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Abstract:  A new 2D modeling method for E-core transformers 
adds an extended flux return path to the model of the section 
perpendicular to the core.  Averaged with a section parallel to 
the core modified to have the same reluctance as the 3D model, 
the finite-element simulation results for total magnetic energy 
and magnetic energy in the windings are within 0.2-5.6% error 
relative to the 3D model in fifteen of sixteen cases, a large 
improvement over existing methods.  A refinement of fringing-
flux calculations for gapped core legs is also presented. 

 

I.  INTRODUCTION 
A.  Problems with Existing Methods: 
There currently does not exist a reliable method for computer 
modeling of E-core transformers in two dimensions (2D).  
Three-dimensional (3D) modeling of such transformers using 
finite element analysis (FEA) or other numerical methods can 
be highly accurate, but it is very time-consuming, making 
iterative simulation unfeasible.  In addition to large time 
requirements, 3D models require very large amounts of 
memory.  For these reasons 2D numerical modeling is more 
commonly used in practice. 

Despite their popularity, 2D numerical models fail to 
account for important 3D effects.  The most basic 2D 
simulation involves modeling a cross-section parallel to the 
outer core legs, as shown in Fig. 1a, which can be simulated 
assuming axial symmetry about the center of the core.  This 
section is designated || in this paper.  However, this approach 
ignores all 3D effects, which have been shown to be 
significant [1], [2].  One approach to accounting for 3D 
effects, used in [3,5,6], is to combine the results from the || 
model with the results from a section perpendicular to the 
plane of the core, as shown in Fig. 1b, designated T in this 
paper.  This method works well for the specific situation 
tested in [3,5], but it fails in many other situations, as 
demonstrated in Section III.   

A further inaccuracy in simple 2D modeling methods 
stems from the assumption of rotational symmetry about the 
center of the transformer.  For a section parallel to the core, 
the actual shape simulated is usually one with cylindrical 
symmetry, in order to accurately represent the winding 
geometry.  However, the cylindrical simulation also increases 
the cross-sectional area of the outer legs.  As in [4], this effect 
can be accounted for by modifying the 2D model to have the 
same total reluctance as the 3D model (Fig. 2a).  This equal 
reluctance model (designated ER in this paper) can be helpful 
but has limitations, in that it does not model the field in the 
plane perpendicular to the core. 

 

B.  Overview of the Proposed New Method: 
This paper proposes a new method of modeling E-core 

transformers in two dimensions using a weighted average of  

a) ||          b) T   
Fig. 1:  The sections a) parallel (designated by || in this paper) and  

b) perpendicular to the core (designated T). 

a) ER b) XP  
Fig. 2:  a) A 2D model modified to have the same reluctance as the 3D model 
(designated ER, for equal reluctance).  b) The new extended path model for 

simulation of the plane perpendicular to the core (designated XP). 
 

results from two modified, mutually perpendicular sections. 
We want to somehow create two 2D models that will 
simulate the behavior in the two sections shown in Fig. 3.  To 
model the section parallel to the core, we can use the section 
modified to have equal reluctance to the 3D model when 
simulated axisymmetrically [4], as described above and 
shown in Fig. 2a  (ER).  The other section will be a modified 
version of the section perpendicular to the core.  In order to 
create it, we recognize that the major difference between the 
3D and 2D models of this section is the lack of an outer flux 
path in the 2D model, since in the 3D model, magnetic flux is 
free to return though the core in another plane.  Therefore our 
2D model of this section should include a flux return path.  
However, the parallel, equal reluctance 2D model (ER, Fig. 
2a) will not provide accurate results because of the proximity 
of the outer core to the windings.  Instead, we use the model 
shown in Fig. 2b, which has an extended outer flux 
 

 

 
Fig. 3: The two planes we wish to simulate. 



 

return path and is still designed to have the same reluctance 
as the 3D model.  The extended path (XP) allows flux to 
return through high-permeability material without placing the 
material unrealistically close to the winding.   

A weighted average of results from each of these two 
models (ER and XP; Figs. 2a and 2b) can then be used to 
approximate values of interest.  The method is described in 
detail in Section II. 
 

C.  The Test Cases: 
Some previous models work only for specific situations, 

so we wish to test a wide range of possibilities.  Varying only 
the presence and location of gaps in the E-core transformer 
results in four different possible configurations: no gaps, 
center gap, outer gap, and gaps in all three legs.  With two 
windings, any winding excitation may be considered as some 
combination of two basic excitations: current in the same 
directions in both windings (magnetizing excitation), and 
currents in opposite directions (leakage excitation).     

