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As network supporting devices and sensors in the Internet of Things are leaping forward, countless real-world data will be
generated for human intelligent applications. Speech sensor networks, an important part of the Internet of Things, have
numerous application needs. Indeed, the sensor data can further help intelligent applications to provide higher quality services,
whereas this data may involve considerable noise data. Accordingly, speech signal processing method should be urgently
implemented to acquire low-noise and effective speech data. Blind source separation and enhancement technique refer to one of
the representative methods. However, in the unsupervised complex environment, in the only presence of a single-channel signal,
many technical challenges are imposed on achieving single-channel and multiperson mixed speech separation. For this reason,
this study develops an unsupervised speech separation method CNMF+JADE, i.e., a hybrid method combined with
Convolutional Non-Negative Matrix Factorization and Joint Approximative Diagonalization of Eigenmatrix. Moreover, an
adaptive wavelet transform-based speech enhancement technique is proposed, capable of adaptively and effectively enhancing
the separated speech signal. The proposed method is aimed at yielding a general and efficient speech processing algorithm for
the data acquired by speech sensors. As revealed from the experimental results, in the TIMIT speech sources, the proposed
method can effectively extract the target speaker from the mixed speech with a tiny training sample. The algorithm is highly
general and robust, capable of technically supporting the processing of speech signal acquired by most speech sensors.

1. Introduction

As information technology is advancing and 5G technology
is being popularized, Internet of Things (IoT) devices and
sensors will be increasingly created, which will undoubtedly
change the way human beings live. Moreover, sensor
networks are being progressively studied [1–3]. It is pre-
dicted that in the next decade, billions of IoT and sensor
devices will generate massive data for applications in smart
grid, smart home, electronic health, industry 4.0, etc. It is
foreseeable that intelligent speech systems will be critical
to the mentioned areas. With the rapid growth of data
volume, large-scale problems should be urgently solved
effectively [4, 5], while more opportunities are brought.
Speech sensor networks, an important part of IoT, will have
many application needs. However, in real-world scenarios,
the data acquired by speech sensors are often disturbed by

noise. Thus, low-noise and effective speech data should be
urgently obtained.

With the increasing number of speech sensors, reliable
speech separation technology is required [6–8]. High reliable
speech separation technology is capable of achieving effective
speech recognition, so the needs of human hearing can be
satisfied. Speech separation originates from blind source
separation (BSS) [9]. The core goal of this technology is to
separate the source signal from the measured mixed signal.
In the blind source analysis task, the target speech should
be separated from the mixed speech in a single channel,
which is very difficult to achieve. Single-channel speech sep-
aration is a hotspot in the current research. Many algorithms
are proposed for single-channel speech separation, but from
the current research results, this problem is far from being
well solved. We believe that the current challenges are mainly
manifested as the following aspects.
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(1) Strong noise and unknown number of sources still
significantly enhance the performance of BBS.
Indeed, most of the existing blind source separation
algorithms have achieved ideal performance in high
SNR (Signal-to-Noise Ratio) environment. In practi-
cal applications, the signal we collected may have
been polluted by strong noise. Because of this, many
reported algorithms in blind source separation are
very likely to obtain poor separation performance
and even cannot correctly deal with the severely
distorted signal in extreme cases. For the mentioned
reason, to obtain robust blind source separation
algorithm, a more effective method is required to
suppress the impact of noise. In addition, a more
difficult problem is that the number of sources is
unknown. On the whole, the number of sources
should be assumed, whereas in practical applications,
information on the number of sources is not avail-
able, which cannot be ignored [10]. Accordingly,
blind estimation of the number of sources from the
received mixed signal cannot effectively obtain the
ideal BSS performance

(2) The processing complexity of single-channel speech
separation is higher than that of multi-input speech
separation. In numerous practical applications, the
challenge of blind source separation is that only one
sensor is available, namely, SCBSS (single-channel
and blind source separation) [11–13]. It uses only a
single receiver sensor to receive the observed signal
and then uses the signal to recover each source signal.
Generative adversarial network (GAN) is an excellent
representative of deep learning algorithms and is also
used in SCBSS due to its advantages in fitting data dis-
tribution (e.g., 1D speech signal separation [14–16]).
However, the performance of GAN is limited by the
unknown number of source signals, complex forms
of dialogue, serious noise pollution, and difficulty in
obtaining prior information in advance. Such a type
of SCBSS is characterized by unknown number of
source signals, complex dialogue form, serious noise
pollution, and difficulty in acquiring prior informa-
tion in advance. To solve this type of problem,
unsupervised learning method should be developed,
whereas automatic analysis should be extremely diffi-
cult to realize based on unsupervised learning method
(overall, single-channel speech only requires a single
signal source, which is easier to achieve andmore real-
istic than multichannel speech)

(3) The solution to solve BBS problem refers to employing
supervised learningmechanism. Themore representa-
tive is the deep learning method. It has been recently
found that deep learning [17, 18] has achieved
remarkable success in many speech processing fields
with its excellent learning performance. The represen-
tative technology is DNN-HMM hybrid structure [19,
20], replacing the conventional acoustic modeling
based on GMM and HMM. In single-channel speech
separation, a method based on DNNs [21, 22] has

been proposed to separate the target speaker from
the mixed speech. However, all deep learning
algorithms use joint a decoding framework, which
requires additional computational complexity. More-
over, deep learning algorithm needs considerable
training data, which is difficult to extend to small data
sets and unsupervised speech separation scenarios

