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AN IMPROVED UPPER BOUND FOR GLOBAL
DIMENSION OF SEMIGROUP ALGEBRAS

WILLIAM R.  NICO1

Abstract. An upper bound for the global dimension of the

semigroup algebra of a finite regular monoid in terms of an ideal

series for the monoid is determined by the partially ordered set of

/■-classes of the monoid. In particular, if the monoid is com-

binatorial, the global dimension of the algebra is bounded by the

sum of the global dimension of the coefficient ring and twice the

length of the longest chain of ./-classes in the monoid.

In [3] we considered a finite regular monoid S and a composition

series of ideals S=IX=>I2=>- ■ =>In. For a commutative ring with

identity k we then defined a(I¡)=0, 1, or 2, respectively, depending on

whether the algebra kljklj+x has a two-sided identity, has no two-sided

identity but has a right or left identity, or has neither right nor left

identity. Then we set /li(S)=o(Ix)+cj(I2) + - • •+cr(/n) and found an

upper bound for l.gl.dim ¿5 which involved p,(S). In particular, if S is

combinatorial (i.e., each subgroup is trivial), or if kG is semisimple for

each subgroup G oí S, then l.gl.dim kS^/i(S)+l.g\.dimk. The purpose

of this paper is to show that an estimate r(S) can be computed as above

using an ideal series for 5 which is in general shorter than a composition

series. For semigroup terminology we follow [1] or [2].

We form an ideal series S=I[^>I'^p- ■ -^>Tm as follows: Let Tm be the

unique minimal ideal of S, and for r=m — l, ■ • • , 1 let /^ be such that

I'rll'r+i is the union of all 0-minimal ideals in S//r'+1. In this ideal series m is

the length of the longest chain in the partially ordered set of ^/-classes

of 5. In particular, m=n if and only if Sis a chain of ^-classes ; otherwise

m<n.

Define o(I'¡) in terms oi identities of krslkl'j+x as was done for the ideals

in the composition series above.  Let t(5) = o-(/i) + • • •+o(I'm).  Then

Received by the editors November 15, 1971.

AMS  1970 subject classifications.  Primary   16A60,   20M25;   Secondary   18G20,

18G15.
Key words and phrases. Homological dimension, semigroup, semigroup algebra, rings.

1 Supported in part by National Science Foundation grant GP-29437.

(c American Mathematical Society 1972

54

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN  IMPROVED  UPPER  BOUND  FOR  GLOBAL  DIMENSION 35

we have

Theorem. Let S be a finite regular monoid and k be a commutative

ring with identity. If S is combinatorial or if kG is semisimple for each

subgroup G of S, then l.gl.dim kS ̂ T(S)+lgldim k.

The proof is by induction and the following lemma.

Lemma. Let S be a regular monoid with zero, and let I be the union

of the 0-minimal ideals of S. Then /=7?u- • -U/' where each /¿ is a

regular /-class of S with maximal subgroup G¿. Let T=S¡I, k be a com-

mutative ring with identity, and kQS be the contracted semigroup algebra of

S. If for any left k0S-module M we let dk¡¡s(M) be the projective dimension

of M, then

dk¡¡s(M) <: max{max{l.gl.dim kGi:i= 1, • • • ,p}, l.gl.dim k0T + o(I)}.

Proof. Observe k0T=k0Slk0I. As in [3] we see that dkoS(k0T)=0,

1 resp., depending on whether k0I has or lacks a right identity.

Letting M*=M¡(kaI)M, we see that M* is a A^r-module and that

dkoS(M*)^dkoAM*)+dkoS(k0T)^l.gl.dimk0T+dkoS(k0T) by a standard

result.

We observe that k0I=k0Jx®k0J2®- ■ -©fc,^, so that (k0T)M=

(k0Jx)M + - ■ - + (A:0J„)M. Now if et is the identity of G¡, it is known that

f'=SeiS. We may thus define M** by the exact sequence

0_>M**^ © (k0Sei®kGeiM)^(k0I)M^O,

where the right hand map is given by (xx®mx, • ■ ■ ,xJ,®mJ))h^xxmx +-1-

xvmv.  Now  if (ux, ■ ■ ■ ,uv) e M**  and  xeJx,   then   x(ux, ■ ■ • , up) =

(xux, 0, • • • , 0) since Jx annihilates Ju i=2, • • • ,p. Now the argument

of [3] shows that xxux = 0 also; hence we show that M** is a rc0r-module

and that if ¿„/has a left identity, M**=0.

Thus we have dkeS(M**)<l.gl.dim k0T+dkoS(k0T). By [3],

dk0s(k0Sei ®»oi e¡M) = dkG.(etM).

By standard results we have

dhS(M) ^ mnx{dkB8(k0IM), dkoS(M*)}

and

dkQs(k0lM) ^ max{dkoS(M**),max{dkoS(kl3Sei®kGieiM):i =!,•■• ,/>}}.

These inequalities establish the lemma.
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