For each of these four gap configurations and each of the 
two winding excitations we wish to compute two important 
volume integrals.  The first is the total energy, useful for 
calculating inductance:   

total magnetic energy =∫ ⋅
total

HdVB
2

1  

The second is the magnetic energy inside the two windings, 
which is related to eddy-current loss in the windings, as 
discussed, for example, in [10]:    

magnetic energy in the winding region = ∫ ⋅
windings

HdVB
2

1  

Each of the 2D modeling techniques, including those 
previously developed by others, will be tested in each 
situation.  They will then be compared to the 3D FEA 
solution to determine their accuracy.  
 

II.  DETAILED DESCRIPTION OF NEW METHOD 
To simulate an E-core transformer or inductor, we first 
construct the ER and XP sections (Fig. 2a and 2b), using the 
reluctance calculations detailed in Section II.A.  The ER 
model is discussed in Section II.B, and the XP model is 
discussed in Section II.C.  Next, these sections are simulated 
by finite-element or other numerical methods.  The results 
 

 

 
Fig. 4: Flux paths in the transformer with gapped outer legs. 

from the two simulations are then averaged, using the 
weighting described in Section II.D. 

 

A. Finding the Core Reluctance for Use in Drawing ER and 
XP Models: 

Both the ER and XP models require redrawing the outer 
leg of the core while preserving the original reluctance.  In 
order to do this, we must first calculate the reluctance of the 
original 3D structure, which is most difficult when the core 
has gaps in the outer legs (whether or not the centerpost is 
gapped).  We calculate the total reluctance seen by flux 
passing through the outer legs based on combining the 
reluctances of the paths marked in Fig. 4.  The reluctances 
through the core (1� through 4� ) and the gap reluctance gap�  

may be simply calculated from 

 
ARµµ0

l=� ,   (1)  

where l � LV� WKH� OHQJWK� RI� WKH� SDWK�� R is the relative 
permeability of the material, A is the cross sectional area of 
WKH� SDWK�� DQG� 0 is the permeability of free space.  The 
window reluctance, window�  is also calculated using (1), 

because it has only a minor effect on the total reluctance and 
a rough calculation is acceptable. 

More difficult and important is making an estimate of the 
fringing flux around the gap.  An exact formula for the two-
dimensional fringing reluctance around a gap is derived by 
conformal mapping in [7].  Unfortunately, we found that for 
typical gapped legs in practical devices, the three-
dimensional effects are significant, and the result in [7] is not 
accurate by itself.  An alternative is to use the rough 
approximations in [8], but these also proved to have 
inadequate accuracy for this situation; they were developed 
long before modern computer power made higher accuracy 
possible.  Thus, we chose to combine the use of the formula 
in [7] for the 2D aspects with a formula for the 3D aspects, 
similar to those in [8], but calibrated by 3D simulations. 

The situation to be modeled is shown in Fig. 5.  The 
method in [7] can be used to model the flux fringing path 
from one face to another, traveling through the darkly shaded 
regions in the bottom cross section in Fig. 5.  However, the 
flux through the lightly shaded regions is a three dimensional 
effect that must be modeled separately.  Thus, we use two 
parallel reluctances, faces�  and corners� , to account for the 

fringing flux through the darkly and lightly shaded regions, 
respectively.  The first, faces� , can be exactly calculated, for 

all sides of a leg with perimeter p = 2(d+w), as [7]  











+⋅

=

gap

faces

p
l

l

2
ln10

πµ

π�   (2) 

The dimensions for this calculation are defined in Fig. 5, with 
the exception of gapl which is defined as the length of the 

gap in the outer leg. 



 

 
Fig. 5:  Geometry for fringing reluctance calculations. 

 
From the approach in [8] and from dimensional 

considerations, we conclude that the gap corner fringing 
reluctance can be approximated by an expression of the form 

lkcorners
0

1

µ
=� .   (3) 

where k is a dimensionless constant to be determined.  In [8], 
k is estimated from geometrical considerations.  In order to 
more accurately determine the value, we performed a set of 
3D simulations of simple structures, and found a value of  
k = 1.23. 

Using a combination of (2) and (3) gives a more accurate 
3D fringing flux calculation than is possible with either the 
method of [7] alone (because it does not account for 3D 
effects) or [8] alone (because, instead of the exact analysis of 
[7], it uses rough approximations, most of which have not 
been precisely calibrated by simulations or measurements). 

We have now calculated all the reluctances in Fig. 4, and 
we can calculate the total reluctance by combining them in 
series and parallel.  The final result for a transformer with 
gapped outer legs is 

( )( )( )cornersfacesgapwindowDtotal ��������� +⋅+⋅+⋅+= 43213, 222
2

1  

In transformers with no air gap, the reluctance 
calculation is more straightforward.  The reluctance of a 3D 
model without a gap in the outer legs is  

( )( )43213, 22
2

1 ������ +++= windowDtotal . 

The four numbered reluctances and window�  correspond to 

the flux paths shown in Fig. 6 and are the same as those 
discussed above for the gapped case. 

 
Fig. 6:  Flux path definitions in the 3D gapless transformer. 

 

B.  Drawing the Equal Reluctance Model: 
The equal reluctance (ER) model is derived from the 

model parallel to the transformer core (||) by trimming down 
the top, bottom, and outer legs.  The three trimmed legs have 
a remaining thickness t, which is determined by giving the 
ER model the same reluctance as the 3D model, as calculated 
above.  The calculations of reluctance for both the original 
3D model and for the ER model are similar, with several 
important variations.   

For the ER model, the reluctances 2� and 3�  (as defined 

in Fig. 4 or Fig. 6) have a cross section that increases with 
radius when an axisymmetric simulation is performed.  In 
general, the reluctance of a path of cross sectional area A(x) 
that varies as a function of position x along a path of length l  
may be calculated with the integral 

( )∫=
l

0 0

1
dx

xARµµ
� . 

For a radial flux path in a disk of thickness h, starting at 
radius Ra and ending at radius Rb, the reluctance is 

h

R

R

R

a

b

bottomtop πµµ 2

ln

0

== �� .  

This can be used with the appropriate radii to obtain 2� and 

3� . 

The fringing-field calculation may be accomplished by 
using only (2), with a perimeter p = 2π(Ro+(Ro + t)) where Ro 
is the radius of the outer edge of the window and t is the 
thickness of the outer leg, such that 2πRo is the inside 
perimeter and 2π(Ro+ t) is the outer perimeter. 

The reluctances can then be combined to find a total 
reluctance  

( )( )( )fringinggapwindowERtotal �������� +⋅+⋅+⋅+= 4321, 222
2

1 . 

We set this equal to 
Dtotal 3,�  and numerically solve for the 

value of t that provides equal reluctance. 
 

C.  Drawing the Extended Path Model: 
The extended path (XP) model is created by adding an 
extended flux return path to the model of the section 
perpendicular to the transformer core (T).  The first step in 
drawing the extended flux path is determining how far away 
it should be from the windings in order to accurately simulate  



 

                         

 
Fig. 7:  Finding the dimensions of the extended path. 

the 3D situation.  Fig. 7 is a diagram of the geometrical 
equivalence used to determine the dimensions of the path.  
The top two diagrams show views of the 3D transformer; the 
distances d and e correspond to the respective distances on 
the 2D model at the bottom of Fig. 7. 

Note that, unlike the calculations discussed in Section 
II.A and II.B, the determination of d and e is purely heuristic.  
Its justification is that it is intuitively reasonable and that the 
results work well (see Section III).  The lack of a more 
precise way to determine these dimensions is not a major 
concern, however, because we found that minor variations in 
the dimensions had little effect on the simulation results. 

Once d and e have been determined, the reluctance of the 
XP model is set equal to the calculated reluctance of the 3D 
model in a manner similar to that used in the ER model.  
Once again we use the thickness parameter t to set the 2D 
model’s reluctance. 
 

D. Determination of the Weighting Factor: 
The final result is found by a weighted average of the 

simulation results obtained using the ER model and those 
obtained using the XP model.  A reasonable initial 
approximation is to give equal weighting to each.  However, 
this may not be the best approximation.  Consider a view 
from above the transformer (looking down though the middle 
of the winding, as in Fig. 8).  Presumably, the part of the 
winding that is covered by the top piece of the core in this 
view is in a situation similar to that modeled by the ER 
section, and the part of the winding that is visible outside the 
core in this view is best modeled by the XP section.  Thus, 
we base the weighting on the areas of the two sections:  

 

  ( )21
1

AA
Aw += .   

Using this weighting, we define energies E of the combined 
models as 

E||T �wET + (1-w)E||  
and  

EERXP �wEXP + (1-w)EER. 

 
Fig. 8:  Determining the weighting factor. 