To reduce the above challenges, an unsupervised speech
separation method CNMF+JADE is proposed in this study,
i.e., a hybrid method combined with Convolutional Non-
Negative Matrix Factorization [23, 24] and Joint Approxima-
tive Diagonalization of Eigenmatrix [25]. This study is aimed
at performing efficient processing for the highly noisy signal
data acquired by the speech sensor to achieve better separa-
tion performance. CNMF refers to a nonnegative matrix
decomposition method proposed for speech signal process-
ing. The method adopts a 2D time-frequency basis instead
of the 1D basis vector in the original nonnegative matrix
decomposition, while it ensures the decomposition result to
be nonnegative matrix decomposition. Thus, it effectively
carries the correlation between local frames of speech signals
[26]. JADE is recognized as an adaptive batch independent
component optimization algorithm based on multivariate
fourth-order cumulative matrix, and it is an effective method
for blind source separation. It exploits the feature that mutual
accumulation is always zero when signals are independent
and builds multiple fourth-order accumulation matrices for
multivariate data. Lastly, the mentioned cumulant matrices
are jointly diagonalized to solve for the final separated signals
[27, 28]. For single-channel signal, CNMF+JADE can effec-
tively separate the overlapped speech including the target
speaker. Subsequently, CNMF+JADE with adaptive speech
enhancement technology is adopted to further improve the
speech quality of the target speaker. To solve the problem
of SCBSS, the main innovations can be summarized below.

(1) In this study, CNMF and JADE are combined to solve
the problem of single-channel speech separation. The
algorithm is appropriate in extracting signals of inter-
est from mixed signals. Specific to SNR (Signal-Noise
Ratio), STOI (Short-Time Objective Intelligibility),
and PESQ (Perceptual Evaluation of Speech Quality),
the proposed CNMF+JADE, as compared with
several speech separation methods (CNMF, CNMF
+ICA), achieves satisfactory results, especially for
single-channel mixed speech

(2) Given the scenario that the speech signal will get
worse when the speech signal is enhanced after
speech separation, an adaptive method is presented
here based on wavelet transform to analyze the
speech signal after CNMF+JADE separation, as an
attempt to realize selective speech enhancement and
increase the efficiency of speech enhancement

The rest of the study is organized as follows. In Section 2,
some related studies on the study of single-channel speech
separation are presented. In Section 3, the proposed
algorithm is elucidated. In Section 4, a specific experimental

2 Wireless Communications and Mobile Computing



verification of the performance of the proposed algorithm is
presented. Lastly, in Section 5, the conclusion and promising
future research directions are drawn.

2. Related Work

As IoT technology is developing, intelligent voice system will
have increasingly broad application prospects. In addition,
single-channel blind speech separation (SCBSS) technology
will arouse wide attention. At present, there are three main
directions for SCBSS research:

(1) Subspace Decomposition-Based Approach [29].
Methods based on subspace decomposition primarily
are aimed at identifying new descriptions. The men-
tioned new descriptions can often effectively extract
perceptive meaningful component sources from
complex mixtures [30]. Moreover, new descriptions
can eliminate intrusions and reduce signal dimen-
sionality, so redundant components can be avoided.
The methods based on subspace decomposition are
primarily well established in statistical and trans-
formed data. For instance, in the literature [31], the
effectiveness of Principal Component Analysis
(PCA) and Independent Component Analysis (ICA)
methods in solving subspace decomposition prob-
lems has been verified. In fact, methods based on
algebraic properties are more often used in dealing
with subspace decomposition problems, including
Non-negative Matrix Factorization (NMF) [32].
NMF is a classical time-frequency distributionmethod
and is often used for single-channel speech separation
[33–37]. Ref [38, 39] highlighted NMF as an unsuper-
vised dictionary-based learning method that effec-
tively helps solve various types of signal separation

(2) Model-Based Approach. In the first step of the model-
based approach, each speaker in the model scene
should be identified, and the gain in the blended
frames should be determined. In fact, speaker recog-
nition algorithms have been studied by many authors
(e.g., Iroquois [40], Closed loop [41], and Adaptive
Speaker Identification (SID) [42]). The next step is
to choose an appropriate speech representation. The
final step comprises the reconstruction of the speech
signal frames, in which separated speech is produced.
Overall, the reconstruction usually requires the con-
struction of a hybrid estimator module that enables
it to find a sufficient number of representative speech
frames from the speaker model to rebuild a meaning-
ful speech signal. However, mixture estimators are
capable of significantly complicating the algorithm,
so it is difficult to apply in real-time systems

(3) Computational Auditory Scene Analysis- (CASA-)
Based Approach. CASA runs in two main stages, i.e.,
segmentation and grouping. The former comprises
feature extraction, time-frequency analysis, and
multitone tracking, while the latter includes the
resynthesis of speech signals. To be specific, pitch

tracking is an important technique when CASA is
being used for SCBSS problem processing. Jin [43]
and Tolonen [44] provided several pitch tracking
methods that are used extensively. However, as
impacted by the periodic nature of the grouping
phase, it can only be limited to voiced speech
segments. Moreover, the performance achieved by
CASA-based methods tends to be affected by multi-
pitch estimation for its dependence on pitch

Over the past few years, with the development of deep
learning, researchers have suggested that the nonlinear
processing and feature learning capabilities of deep models
exhibit significant advantages in solving speech separation
problems. For this reason, many models using deep learn-
ing for speech separation have been proposed (e.g., Deep
Neural Network (DNN), deep stacking, Deep Stack Neural
Network (DSN) [45], and other efficient deep learning
models [46–50]). In addition, numerous deep learning
algorithms have been proposed for single-channel speech
separation [51–54]. The reason why deep learning is so
effective in addressing with speech separation problems is
that the speech separation problem is described as a super-
vised problem in the deep learning model. Thus, deep
learning models can train and learn features from speech
signals to effectively separate speech signals.

3. Methodology

In the present section, the methods we use for processing
speech data are described, and a new algorithm with high
generality and robustness is proposed, aiming to provide a
general and efficient speech processing algorithm for the data
acquired by speech sensors.

3.1. Speech Separation

(1) CNMF. Speech signals exhibit local interframe corre-
lation and global interframe correlation. The conver-
sion of local interframe correlation should consider
two aspects, i.e., to ensure the continuity between
frames of the converted voice channel spectrum, as
well as to remove the source speaker features from
the local interframe correlation and make it have the
target speaker features. However, the conventional
nonnegative matrix factorization does not consider
the conversion of local frames. CNMF refers to a pro-
posed nonnegative matrix decomposition method for
speech signal processing. The method employs a 2D
time-frequency basis instead of the 1D basis vector
in the original nonnegative matrix decomposition
while ensuring the nonnegativity of the decomposi-
tion result. Thus, the correlation between the local
frames of the speech signal is carried effectively

The CNMF is expressed as follows:

Y ≈ 〠
T−1

t=0
A tð Þ ⋅ X

t→
, ð1Þ
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where Y∈M ×N and X∈r ×N represent the time-frequency
atoms and the corresponding time-varying gain coefficients,
respectively. ð⋅Þi→ denotes shifting the encoding matrix X
by i units to the right in the form of column vectors and set
the leftmost i column to 0.

In other words, the decomposition matrix Y is obtained
by convolving a series of nonnegative fundamental matrices
A and coefficient matrices X. The functions of CNMF are
to find a series of fundamental matrices AðtÞ and coefficient
matrices X and then make the convolution result as close as
possible to the target matrix Y .

In addition, the divergence K − L acts as the cost function
in CNMF:

D Y jŶ� �
=〠

i,j
Yij log

Yij

Ŷ ij

 !
− Yij + Ŷ ij

 !
, ð2Þ

where Ŷ denotes the estimation of Ŷ , and

Ŷ ij = 〠
T−1

t=0
A tð Þ ⋅ X

t→
 !

ij

: ð3Þ

K − L makes the maximum log-likelihood solution of
solving the nonnegative matrices AðtÞ and X under the
Poisson noise assumption to describe the degree of approxi-
mation of Ŷ with respect to Y . The iterative function can be
defined as follows.

X = X ⊗
A tð ÞT ⋅ Y

←t
/Ŷ

� �
A tð ÞT ⋅ E

, ð4Þ

A tð Þ = A tð Þ ⊗ Y/Ŷ
� �

⋅ XT
t→

E ⋅ XT
t→ , ð5Þ

where E indicating the matrix with all elements of 1 and ⊗
is the matrix element multiplication operator. When T = 1,
i.e., t = T − 1 is 0, it will degenerate into the basic NMF
decomposition. For each t, there is a basic matrix AðtÞ
corresponding to it.

3.1.1. JADE. The Joint Approximate Diagonalization of
Eigenmatrices (JADE) algorithm is an adaptive batch inde-
pendent component optimization algorithm based on multi-
variate fourth-order cumulative matrices and an effective
method for blind source separation. JADE mainly uses the
diagonalization of Jacobi matrix to find the independent
components, as an attempt to achieve the identification and
separation of signals. Based on the characteristics of JADE
mentioned above, JADE is introduced to effectively separate
the acquired speech signals.

JADE algorithm first spheres the observed signal using
an n ×m spherization matrix to obtain the observation
vector u = ½u1, u2,⋯, uN �T for N channels. Then, let M be
any N ×N matrix, then the definition of the four-
dimensional cumulant matrix QuðMÞ of u is:

Qu Mð Þ½ �ij = 〠
N

k=1
〠
N

l=1
Kijkl uð Þmkl , i, j = 1, 2,⋯,N , ð6Þ

where KijklðuÞ denotes the fourth-order cumulant of the i, j,
k, and l components in the vector.

3.1.2. CNMF+JADE. However, in the same channel spectral
matrix Y , the final AðtÞ and X obtained by CNMF analysis
are not the same when the initial values of AðtÞ and X are
different, i.e., the same time-frequency spectral matrix Y
has multiple combinations of time-frequency bases and
coding matrices. For the mentioned reason, if the parallel
channel spectral matrices of the source and target speakers
are analyzed independently by convolutional nonnegative
matrix decomposition, the same encoding matrix that
characterizes the content information is not ensured to be
obtained. From the analysis described in Section 3.1.1,
JADE is known as an adaptive batch independent compo-
nent optimization algorithm based on multivariate fourth-
order cumulative matrices and an effective method for
blind source separation, capable of effectively identifying
and separating signal, which achieves the obtained signals
as identical as possible.

Accordingly, to efficiently process the speech signals
collected by the speech sensors, a single-channel speech sep-
aration algorithm combining CNMF and JADE is proposed.
The secondary separation process is performed on the speech
signal separated by CNMF based on JADE. The role of
CNMF+JADE algorithm is to separate the single-channel
mixed speech and lastly acquire the separated speech signal
of all speakers in the mixed speech. The algorithm exhibits
strong generality and robustness, capable of technically
supporting the processing of speech signals collected by most
speech sensors. For instance, in the literature [55], several
applications (e.g., beamforming, automatic camera steering,
robotics, and surveillance) are processed with the speech
separation method. In [56], a speech signal separation
method is adopted for speech separation of noisy robust
speech translation for general-purpose smart devices. It is
foreseen that speech separation techniques are also critical
to future applications of IoT technologies (e.g., driverless,
smart home, and other applications involving sound conduc-
tion functions). For this reason, it is of great value and signif-
icance to proposemore efficient speech separation algorithms
(e.g., CNMF+JADE) as proposed in this study.

Lastly, the CNMF+JADE algorithm is described as
follows.

The proposed algorithm is written in Algorithm 1, where
t1, t2,⋯, tN represent the set of all the pure speech signal data
of the speaker waiting to be separated, o1, o2,⋯oN−1 denote
the set of all the mixed speech employed as the training set,
O is a mixed speech waiting to be separated, Ri is a random
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matrix, and N represents the number of speech signals, i.e.,
the number of speakers. oi denotes the corresponding
speaker, as expressed in the dataset O.

oi =O − 〠
i

k=1
tk, i = 1, 2,⋯,N − 1: ð7Þ

In fact, o1, o2,⋯oN−1 are very costly and difficult to
obtain. Thus, in experiments, a speech signal different from
the current target speaker is generally selected randomly
from the dataset O to train CNMF. Although the results
obtained by this approach are slightly degraded, the proposed
algorithm can be applied to more general range.

In addition, Ri, mentioned in Table 1, is a 2 × 2 matrix,
which is represented as follows:

Si = Ri ∗ ŝi ; Ôi

� �
, i = 1, 2,⋯,N , ð8Þ

where ŝiÔi denotes the speech signal of the target speaker and
Ôi denotes the set of speech signals obtained after the separa-
tion of all speakers.

According to the defects of some existing single-channel
speech separation methods, a new algorithm combining
CNMF and JADE is proposed in this study. The CNMF is
first trained using the training speech signal, and the trained
CNMF is used to separate the mixed speech. Next, the
separated speech signals are mixed, and the secondary
separation is conducted by using JADE. In the next section,
simulation experiments are performed to verify the perfor-
mance of the proposed algorithm and compare it with
several other algorithms.

3.2. Speech Enhancement. Some noise usually remains in the
target speaker’s speech after speech separation, and the inter-
ference of noise will inevitably reduce the quality and intelli-
gibility of speech. For the mentioned reason, suppressing the
background noise and extracting the pure speech becomes an
important part of the speech processing process. Speech

enhancement techniques should be used to enhance the
target signal after speech signal separation. The conventional
single-channel speech enhancement techniques comprise
checkpoints [57], Wiener filtering [58], Kalman filtering
[59], wavelet transform [60], and so on.

However, as reported by some existing studies, wavelet
transform has more significant advantages in single-
channel speech signal enhancement. Moreover, the experi-
ments in this study prove this point. Wavelet transform is
another landmark technique after Fourier transform. Wave-
let transform inherits the advantages of Fourier transform
while overcoming its defects. It is an ideal tool for signal
time-frequency analysis and processing. One of the features
of the wavelet transform in signal processing is that the trans-
form can make certain aspects of the signal more prominent,
so it is enabled to highlight signal details when processing the
signal and thus extract the effective signal.

Accordingly, based on the above motivation, we will use
wavelet transform as the speech signal enhancement tech-
nique in this study and propose a more effective adaptive
wavelet transform to enhance the extracted signal.

In the following, the wavelet transform and the adap-
tive wavelet transform technique proposed in this study
are introduced.

3.2.1. Speech Enhancement Based on Wavelet Transform. In
the present section, we introduce the wavelet transform to
enhance the sensor speech signal. The principle of wavelet
transform is described below.

Set L2ðRÞ as a square integrable space, and ϕðtÞ ∈ L2ðtÞ, if
its Fourier transform satisfies Eq. (9) as follows:

Cϕ =
ð
R

ϕ ωð Þj j2
ωj j dω <∞: ð9Þ

ϕðωÞ denotes a basic wavelet or a mother wavelet.

Input: Speech signal dataset, t1, t2,⋯, tN , o1, o2,⋯oN−1 and O.
1: Initialize each parameter and variable:

T=t1, t2,⋯, tN , expresses the set of all the pure speech signal data of the speaker waiting to be separated,
H=o1, o2,⋯oN−1, expresses the set of all the mixed speech that is used as the training set,
O denotes a mixed speech waiting to be separated,
Ri is a random matrix.

2: while i < N do
3: The speech data with the identical subscript tiandoioi from the datasets T and H are selected to train CNMF.
4: The trained CNMF is employed to separate the mixed speech dataset O to determine ŝi and Ôi.
5: The two speech signals acquired from 4 are mixed to obtain a two-channel speech signal and stored in Ri.
6: A secondary separation is conducted by adopting JADE to obtain ŝi and Ôi from Ri.
7: Ôi is used as the speech signal to be separated in the next round, and ti and oi are removed from the data sets T and H.
8: Obtain the final separated speech signal.
9: i = i +1.
10: end while.
Output: All of speaker’s speech signals s1, s2,⋯, sN .

Algorithm 1: CNMF+JADE description.
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After the mother wavelet ϕðtÞ is scaled and translated by
a real pair ða, bÞ, where a, b ∈ R, a ≠ 0, a cluster function can
be yielded:

ϕa,b tð Þ = 1ffiffiffiffiffi
aj jp ϕ

t − b
a

	 

, a, b ∈ R ; a ≠ 0: ð10Þ

This cluster function denotes a wavelet basis function,
where a represents the scaling factor and b denotes the trans-
lation factor. ϕððt − bÞ/aÞ represents a window function
whose window size is fixed but its shape can be changed.
According to this characteristic, the wavelet transform is
characterized by multiresolution analysis. 1/

ffiffiffiffiffijajp
is a nor-

malization factor, so the wavelets are enabled to have the
same energy at different scales.

Signal processing based on wavelet domain is one of the
main methods of speech signal processing. Wavelet trans-
form has the characteristics of multiresolution, low entropy,
and decorrelation, enabling the wavelet transform to show
significant advantages in speech signals processing. More-
over, considerable wavelet bases can theoretically handle
different scenarios, so the wavelet transform is significantly
useful for speech signal processing.

The main process of wavelet transform denoising is
shown in Figure 1, which well demonstrates the process.

3.2.2. Speech Enhancement Based on Adaptive Wavelet
Transform. As suggested from the results of the experiments
of this study, the quality of the enhanced speech signal may
be reduced when the speech signal is enhanced after speech
separation. This result proves that the speech enhancement
algorithm cannot denoise properly on all noisy speech. In
the present section, this study presents an adaptive method
based on wavelet transform to analyze the CNMF+JADE
separated speech signals and try to achieve selective speech
enhancement, that is, before speech enhancement, automatic
filtering those speech segments may cause quality degrada-
tion. As indicated from the analysis of the speech signal after
separation and the speech after wavelet transform, under the
significant difference between the separated speeches, the
quality will reduce while increase with the wavelet
transform. Based on the mentioned findings, the following

method is developed to process adaptive judgment before
speech enhancement.

is enhance =
1,
0,

(
disp ŝi, Ôi

� �
≤ p ∗ disp ŝi, Ôi−1

� �
+ disp Ôi, Ôi−1

� �� �
/2

otherwise,
i = 1, 2,⋯,N ,

Oi−1 =Oi + si + l,
O0 =O,
ON = sN ,

ð11Þ

where si denotes the ith target speaker speech signal after
CNMF+JADE separation. Oi is the mixed speech signal after
the CNMF+JADE separation on the mixed speech Oi−1. ŝi
and Ôi, respectively, express the Gaussian Mixture Model
(GMM) [61, 62] of si and Oi. l indicates the loss during the
separation process. N represents the number of speakers
included in the mixed signal. p is the scaling factor, and
the value is [1, 1.2].

dispð⋅Þ represents the GMM distance calculation
formula, as defined below:

disp A, Bð Þ = 〠
M

i=1
WAi 〠

M

j=1
WBjdAB i, jð Þ

 !
: ð12Þ

The function of dispð⋅Þ is to measure the dispersion
between A and B, i.e., the coupling degree, and W is
the weight.

Equation (11) can be explained as under the low coupling
between and obtained by CNMF+JADE separation, no fur-
ther speech enhancement is performed. In other words, under
the 0 value obtained from Eq. (11), it is considered that the
better the separation effect of the CNMF+JADE algorithm,
the less noise the separated speech will contain, and then,
further speech enhancement may be counterproductive. Fur-
thermore, under the value of 1, the experimental wavelet
transform is considered to be required for separation again.

Equation (11) adaptively determines which separated
signals should be enhanced again and which ones do not,
so the separated speech signals can be effectively optimized.

Finally, Figure 2 illustrates the flow of the whole algorithm.

4. Experiment Verification

As impacted by the limitations of the experimental condi-
tions, in the present section, a sensor will be simulated to
acquire speech data in a speech scene. The basic data used
in the experiments originate from an acoustic-phonetic
continuous speech corpus constructed in collaboration with
Texas Instruments, MIT, and SRI International, i.e., the
TIMIT dataset. The TIMIT dataset exhibits a speech
sampling frequency of 16 kHz and comprises a total of 6300
sentences spoken by 630 individuals from eight major dialect
regions in the United States. All sentences were manually
segmented at the phoneme level (phone level) and then
labeled. 70% of the speakers were male, and the speakers were

Table 1: Simulate the voice signal data acquired in different
scenarios.

Scene Number Speaker Target

2 speakers

a 1 female +1 female

b 1 female +1 male

c 1 male +1 male

3 sparkers

d 1 female +2 males 1 female

e 3 females 1 female

f 2 females + male 1 female

g 3 males 1 male
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primarily white adults. Next, multiple scenarios are simu-
lated, and the speech signals are mixed according to the
different scenarios.

For experimental design, in the first part of the experi-
ment, different algorithms are used to separate the speech
signals, and then, the signals are analyzed and compared with
the algorithm proposed in this study to show that the CNMF
+JADE algorithm proposed here can apply to the analysis
and processing of the signal data collected by speech sensors.
Subsequently, in the second part of the experiments, the per-
formance of several single-channel speech enhancement
techniques is verified, and the ability of the adaptive wavelet
transform technique proposed in this study to effectively
enhance the separated speech signals is experimentally
verified, proving the effectiveness of the proposed method.
In the following, the experiments are elucidated.

