

TaBLE 1: The kurtosis values and mutual information (MI) of IMFs
for LFM signal.

IMF IMF1 IMF2 IMF3
Kurtosis 4.78 3.57 4.13
MI 0.856 0.769 0.985

—_

Frequency (Hz)

5 10
Time (s

14
1.2
0.8
0.6
0.4
0.2
0
15 20
(s)

FiGure 5: Time-frequency representation of LFM signal based on
VMD-SET.

representation, respectively, by peak search. The comparison
result is displayed in Figure 12, as you can see, the in-
stantaneous frequency estimated by VMD-SET is nearly
identical with the real instantaneous frequency, while the
instantaneous frequency estimated based on SET deviates
greatly from the true result. The reason is that the SNR is so
low that noise energy is larger than the signal energy, and then
the estimation error is nonnegligible. However, the proposed

method adopts VMD to preprocess the signal, which can
greatly reduce noise and effectively decompose the signal. By
calculation according to Equation (21), the estimation error of
the proposed method is 1.58%, and the error of SET is 45.97%.

3.4. Antinoise Property and Estimation Precision Analysis.
In this paper, we further analyze the antinoise property and
the precision of instantaneous frequency estimation for the
proposed method. To be more persuasive, the authors made
alot of tests and added white noise to the LEM signal and SFM
signal to make SNR vary from —20 dB to 10 dB. We performed
VMD-SET time-frequency analysis on LFM signal and SFM
signal under different SNR and calculated instantaneous
frequency estimation error under different SNR.

In order to save space, we give VMD-SET time-
frequency representation for LFM signal and SFM signal
under four groups of SNR. The representation for LFM
signal is shown in Figure 13, and the representation for SEFM
is shown in Figure 14. It is seen that the time-frequency
resolution remains high under low SNR, and each in-
stantaneous frequency curve is clearly displayed, which
manifests that the proposed method is possessed of good
antinoise property.

In order to validate the performance of the proposed
method strictly, we adopt the quantified indicator to illus-
trate the effectiveness. The more energy-concentrated time-
frequency representation manifests the better the ability of
the time-frequency location and the better the character-
ization of time-varying feature. The Rényi entropy can
evaluate the energy concentration of time-frequency rep-
resentation, so we adopt it to validate the performance of
VMD-SET and SET. The smaller the Rényi entropy is, the
higher the time-frequency resolution, and its definition
equation is shown in the following equation:
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TaBLE 2: The kurtosis values and mutual information (MI) of IMFs
for SFM signal.

IMF IMF1 IMF2 IME3
Kurtosis 3.28 4.87 5.12
MI 0.723 0.859 0.967
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FiGure 10: Time-frequency representation of SFM signal based on
VMD-SET.

— log(ZIn:lp?), (25)

R(q) I—g

where R denotes Rényi entropy and ¢g>0,9#1, (p;,
Ps - --» p,) denotes the probability distribution of arbitrary
discrete variables.

Under different SNR, the Rényi entropies of SET and
VMD-SET time-frequency representations are respectively
shown in Figures 15 and 16. It is seen that the Rényi entropy
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FiGgure 11: Time-frequency representation of SFM signal based on
SET.

increases with the reduction of SNR, which indicates that
noise makes influence on time-frequency resolution. The
Rényi entropy of SET changes sharply, which proves that it
has poor antinoise property. While due to preprocessing by
VMD in the proposed method, the noise interference is
removed greatly. We can see the Rényi entropy of VMD-SET
keeps minimum in different SNR and changes not obviously,
which validates that the proposed method possesses the best
ability to improve the time-frequency resolution without
noise interference.

Moreover, we calculate the estimation error of LFM
signal and SFM signal under different SNR based on
VMD-SET. It is listed in Figure 17. As you can see, the
estimation error is kept within 3% when the SNR is above
—20dB, and the precision is sufficient to meet the accuracy
requirement.
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FIGURe 13: VMD-SET time-frequency representation of LFM signal under different SNR: (a) 10dB, (b) 0dB, (c) —~10dB, and (d) -20dB.

4. Lab Experimental Validating

In this section, we apply the proposed method to the real
rolling bearing vibration signal to further validate the
practicability and effectiveness. The real data are from the
mechanical fault diagnosis laboratory in Shijiazhuang
Railway University, and the experimental setup is displayed
in Figure 18. Figure 18(a) is the simulation experiment
platform. Figure 18(b) is the rolling bearing for testing and

fault outer race, which is NU205EM type. Figure 18(c) is the
CA-YD-188 acceleration sensor. The experimental in-
stallation is shown in Figure 18(d), where, 1 denotes the CA-
YD-188 acceleration sensor and 2 denotes the ICP laser
tachometer.

The sampling frequency of vibration signal is 25600 Hz,
and the sampling frequency of the laser tachometer is 1 kHz.
And the true rotational frequency is obtained by five-point
formula according to the signal from laser tachometer, which
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FIGURE 14: VMD-SET time-frequency representation of SEM signal under different SNR: (a) 10dB, (b) 0dB, (c) —10dB, and (d) —20dB.
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FiGure 15: The Rényi entropies of the time-frequency representation based on SET and VMD-SET under different SNR (LFM).

is used to compare to estimated frequency. In order to amply
demonstrate the effectiveness of the proposed method, we
make analysis under two conditions, respectively, the con-
dition with rising speed and complex fluctuated speed.

4.1. Frequency Estimation Validating with Rising Speed.
The vibration signal waveform is shown in Figure 19, which
is rising speed condition with strong noise. The rotational

frequency varies from 11.4 Hz to 24.6 Hz. Firstly, the signal is
processed by VMD (the mode is set as 6 according to test),
and the result is displayed in Figure 20 (IMF1 to IMF6 from
top to bottom). Then, calculate the corresponding MI and
kurtosis shown in Table 3, so we can see that the kurtosis
and MI of IMF1 to IMF3 are eligible, so these components
are effective. However, two indicators of IMF4 and IMF5
are all not qualified, and for IMF6 the kurtosis is acceptable
but the MI is incompetent, so it is still invalid. Thus, the
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FiGgure 18: Continued.
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FIGURE 19: Waveform of rolling bearing vibration.

reconstructed signal is obtained generated by adding IMF1,
IMF2, and IMF3. The VMD-SET time-frequency repre-
sentation of reconstructed signal is shown in Figure 21, and
it is seen that the time-frequency energy of base rotational

frequency is the most high, which can be regarded as the
target of peak search. At last, according to the representa-
tion, the instantaneous rotational frequency is extracted via
peak search, and the result is shown in Figure 22. Comparing
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IMF IMF1 IMF2 IMF3 IMF4 IMF5 IMF6
Kurtosis 3.78 413 4.87 2.84 2.65 3.02
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FiGure 22: Comparison between estimated instantaneous rota-
20 tional frequency and true result of rolling bearing vibration signal
with rising speed.
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FiGure 21: Time-frequency representation of rolling bearing vi-
bration signal with rising speed based on VMD-SET.

the true result, we can see they are almost coincident, and the
error is 1.46% by calculating, which is a desired result.

4.2. Frequency Estimation Validating with Fluctuated Speed.
The vibration signal waveform is shown in Figure 23, which is
fluctuated speed condition with strong noise. The rotational

the extraction of instantaneous rotational frequency is very
difficult. Firstly, the signal is processed by VMD (the mode is
set as 6 according to test), and the result is shown in Figure 24
(IMF1 to IMF6 from top to bottom). Then, calculate the
corresponding MI and kurtosis shown in Table 4, so we can
see that the kurtosis and MI of IMF1 to IMF3 are all eligible,
so these components are effective. And the other components
are all unqualified, and should be removed. Thus, the
reconstructed signal is obtained generated by adding IMF1,
IMF2, and IMF3. The VMD-SET time-frequency represen-
tation of reconstructed signal is shown in Figure 25, and it is
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TABLE 4: The kurtosis values and mutual information (MI) of IMFs
for real signal with fluctuated speed.

IMF IMF1 IMF2 IMF3 IMF4 IMF5 IMF6
Kurtosis 4.58 4.93 412 2.93 2.26 2.69
MI 0905 0986  0.725 0.086  0.048 0.067

seen that the base rotational frequency component is the most
conspicuous, and its time-frequency energy concentration is
the best. At last, according to the representation, the in-
stantaneous rotational frequency is extracted via peak search,
and the result is shown in Figure 26. Comparing the true
result, we can see they are almost identical, and the error is
0.98% by calculating, which is a very ideal result.

5. Conclusion

In this paper, we propose an improved time-frequency analysis
method named VMD-SET for instantaneous frequency esti-
mation of rolling bearing. The proposed method uses VMD and
mutual information and kurtosis indicators to select the effective
components and then performs SET on the effective compo-
nents, which not only retains the merits of VMD and SET, but
also improves the signal decomposition accuracy and enhances
the antinoise ability and time-frequency resolution. Compared
with the SET time-frequency analysis alone, the advantages of
the proposed method are obvious. Two simulation signal models
with different SNR and two groups of real signals separately
under rising speed and fluctuated speed conditions have been
used to prove the effectiveness of the proposed method, and the
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F1GURE 25: Time-frequency representation of rolling bearing vi-
bration signal with fluctuated speed based on VMD-SET.
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FIGURE 26: Comparison between estimated instantaneous rota-
tional frequency and true result of rolling bearing vibration signal
with fluctuated speed.

results show that the proposed method can be successfully
applied to the instantaneous frequency estimation of rolling
bearing vibration signal under different complex working
conditions, and the estimation accuracy is enough to meet actual
requirement, which is an instantaneous frequency estimation
method with practical application value.
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