 

III.  RESULTS AND COMPARISON OF MODELS:  
To evaluate the performance of the various modeling 

methods, we tested each on a two-winding transformer on an 
ETD-39 round-center-post EE-core.  We first calculated the 
ER and XP models as described in Section II.  The detailed 
calculations of these geometries for this example are provided 
in [9].  We then performed magnetostatic finite-element 
simulations1 for the four 2D models in Fig. 1 and Fig. 2 (||, T, 
ER and XP) and for a full 3D model, each for four gapping 
configurations, each of these for magnetizing and leakage 
excitation.  The transformer is the same as was used to 
compare results of 3D finite-element simulations to 
experimental measurements in [10].  Although the 
experiments in [10] were performed for only one gapping 
configuration (all legs gapped), the measurements for this 
configuration did match the 3D simulation, and so they give 
us added confidence that the 3D simulations are an accurate 
benchmark.  The results are reported for the four individual 
sections, and for weighted combinations:  The combination 
proposed in [3] and [5], an average of the section parallel to 
the core (||) with the section perpendicular to the core (T) 
which is abbreviated ||T; and the combination we 
recommend, a weighted average of the equal reluctance 
section (ER) and the section containing the extended flux 
path (XP), referred to as the ERXP model.   

Fig. 9 shows the results from all 40 simulations, with 
winding energy and total energy for each, plus the ||T and 
ERXP combined results.  The results for the benchmark 3D 
simulation are shown with darker shading on the far left of 
each plot for comparison.  The results from the 3D model are 
assumed to be correct for the purposes of this paper.  As 
noted previously, the total magnetic energy of the system and 
the magnetic energy in the windings are the quantities used to 
judge the simulations.  With the graphs turned so that the 
majority of the writing runs in the conventional direction, the 
top two charts in each group of four are of models of the 
transformer under magnetizing excitation, and the bottom two 
charts in each group of four are of models of the transformer 
under leakage excitation.  The two charts on the left in each 
group represent the results for the total magnetic energy of 
the system, and the two charts on the right show the results 
for the magnetic energy in the windings. 

                                                 
1 All 2D simulations were run on Ansoft’s Maxwell 2D Field Simulator 
Version 7 software, a FEA tool for electromagnetic systems.  3D simulations 
used the same company’s Maxwell 3D Field Simulator Version 5. 



 

Results: Center Gap Transformer
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Fig. 9:  Results for all cases. 
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Fig. 10:  Comparison of  ERXP and ||T models. 
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Fig. 11:  Comparison of  ERXP and ER models. 
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Fig. 12:  Comparison of  ERXP and || models. 

It is clear from Fig. 9 that the ERXP model always 
returns a value quite close to the 3D value.  In certain cases 
one or two other models come closer to the 3D model than 
the ERXP, but in other cases those same models are 
significantly off.  The ERXP model is the most consistently 
accurate.  The energy in the windings of the gapless 
transformer under magnetizing excitation is the only value 
the ERXP fails to calculate within a few percentage points of 
the 3D model.  This case will be discussed more extensively 
below.   

Another useful way to view the results is to compare two 
different modeling methods across all the situations modeled.  
Figs. 10, 11 and 12 compare the new ERXP model to the 
three models that have been proposed by other authors: ||, ER, 
and ||T.  In each case the percentage errors (relative to the 3D 
model) of the two models being compared are graphed side 
by side for each of the 16 situations simulated.  Note that the 
vertical scale varies from chart to chart. 

Figs. 10, 11 and 12 further show the ERXP model to be 
the most consistently accurate.  However, it is apparent from 
each that the ERXP model falls short of its usual accuracy in 
the case of the energy in the windings of the gapless 
transformer under magnetizing excitation, where it has 17% 
error.  In this case it is still much better than the ||T model and 
comparable to the ER model.  The || model achieves much 
better accuracy for this particular case, but there is no reason 
to expect it to work well consistently for this case.  The || 
model predicted winding energy accurately, but gave 76% 
error on overall energy, so it is not accurately modeling the 
field configuration, and the accuracy of the winding energy 
prediction is most likely just a coincidence.  Thus, it does not 
seem justified to have greater confidence in any of the other 
models even for the ERXP model’s worst case.   

Fortunately, this one case in which the ERXP model’s 
accuracy is weak is one of the least important scenarios to 
simulate.  It is the winding energy calculation, which is useful 
for predicting winding losses.  But it is for the scenario of 
magnetizing excitation of an ungapped transformer.  The 
magnetizing current of an ungapped transformer is typically 
small, and so the winding losses under magnetizing current 
excitation are also small enough to be negligible, or, if not 
entirely negligible, small enough that a 17% error in their 
calculation is of little significance—much less important that 
a similar error in other numbers would be. 

Although of little practical importance, the 
uncharacteristic inaccuracy of the ERXP model in this one 
specific situation is interesting to examine.  The most obvious 
characteristic unique to this situation is that the flux 
completes its circuit around the conductors without leaving 
the core.  All other cases either contain a gap that the flux 
must cross or are under leakage excitation, which produces 
leakage flux paths that leave the core to travel between the 
windings.  Whenever there is a portion of the flux path 
outside the core, the effect of this portion dominates the 
reluctance and any quantities that depend on reluctance, such 
as inductance and energy.  The total magnetic energy is 



 

predicted to 3% accuracy by the ERXP model for 
magnetizing excitation with no gaps, indicating that our 
calculation to match reluctance is accurate.  However, we 
have matched only total reluctance, rather than matching the 
reluctance of each segment to the corresponding reluctance in 
the 3D model.  The MMF drop across the individual 
segments ( 2� , 3�  and 4�  in Fig. 6) establishes the boundary 

conditions for the winding field, and thus can be important 
for the winding energy.  Matching reluctance segment-by-
segment might produce a better match for winding energy in 
this case, but there are few situations in which winding loss 
with magnetizing excitation and no gaps is important—
perhaps only with a low-permeability core. 

It is also possible to use the results in Fig. 10 to 
determine why previous work on 2D models of E-core 
transformers showed good results using the ||T model [3,5].  
In [3,5], the model was only tested using leakage excitation.  
Fig. 10 shows that for leakage excitation, the ||T results are 
consistently good, although not quite as accurate as the ERXP 
model.  It is with magnetizing excitation that the ||T model 
fails, with typical errors in the 20 to 40% range.  The poor 
performance of the ||T model with magnetizing excitation can 
be easily explained by the fact that, in the real three 
dimensional transformer, flux returns through the outer core 
legs, not through the air, as it is required to do in the T 
section of the ||T model. 

The discussion and the example have been for round-
centerpost transformers only. For square centerposts, the 
basic ERXP method is applicable, but the details remain to be 
verified.  We believe that it is still best to use an 
axisymmetric simulation to account for the increase of 
winding length with radius and related effects, but it is not 
immediately clear whether to make the ER and XP 
centerposts equal to the square center post in perimeter or in 
area.  The best choice is probably equal perimeter, to better 
model the winding length and the perimeter fringing effects, 
but it may be necessary to insert a zero-permeability “plug” 
in the center of the centerpost to reduce its area to match that 
of the square centerpost.  However, for rectangular 
centerposts that are far from square, as in [6], a simulation in 
rectangular coordinates is more appropriate.  
 

IV.  CONCLUSIONS 
The new ERXP model of E-core transformers is accurate to 
within 0.2 to 5.6% error in 15 of the 16 cases studied, as 
compared to the 3D model.  It is useful in all four different 
gap configurations studied under both magnetizing and 
leakage excitation, and it accurately predicts both the total 
magnetic energy and the magnetic energy in the windings.  In 
the gapless transformer under magnetizing excitation, its 
prediction of the energy in the windings was off by 17%.  
However, in gapless transformers, the magnetizing current is 
usually small compared to other currents, so the loss related 
to this current is very small compared to other sources of loss.  
Therefore the reduced accuracy of our model in this one case 
is not detrimental to its overall utility. 

In comparison to the other models studied across all 
situations modeled, the ERXP model is clearly the most 
generally accurate method to model 3D E-core transformers 
in 2D.  In the few cases where some other model is slightly 
more accurate, both the ERXP and the more accurate model 
have very low errors.  Also, all other models failed severely 
in at least one important case, giving predictions that are too 
poor to be useful.  The ERXP model allows designers to use 
relatively simple, fast, and inexpensive 2D modeling to 
accurately model 3D effects in E-core transformers.   

Although we have only tested the method with one 
specific core and winding geometry, we have tested that 
geometry exhaustively, and the results match those used for 
experimental verification in [10].  Further testing involving 
simulation of different geometries could better establish the 
broad applicability of the method.  Pending further testing, 
however, the method is still the most accurate, best-tested 
method for 2D simulation of 3D E-core transformers. 

In addition, we have developed a refined fringing 
reluctance calculation combining the exact formula for 2D 
gap fringing reluctance from [7] with an approximate formula 
for corner fringing reluctance.  Using 3D numerical 
simulations allowed us to calibrate the approximation to be 
more accurate than the formulas in [8].  This result is 
expected to be useful beyond its application in calculating 
appropriate 2D models for simulations. 
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