According to Table 1, the case of a speech was simulated,
and two scenarios were set up. Scenario I contains two
speakers and sets three specific scenarios. Scenario II
contains three speakers, one of whom is the target speaker,
and sets four specific scenarios. All the scenarios are set up
with numbers a-g.

In addition, three scientific evaluation metrics are
adopted to scientifically evaluate the quality of the separated
speech signal. The three evaluation metrics introduced and
their descriptions are elucidated below:

(1) Signal-Noise Ratio (SNR) [63] is the ratio between
the valid signal and the invalid signal (noise signal).
The larger the ratio, the greater the proportion of
valid signals will be, and the purer the signal will be

(2) Perceptual Evaluation of Speech Quality (PESQ) [64]
is an objective, full-reference speech quality assess-
ment method that considers the subjective percep-
tion of human speech signals and can provide a
subjective predictive value for objective speech qual-
ity assessment, which is recognized as an objective
reflection of subjective evaluation. The PESQ score
ranges between [-0.5,4.5], and a higher score indi-
cates better speech quality after separation

(3) Short-Time Objective Intelligibility (STOI) [65], like
PESQ, refers to a common objective evaluation
method that conforms to the human auditory system
for speech quality evaluation. It represents the actual
intelligibility of speech, with the value ranging
between [0,1]. If the value is closer to 1, the more
easily the separated speech will be understood, and
the higher the intelligibility will be

4.1. Speaker Separation. In the present section, simulation
experiments are performed to verify the effectiveness of the
proposed algorithm. According to the way of sound mixing,
the speech signal separation falls to mono and multichannel
speech separation. Since multichannel speech signals involve
more available knowledge than monophonic speech signals,
multichannel speech signals are simpler to process. The com-
mon multichannel speech separation algorithms are mainly
based on Independent Components Analysis (ICA) and have
shown better performance. For this reason, in the present
section of experiments, we selected ICA as the comparison
algorithm for speech separation. However, it should be noted
that our simulation experiments are based on single-sensor
hybrid speech separation, which does not satisfy the applica-
tion of the ICA algorithm. Thus, in this part of the experi-
ments, we extend the ICA algorithm by combining ICA
with CNMF so that it can be applied to but-channel speech
separation and compare it with the algorithm proposed in
this study. Lastly, the specific methods used in this study
are CNMF, CNMF+ICA, and CNMF+JADE.

Table 2 shows the results of the experiments by employ-
ing different separation methods, a-g corresponding to
several dialogue scenarios simulated above in turn. The
values in the table represent the evaluated results of the target
speaker’s speech and the original pure speech with the corre-
sponding methods, in which the data corresponding to the
MIX method refer to the data of the three metrics corre-
sponding to the original mixed pure speech, and the later
data are the results achieved with the three methods CNMF,
CNMF+ICA, and CNMF+JADE, respectively. The best
experimental results in each scenario are marked in italics.
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Figure 1: Wavelet denoising process diagram.
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From the experimental results in the table, we can find
that the speech signals processed by all methods are signifi-
cantly improved compared to the original mixed speech
MIX. In addition, the CNMF+JADE algorithm proposed in
this study achieves the best experimental results in almost
all scenarios; among the 7 scenarios and 21 metrics, only 4
metrics are worse than the experimental results of other
methods (CNMF+ICA), which are the SNR and STOI results
of scenario b and STOI results of scenario d. Moreover, it can
be seen that the experimental results evaluated using PESQ
are all better than those calculated by several other algo-
rithms, which fully demonstrates the effectiveness of the
proposed algorithm.

First, the proposed CNMF+JADE algorithm is compared
with the CNMF algorithm, and all experimental results are
found to outperform those of CNMF, which demonstrates
that combining JADE with CNMF is effective. Subsequently,
as revealed from the comparison with the CNMF+ICA algo-
rithm, almost all the results are better than those achieved by
CNMF+ICA, indicating that combining JADE with CNMF is
a purposeful combination and more promising. The com-
bined experimental results fully illustrate the effectiveness
of the proposed algorithm.

4.2. The First Experiment Verification for Enhancement. In
this part of the experiments, the performance of several
conventional single-channel speech signal enhancement
techniques is compared. The separated signal complies with
the signal of the target speaker obtained from the CNMF
+JADE method in Section 4.1. Moreover, the CNMF+JADE
method is the method proposed in this study. Subsequently,
the target speech signal is enhanced with the four speech
enhancement methods separately, and lastly, the enhanced
speech signal is evaluated with SNR, PRSQ, and STOI. The
experimentally achieved results are listed in Table 3, where
the experimental results of the CNMF+JADE method repre-
sent the experimental results to be compared. Likewise, a-g
columns correspond to the various scenarios in Table 1, in
which eachmethod is evaluated with three evaluationmetrics.

First, comparing the four conventional single-channel
speech enhancement methods, it can be found that the algo-
rithm using wavelet transform as the speech enhancement
method exhibits the optimal performance among the four
conventional speech enhancement methods. As suggested
by the experimental results achieved with SNR as the evalu-
ation index, the wavelet transform achieves the optimal
results in all seven scenarios. For the experimental results
achieved with STOI as the evaluation index, six scenes also
achieve the optimal results, and only the experimental
results of scenario a are slightly lower than those of the wie-
ner filtering method, and the differences are slight, 0.82 and
0.83, respectively. Specific to the experimental results
achieved with PESQ as the evaluation index, four of the
seven scenes achieve the optimal results. As indicated from
the comprehensive experimental results, the enhancement
of the speech signal obtained by separating CNMF+JADE
algorithm using wavelet transform is very effective. For the
mentioned reason, this is one of the motivations for choos-
ing wavelet transform as the speech enhancement method
in this study.

In addition, the results of the experiments in which the
wavelet transform method is used are compared with the
results of the experiments in which the speech enhance-
ment method is not used. It can be found that not all the
speech quality is enhanced after speech enhancement. For
instance, specific to scenario a, the speech quality obtained
after using the wavelet transform method decreases in all
cases. For the experimental results achieved by using wave-
let transform as the speech enhancement method, a total of
11 results out of 7 scenes and 21 results are better than the
experimentally achieved results without the speech enhance-
ment method.

For this reason, it can be concluded that the purpose of
speech enhancement is to remove the noise in the speech
segment and thus improve the quality of speech. However,
during speech enhancement, the speech signal is corrupted
to a certain extent, so the speech quality turns out to be not
necessarily better after speech enhancement.

Table 2: The results of different speech separation methods (SNR, PESQ, STOI).

Voice
Method Index a b c d e f g

MIX

SNR 1.64 5.45 -0.77 1.83 -0.61 0.08 -2.07

PESQ 2.27 2.05 2.43 1.58 1.84 1.75 1.73

STOI 0.87 0.87 0.74 0.76 0.75 0.78 0.60

CNMF

SNR 9.31 7.93 8.46 8.52 5.94 6.38 4.89

PESQ 2.85 2.21 2.49 1.85 1.99 1.97 2.08

STOI 0.85 0.85 0.77 0.80 0.78 0.78 0.73

CNMF+ ICA

SNR 9.28 10.62 5.42 6.88 7.19 5.71 2.63

PESQ 2.10 1.84 1.80 1.78 1.80 1.66 1.78

STOI 0.94 0.93 0.89 0.89 0.85 0.88 0.62

CNMF+ JADE

SNR 13.10 9.20 11.19 8.44 7.03 8.32 5.68

PESQ 3.02 2.40 2.69 2.05 2.20 2.26 2.35

STOI 0.95 0.90 0.92 0.88 0.85 0.89 0.74
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Thus, it is very important and necessary to adaptively
select the speech signals that should be enhanced, instead of
blindly enhancing all signals. For this reason, this study pro-
poses an adaptive wavelet transform method that adaptively
selects the enhanced speech signals and filters out the speech
signals that are not required to be enhanced. The specific
experimental validation is presented in the next section.

4.3. The Second Experiment Verification for Enhancement. In
this part of the experiments, the adaptive wavelet transform
enhancement method proposed in this study is validated.
Again, the enhanced speech signal is acquired from the
speech signal obtained after separation using the CNMF
+JADE method. Moreover, the experimental results of the
three metrics are verified separately. The achieved experi-
mental results are listed in Tables 4–6, which fall to three
parts, i.e., CNMF+JADE for the experimental results without
enhancement and CNMF+JADE+wavelet transform for the
experimental results with wavelet transform. Lastly, the
adaptive wavelet transform method proposed here is adopted
to evaluate whether the speech signal should be enhanced in
each scene. From the experimental results in Tables 4–6, we
can see that 0 is the experimental result without enhance-
ment, and the corresponding experimental results with
wavelet transform enhancement have decreased. 1 is the
experimental result with enhancement, and the correspond-
ing experimental results with wavelet transform enhance-
ment have improved.

It is demonstrated through experiments that our adaptive
judgment method can filter out the speech segments whose
quality will be degraded after wavelet transform. As revealed
from the results, the adaptive wavelet transform speech
enhancement method proposed in this study can automati-
cally filter the speech segments that are not suitable for

speech enhancement, thus effectively improving the quality
of the final speech signal.

4.4. Compared with the Deep Learning. In recent years, with
the development of deep learning, researchers have noticed
that the nonlinear processing and feature learning capabili-
ties of deep models have significant advantages in addressing
speech separation problems. Thus, in this part of the experi-
ments, we implemented a cyclic stacking neural network (Ref
[66]) to perform separation processing of the acquired
speech signals. In Ref, the speech separation results of various
deep neural networks are compared, which are close to the
work in this study. We use two metrics, PESQ and STOI, to
evaluate the quality of the separated speech signal to compare
the performance of the proposed algorithm with deep learn-
ing algorithms. Comparing the results of the proposed
speech separation methods, we can dig out the advantages
and disadvantages of the shallow and deep models.

The experimental results of the proposed algorithm and
the deep learning algorithm are shown in Table 7. From the
experimental results, we can see that there is still a gap
between the method proposed in this study and the deep
learning method. In terms of PESQ index, the improvement
of RDSN is obviously better than the method in this study.
As indicated from the experimental results achieved with
STOI as the evaluation index, the optimal value of the pro-
posed method in this study is 0.106, which is the same as
the experimental result of DDN, and the difference with the
experimental result of RDSN is not much, only 0.006.

As indicated from a comprehensive analysis of the exper-
imental results, the deep model outperforms the shallow
model in the supervised case. However, the deep model
requires considerable training data, and a large amount of
speech data are very difficult to obtain. In addition, the deep
model is more expensive to train, and it is difficult to achieve

Table 3: The results of the enhancement methods (SNR, PRSQ, STOI).

Scene
Method Index a b c d e f g

CNMF+ JADE

SNR 13.10 9.20 11.19 8.44 7.03 8.32 5.68

PESQ 3.02 2.40 2.69 2.05 2.20 2.26 2.35

STOI 0.95 0.90 0.92 0.88 0.85 0.89 0.74

CNMF+ JADE+ spectral subtraction

SNR 5.22 5.36 6.16 4.76 4.07 4.76 3.55

PESQ 1.97 1.95 1.70 1.89 1.88 1.89 1.27

STOI 0.79 0.82 0.70 0.79 0.72 0.80 0.75

CNMF+ JADE+ Wiener filtering

SNR -2.24 -2.04 -1.02 -1.96 -2.13 -1.96 -1.62

PESQ 2.36 2.33 2.96 2.13 2.19 2.13 2.49

STOI 0.73 0.77 0.72 0.72 0.69 0.72 0.72

CNMF+ JADE+ Kalman filtering

SNR 3.27 3.42 3.19 3.05 2.84 4.0 2.05

PESQ 2.03 2.25 2.05 2.00 1.97 2.00 2.04

STOI 0.83 0.88 0.69 0.82 0.78 0.83 0.57

CNMF+ JADE+ wavelet transform

SNR 12.02 11.10 15.9 8.35 7.23 8.37 7.40

PESQ 2.49 2.46 1.96 1.70 2.25 2.15 1.90

STOI 0.82 0.92 0.81 0.84 0.88 0.91 0.76
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small-sample, unsupervised speech separation in complex
scenarios. The speech separation algorithm proposed in this
study can satisfy the needs of small sample and unsupervised
speech separation. In addition, the total computational over-
head of the shallow model is smaller than that of the deep
model. As opposed to the deep model, the shallow model is
more suitable for application scenarios with high real-time
requirements. Given the comparison of the two models syn-
thetically, the algorithm proposed in this study is considered
to be more suitable for target speaker speech extraction in the
complex multispeaker scenario.

5. Conclusion

The development of IoT technology promotes the rapid
development of intelligent voice systems, and the efficient
processing of signal data acquired by speech sensors becomes
imminent. Thus, an unsupervised speech separation algo-
rithm based on the combination of CNMF and JADE is
proposed in this study. Through simulation experiments, it
is well demonstrated that the proposed algorithm can effectively

separate the target speech signals contained in themixed speech
signals. In addition, for the separated speech signal is weak and
out of frame, this study also proposes an adaptive wavelet trans-
form method to enhance the separated speech signal. As
revealed from the results, the proposed algorithm in this study
can enhance the separated speech signals. The comprehensive
experimental results can prove that the proposed algorithm is
very competitive in the processing of single-channel mixed
speech separation problem. The algorithm is highly versatile
and robust, capable of technically supporting other researchers
in processing highly noisy signal data collected by sensors.

Speech separation, especially single-channel speech sepa-
ration, has been a hotspot and difficult research area. In addi-
tion, as IoT technology is being developed and applied,
separating high-quality speech signals has become an urgent
task. Speech signals exhibit obvious spatio-temporal struc-
tures and nonlinear relationships, and most of the conven-
tional speech classification methods are shallow structures,
and the mentioned results are more limited in their ability
to tap into the mentioned nonlinear structural information.
In recent years, as deep learning is advancing, it has been sug-
gested that the nonlinear processing and feature learning
capabilities of deep models exhibit obvious advantages in
addressing speech separation problems. Moreover, some
results of processing speech signals with deep learning have
been published. As deep learning computing is leaping
forward, deep models (e.g., DNN, DSN, CNN, RNN, Deep
NMF, and LSTM) will definitely be more competitive in
speech separation problems. In the future, the use of deep
learning techniques in speech separation will definitely
become a research hotspot.

Table 4: The experiment of adaptive judgment speech enhancement (SNR).

Scene
Method a b c d e f g

CNMF+ JADE 13.10 9.20 11.19 8.44 7.03 8.32 5.68

CNMF+ JADE+ wavelet transform 12.02 11.10 15.9 8.35 7.23 8.37 7.4

Adaptive speech enhancement judgment 0 1 1 0 1 1 1

Table 5: The experiment of adaptive judgment speech enhancement (PESQ).

Scene
Method a b c d e f g

CNMF+ JADE 3.02 2.40 2.69 2.05 2.20 2.26 2.35

CNMF+ JADE+ wavelet transform 2.49 2.46 1.96 1.70 2.25 2.15 1.90

Adaptive speech enhancement judgment 0 1 1 0 1 1 1

Table 6: The experiment of adaptive judgment speech enhancement (STOI).

Scene
Method a b c d e f g

CNMF+ JADE 0.95 0.90 0.92 0.88 0.85 0.89 0.74

CNMF+ JADE+ wavelet transform 0.82 0.92 0.81 0.84 0.88 0.91 0.76

Adaptive speech enhancement judgment 0 1 1 0 1 1 1

Table 7: Efficiency comparison of speech separation effect.

Index
Method PESQ STOI

Deep neural networks (DNN) [55] 0.694 0.106

Recurrent deep stacking networks (RDSN) [55] 0.823 0.112

CNMF+ JADE+ adaptive wavelet transform 0.305 0.106
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