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ABSTRACT Vision-based indoor positioning technology is a practical and effective method to solve the
problem of indoor positioning and navigation. Compared to Bluetooth-based and WiFi-based positioning
methods, vision-based positioning method can provide reliable and low-cost services using a camera without
extra pre-deployed hardware. To improve the robustness and accuracy of traditional visual positioning
algorithm, this paper proposes a pixel threshold based eight-point method and an improved epipolar
constraint algorithm. The traditional eight-point method only uses Euclidean distance as a selection indicator
for feature points. The pixel coordinates of some feature points are distorted when the positioning scene
changes, which may cause mismatch. The proposed method introduces the pixel threshold constraint to
improve the quality of output feature points. Further, the epipolar constraint algorithm is modified by adding
a new cost function to improve the accuracy of fundamental matrix calculation, thereby improving the
positioning precision. Performance simulation analysis shows that the proposed algorithm can effectively
improve indoor positioning precision.

INDEX TERMS Pixel drift, pixel threshold, fundamental matrix calculation, epipolar constraint.

I. INTRODUCTION

In recent years, with the development of technologies in
the field of communications and computers, the problem of
positioning has become a hot issue in industry and academia.
Outdoor positioning systems, represented by satellite navi-
gation, have solved users’ demand for outdoor positioning
services [1], but they cannot be used for indoor positioning
and navigation.
Traditional indoor positioning systems based on Bluetooth

andWiFi [2], [3] need to deploy a large number of equipment
in the application scene, and signal transmission is suscep-
tible to complex indoor environments. Vision-based indoor
positioning technology is based on map prior information
[4], [5], without relying on additional equipment. Mean-
while, the vision-based method is less sensitive to indoor
environmental changes, which is suitable for a wide range
of indoor environments such as airports, parking lots, and
large shopping malls [6], [7]. The online stage estimates the
geographic location of pedestrian through an image retrieval
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algorithm and a positioning algorithm [8], [9]. The popu-
larity of intelligent terminals and the development of image
processing technology enable real-time and high-precision
vision-based indoor positioning systems to meet the require-
ments of users [10], [11].

The vision-based positioning method relies on feature
points for image matching, which can ensure strong robust-
ness. In addition, compared with the deep learning-based
method, the feature point method does not require a large
amount of pre-training, and has a better adaptability to com-
plex and variable unknown scenes [12]. In order to improve
the precision of vision-based indoor positioning algorithm,
an improved indoor positioning method is proposed in this
paper, which focus on the accurate position estimation. The
main contributions of this paper are described as follows:

(1) A pixel threshold based eight-point method is proposed
to improve the quality of feature points and eliminate mis-
matching feature points caused by pixel drift.

(2) An improved epipolar constraint is proposed, and a
new cost function is introduced to improve the accuracy of
fundamental matrix calculation, which is crucial for the pose
estimation of query camera. Meanwhile, the performance
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of proposed method is evaluated on typical indoor scenes,
and experimental results show that the proposed method has
better improvement in positioning precision.
The rest of this paper is organized as follows. The related

work is given in Section II. Section III provides the proposed
pixel threshold based eight-point method. The position esti-
mation based on improved epipolar constraint is shown in
Section IV. SectionV gives the simulation results. Conclusion
is drawn in the last section.

II. RELATED WORK

The image-based indoor positioning technology can not only
estimate the user’s position, but also determine the user’s
orientation accurately, that is, the position and the orientation
can be obtained simultaneously [13], [14]. At present, for
image based indoor positioning, the commonly used methods
are mostly focused on calculating the Euclidean distance
between the feature points of image collected by the mobile
terminal and the feature points in the database [15]. Finally,
the position corresponding to the feature points with the
highest matching degree is selected as the positioning result.
A positioning algorithm with high robustness is proposed

in [16], which adopts a real-time positioning algorithm based
on video stream. Users can determine their own position
and navigate the destination by continuously obtaining image
information. However, there are two problems in this method
when mapping the visual position space. On the one hand,
the positioning accuracy has a strong dependence on the
position fingerprint. On the other hand, the fault tolerance of
the system is reduced since the method matches the global
feature points of the image. The authors in [17] proposes
an image-based localization method for narrow corridors,
which adopts the SIFT (Scale In-variant Feature Transform)
feature to retrieve an image in the database closest to the input
image and return the image’s position. In [18], a panoramic
image acquisition device is designed, and the ideal position-
ing precision is obtained by using panoramic photographs
combined with Principle Component Analysis-SIFT (PCA-
SIFT) algorithm and LSH-based nearest neighbor algorithm.
The MoVIPS indoor positioning system in [19] uses the
Speeded Up Robust Features (SURF) algorithm to extract
feature points based on the rough positioning of WiFi, and
proposes an image-based position estimation method and a
video stream-based position estimation method. The authors
in [20] also adopt the mobile phone to locate after the rough
positioning of WiFi. The difference is that they match the
building identification in the database, and finally the feed-
back information is directly presented on the images taken by
the mobile phone. However, a mis-match result is generated
when there is a pedestrian in the image captured by the
camera sensor of the user’s mobile phone, resulting in a larger
positioning error, that is, the robustness of this method needs
to be enhanced. The authors in [21] propose an Indoor Local-
ization method via Multi-view Images and Videos (MIVIL).
2DTriPnP in [22] is proposed, which can be interpreted as
the robust 2D combination of feature triangulation and PnP

problems. It can be concluded that this algorithm saves time
overhead to meet real-time of vision positioning, but the
precision of vision positioning is seriously affected.

At present, some problems existing in the existing vision-
based indoor positioning algorithms are summarized as fol-
lows:

(1) The mismatch of feature points and the single standard
of selecting the eight pairs of matching feature points make
the accuracy of fundamental matrix solution lower.

(2) The low precision of traditional vision-based indoor
positioning methods cannot goodly meet the requirements of
indoor positioning and navigation.

So, it is very necessary to propose an efficient vision-
based indoor positioning algorithm to improve the precision
of vision positioning.

III. PIXEL THRESHOLD BASED EIGHT-POINT METHOD

The fundamental matrix is usually solved by the traditional
eight-point method. However, the relative displacement of
camera and the change in angle will cause inconsistent pixel
coordinates of a pair of matching feature points on matched
images, namely pixel drift. Ideally, the indoor environment at
the time of positioning is the same as the indoor environment
when the database is collected. The pixel drift of the feature
points is not serious, and the error of solving the fundamental
matrix is small. However, there exist many environmental
factors that affect the positioning results during the pro-
cess of actual positioning. Under normal circumstances, the
indoor environment when the user collects images is different
from the indoor environment when the database is collected.
In such a case, the pixel coordinates of the partially matching
feature points are distorted, and this is not an ideal pixel shift
due to the relative displacement of camera and the change in
angle. Obviously, the error will be produced using such pixel
coordinates to solve the fundamental matrix. In this paper,
the pixel threshold based eight-point method is proposed to
adapt to the complex and variable indoor environment.

The above is the theoretical analysis for the traditional
eight-pointmethodwith low robustness and poor adaptability.
Taking the actual indoor environment as an example, the per-
formance of the traditional eight-point method for solving the
fundamental matrix in different experimental environments
is compared and the reasons for different positioning preci-
sion are analyzed. The specific situation is shown in Fig. 1.
It can be seen that different positioning results are obtained
when indoor positioning is performed in different positioning
scenarios using the same database and positioning algorithm
in Fig. 1. The positioning precision is high if the position-
ing environment is the same as the environment when the
database is established. The positioning result is not ideal
when the positioning environment changes due to human
factors.

The reasons of different positioning results obtained in dif-
ferent experimental environments are analyzed. Fig. 2 shows
the eight pairs of matching feature points selected by the
traditional eight-point method in different experimental envi-
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FIGURE 1. Positioning result in different scenes. (a) The image in scene 1;
(b) The image in scene 2; (c) Positioning result in scene 1; (d) Positioning
result in scene 2.

FIGURE 2. Selection of eight points method in different experimental
environments. (a) Opening scene 1; (b) Opening scene 2; (c) Ideal
experimental environment.

ronments. The feature points selected in the state of opening
the door have significant pixel coordinate distortion com-
pared to the feature points selected in the ideal environment.
In Fig. 2(a), the feature point on the left door is matched
with the feature point on the right tile, and it can be seen
that the matching feature point produce a great pixel shift.
The main reason is that the state of opening the door changes
the environmental factors such as the intensity of light, it will
cause great interference to the environment characteristics.
Therefore, the feature point at the reflective spot on the
metal sheet on the door is matched the feature point at
the reflective point on the floor. The traditional eight-point
method in Fig. 2(b) selects a pair of matching feature points
at the nameplate on the door. The feature points on the
door are displaced relative to the state of closing the door
when the door of corridor is open. The traditional eight-point
method selects such matching feature points to calculate the

fundamental matrix, and there is no problem in terms of the
feature point matching concept. The main reason is that the
process of feature point matching is to find the feature point
pairs with the smallest Euclidean distance. The traditional
eight-point method also solves the fundamental matrix by
selecting the first eight pairs of matching points with the
smallest Euclidean distance. However, it can be seen from the
Fig. 2(b) that such matching pairs have too much pixel drift
relative to other good quality matching pairs.

In Fig. 2(a) and Fig. 2(b), the environmental factors causing
the pixel coordinate distortion are different, but both have
loopholes in the scheme of selecting eight pairs of match-
ing points by the traditional eight-point method, and pixel
distortion is introduced. The result is that the calculation
accuracy of fundamental matrix is greatly affected. The ideal
experimental environment is shown in Fig. 2(c), the posi-
tioning environment and the database collection environment
have high similarity and less external interference in this
case, so the eight pairs of matching points selected by the
traditional eight-point method have less pixel drift. The error
of solving the fundamental matrix by selecting such eight
pairs of matching feature points is small.

It can be seen from the above analysis that the introduc-
tion of error is not the incorrect of feature point matching
algorithm, but there are loopholes in the scheme of select-
ing eight pairs of matching points by the traditional eight-
point method. The traditional eight-point method adopts the
Euclidean distance as the sole criterion for selecting eight
pairs of matching feature points. When the positioning envi-
ronment changes, such as opening and closing of doors and
windows, and object displacement, the traditional eight-point
method can easily select matching feature points whose pixel
coordinates are distorted. Actually, the pixel coordinate dis-
tortion of such feature points is caused by the changes in the
positioning environment instead of the relative displacement
or angle change between the cameras. Therefore, the selec-
tion criteria of eight pairs of matching feature points should
be improved.

Aiming at the above problems, this paper proposes a
pixel threshold based eight-point method, which improves the
selection scheme of eight pairs of matching feature points.
The proposed pixel threshold based eight-point method algo-
rithm is shown in Table 1. The pixel threshold is added as
the new selection criterion, and the quality of the matching
feature point pairs is supervised. The main purpose is to avoid
the presence of pixel coordinate distortion among the selected
matching point pairs. In this paper, the introduction of pixel
threshold can enhance the robustness of traditional eight-
point method, thus making the positioning algorithm more
suitable for complex and variable indoor scenes.
where ϕquery denotes the query image, ϕdatabase denotes the
image in the database, Pd represents the feature point in
ϕdatabase, Pq represents the feature point in ϕquery, and θ

represents the number of pairs matching feature points.
In Fig. 3, eight pairs of matching feature points selected by

the pixel threshold based eight-point method are marked with
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TABLE 1. Pixel threshold based eight-point method.

FIGURE 3. Eight pairs of matching feature points extracted by the pixel
threshold based eight-point method.

green dots. It can be seen that the new eight-point selection
criterion can eliminate the matching feature points with pixel
coordinate distortion effectively. The selected eight pairs of
matching feature points after introducing the pixel threshold
are all feature points with excellent quality. Such eight pairs
of feature points will have better performance for solving the
fundamental matrix.

IV. QUERY CAMERA POSE ESTIMATION BY THE

IMPROVED EPIPOLAR CONSTRAINT

The user’s position is estimated using improved epipolar
constraint after obtaining the optimal eight pairs of feature
points. At first, the fundamental matrix F is estimated by
eight pairs of high-quality points selected using the pixel
threshold and the Euclidean distance. Secondly, the improved
epipolar constraint is adopted, which reflects the pose rela-
tionship between the database camera and the query camera
accurately. As shown in Fig. 4, R is rotation matrix, t is
the translation vector, and they represent the relative position
relationship between two cameras. OQXQYQZQ denotes the
query database coordinate system and ODXDYDZD denotes
the database camera coordinate system.
A point in the scene is projected on the camera plane

through the pinhole imaging, and a corresponding projection
point is generated on the image plane. The point in the scene
is represented by a vector ui,j = [i, j]T. A projection point

FIGURE 4. