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Abstract— Simple and efficient numerical procedures using 

singularity cancellation methods are presented for evaluating 

singular and near-singular potential integrals. Four different 

transformations are compared and the advantages of the Radial-

angular transform are demonstrated.  A method is then 

described for optimizing this integration scheme.    

 

Index Terms—Numerical integration, Integral equations, 

Computation theory. 

I. INTRODUCTION 

T is well known that singular potential integrals involved in 

the integral equations of electromagnetics often require 

special numerical considerations for their evaluation. Until 

recently, the method of singularity subtraction was used 

almost exclusively for the evaluation of singular and near-

singular terms.  However, it becomes unwieldy and prone to 

error for bases of higher order, and it is not conducive to 

object-oriented programming practices, particularly in the 

context of multiple operators. 

To extend the capabilities, accuracy, and maintainability of 

general-purpose codes, the subtraction method is being 

replaced in favor of purely numerical quadrature schemes.  

These schemes employ singularity cancellation methods in 

which a change of variables is chosen such that the Jacobian 

of the transformation cancels the singularity. Recently, a new 

singularity cancellation scheme, the arcsinh transformation, 

was presented for handling 1 R singularities [1]. For singular 

integrals the method  not only has several advantages over 

singularity subtraction methods, but also improves on some 

aspects of other singularity cancellation methods such as Polar 

[2] and Duffy [3] transformations. One drawback of the 

scheme, however, is its inability to efficiently calculate near-

singular integrals.  To this end, we have extended the Duffy 

and polar transformations to handle near-singularities,  

and introduced a new scheme referred to as the Radial-angular 

transformation [4,5]. In this presentation we summarize and 

compare the four transformations for 1 R  type kernels and 

describe a method for optimizing the Radial-angular  

transformation. 

II. GREEN’S FUNCTIONS WITH 1/R SINGULARITIES 

A. Theory 

In this section the arcsinh,  extended Duffy, extended radial 

(or polar) and radial-angular transformations are compared. 

To evaluate potential integrals of the form  

 ( )
4

jkR
e

d
Rπ

−

= ′∫I Λ r
D

D  (1)  

where R ′= −r r is the distance between an observation point 

at  and source points  on triangular domains , a nearby 

observation point is projected onto a parent triangular 

element, as shown in Fig 1.  The parent triangle is then split 

into three subtriangles about the projected observation point.   

The geometry of a typical subtriangle with origin at the 

projected observation point is shown in Fig. 2. 
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The general form of the transformed integral over the 

subtriangle is given by 
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where the function  is a product of the basis and 

Green’s potential.  Ideally, the transform’s Jacobian J  would 

exactly cancel the singular (static) part of the kernel, and the 

subtriangle would map into a rectangular domain such that 

repeated Gauss-Legendre integration of low order may be 

used.  A summary of the transformations investigated is given 

in Table 1, followed by a synopsis of their actual properties. 
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Fig. 1.  Subdividing a triangle into subtriangles about the  

 projected observation point. 
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Fig. 2.  Subtriangle geometry 

 

 
arcsinh: 

• Exact singularity cancellation 

• Rectangular integration domain results only for z = 0 and 

 very  sensitive to variations in z  

• A single sample point integrates static kernel exactly for 

 constant source densities for z = 0 

extended Duffy: 

• Extends Duffy to the case z ≠ 0 

• Inexact singularity cancellation for any z 

• A rectangular integration domain results only for z = 0 and 

 very  sensitive variations in z 

radial: 

• Extends polar form to the case z = 0 

• Exact singularity cancellation 

• Non-rectangular integration domain, but is insensitive to 

 variations in z 

radial-angular: 

• Exact singularity cancellation 

• Non-rectangular integration domain for z = 0 , but  

 angular variation in Jacobian is compensated for by  

 radial limit;  insensitive to z = 0 variation  

cosh u

Uv

• Single sample point integrates the static kernel exactly for 

 constant source densities for z = 0 

 

 For z = 0, the arcsinh and radial-angular approaches are 

nearly identical.  The radial-angular transformation presents 

the best compromise for both z = 0 and z ≠ 0 and, therefore, 

we will look at this method in more detail. 

 From Eq. 1 and Fig. 2 we have 
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where  { } ( ){ }22, , sinL UR R z z h φ= + .  For ( ) 1′ =Λ r and k = 0, 

Eq. 3 becomes 
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If h d  then the kernel in Eq.4  is proportional to sinh φ .  

In order to smooth the angular dependence we let 
TABLE 1: 
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This yields 
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are the weights, and J  is the Jacobian of the triangle.  Hence, 

the integral can be calculated using repeated Gauss-Legendre 

quadrate with weights ) . The details of how to evaluate 

potential integrals in simplex coordinates is shown in [1] and, 

therefore, will not be repeated here. 

(

B. Results 

In this section we compare convergence results for a 

subtriangle with geometry defined as in Fig 3.  This geometry 

allows one to limit the degrees of freedom and create 

optimized sampling schemes, which are given in the following 

section.  

For any given subtriangle one determines its maximum 

edge length.  As Fig. 2 illustrates, this defines vertices 1 and 2 

of the subtriangle with vertex 3 located between the circular 

arcs in Fig. 3. These arcs have radii equal to the maximum 

edge length and are centered on its end points; they define the 

locus 
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length and are centered on its end points; they define the locus 

of the third vertex whose attached edges are no longer than the 

maximum edge.  In order to quantify the subtriangle geometry 

we introduce a quantity called the Inverse Aspect Ratio (IAR), 

which is defined as 

 

max max

2

3

h h
IAR

h
= =

l
, (8) 

Where  is the maximum edge length.  The IAR is 

normalized such that 0 I .  The maximum IAR occurs 

when vertex 3 is at the intersection of the two circles 

(resulting in an equilateral triangle), and the minimum occurs 

as vertex 3 approaches the maximum edge length. 

max
l

AR 1≤ ≤

The convergence of the potential due to a linear source 

density for a self term and near-self term are shown in Figs. 4 

and 5, respectively.  The reference values, shown in Table 2,  

were calculated using the arcsinh and radial-angular methods.  

The subtriangle was subdivided until the two transformations 

agreed to at least 11 significant digits.  The maximum edge 

length was chosen to be 1/6λ, and a linear source density was 

defined to be unity at node 1 and zero along the opposite edge.  

Note that for self terms the arcsinh and radial-angular 

transformations have nearly identical convergence behavior. 

For the extended radial and radial-angular methods the 

basis functions contain the terms cosx ρ φ=  and siny ρ φ= , 

where 2 2R z R z R zρ − == + − .  For z ≠ 0, the convergence 

curves flatten because of the R z− term.  In order to 

integrate this term accurately a new quadrature scheme was 

developed based on the family of functions 

 { }1, , , , ...F R z R R R z= − − . (9) 

A partial table for this polynomial-root quadrature scheme is 

shown in Table 3.  From Figs. 4 and 5 the radial-angular 

transformation has the best convergence of the four 

transformations studied.  However, for z = 0 Gauss-Legendre 

points should be used for the radial sampling, while the 

polynomial-root quadrature scheme should be used for z ≠ 0.   

C. Optimization 

 Based on the results in the previous section, we can now 

outline a scheme for optimizing the radial-angular  

transformation, the results of which are shown in Table 4.  

Numerical experiments have verified that the largest 

integration error occurs when the third vertex (i.e. singularity) 

lies along one of the bounding circular arcs, the 1/R variation 

in the kernel has the largest variation as measured from the 

vertex to the opposite edge.  Hence, if convergence is 

achieved for singularities lying along a circular arc, then 

convergence can be guaranteed for vertices along the same 

line parallel to the largest side, i.e. having the same IAR. 
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Fig. 3.  Geometry of a subtriangle showing the Inverse Aspect  

 Ratio 

 We define the scheme as optimized which has the fewest 

number of sample points used to achieve convergence given:  

1. The IAR, 2. The distance z from the source plane, 3. Self 

term or near-self term within the plane of the triangle, and 4. 

the desired accuracy chosen by the user. In this work we 

studied the range  81 10 ,1.0IAR x −⎡ ⎤⎣ ⎦= .  We chose a maximum 

edge length of 1/6λ for the parent triangle.  Based on 

experience, we define a near-self term to be an observation 

point that lies within the region Ratio ≤ 1, where 

maxcRatio= r l  and cr  is the distance from the observation 

point to the centroid of the parent triangle.  Therefore, the 

maximum edge length of a subtriangle can exceed 1/6λ.  In 

order to place an upper bound on  for near-self terms we 

observe that if an observation point is lying on a bounding 
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Fig. 4.  Self term convergence for IAR = 0.1. 

 

 

 

TABLE 2: 

REFERNCE POTENTIAL VALUES 

D REAL IMAGINARY 
0.0 0.015220872777 -0.0023610287866 

1X10
-2
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Fig. 5.  Near-self term convergence for IAR = 0.1  

 and d = 1x10-2 λ. 
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circular arc and , the centroid of a triangle will cross 

the edge a distance 

0IAR→

max
3l  from a vertex.  Hence, the 

maximum edge length achieved for a near-self term is given 

by (
max,near max,self

Ratio 2 3=l l )+ .  Choosing 1Ratio=  and 

max,self
1 6λ=l  we obtain 

max,near
5 18λ=l .   

   An additional variable studied for optimization was the 

basis function.  For a given observation point,  an optimized 

sampling scheme was chosen such that convergence was 

achieved for four different basis functions: a constant function 

and three linear functions.  The three linear functions 

represent the bases defined at each of the three vertices.  In 

order to justify analyzing each integral independently, as 

opposed to a linear combination, consider the error in 

computing each one as defined by ii iI I Iiε− =% , where iε  is 

the relative error in computing the integral.  If we define the 

relative error of computing a linear combination of integrals as 

  1
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then we have by the triangle inequality 

 max
N iε ε≤ . (11) 

Defined in this way, we have the simple result that the relative 

error of a linear combination of N terms, each with error 

maxi iε ε≤ = ε , suffers no loss of significant digits. 

 Table 4 shows the optimized sampling schemes of near-self 

terms for 4 significant digits.  It was determined that the 

sampling schemes for self and near-self terms were similar 

enough that the near-self schemes could be used for both cases 

without a significant loss in efficiency.  Note that the 

optimized sampling schemes are applied to a cylindrical, pill 

box region around the subtriangle. The curved brackets in the 

tables represents an open boundary, while the square bracket 

represents a closed boundary. 

III. CONCLUSION 

Accurate methods for the purely numerical evaluation of 

singular and near-singular potentials with 1/  singularities 

have been presented.  Of the four transformations studied, the 

radial-angular transformation had the best overall 

convergence.  An optimization scheme was developed for this 

transformation based on the observation point location and the 

desired number of significant digits. 

R
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TABLE 4: 

4 SIGNIFICANT DIGIT SAMPLING SCHEMES 

 FOR SUBTRIANGLE WITH MAXIMUM EDGE = 5λ/18 

maxd l  IAR Rad x Trans 

[0.9,1.0] 3 x 3 

[0.4,0.9) 3 x 4 

[0.2,0.4) 3 x 5 

[0.1,0.2) 3 x 6 

[10-2,0.1) 3 x 7 

[10-3, 10-2) 3 x 8 

[10-4, 10-3) 3 x 10 

[10-5, 10-4) 3 x 11 

<10-8

[10-6, 10-5) 3 x 12 

[0.9,1.0] 4 x 3 

[0.4,0.9) 4 x 4 

[0.2,0.4) 4 x 5 

[0.1,0.2) 4 x 6 

[10-2,0.1) 4 x 7 

[10-3, 10-2) 4 x 10 

[10-4, 10-3) 4 x 12 

[10-5, 10-4) 4 x 15 

[10-8,0.5) 

[10-6, 10-5) 4 x 17 

[0.5,1.5) [10-6,1.0] 16 pt. Gauss 

≥1.5 [10-6,1.0] 7 pt. Gauss 

TABLE 3: 

RADICAL QUADRATURE POINTS 

N Nodes xi Weights wi

0.12606123086601956 0.3639172365120473 
2 

0.7139387691339825 0.6360827634879527 

0.045088504179695364 0.13965395980291434 

0.34872938419346483 0.45848221271917206 3 
0.8306719075452189 0.4018638274779136 

0.019532819681463730 0.06236194190019799 

0.17339692801497078 0.25969509521658130 

0.522956026924229700 0.40692913602039693 
4 

0.88905249698491430 0.27101382686282377 

0.0097091631326854 0.0314958290411988 

0.0927420087986999 0.1478177401386180 

0.3158723139054450 0.2927739741663490 

0.6431824779012770 0.3343492761944000 
5 

0.9219651106129180 0.1935631804594320 
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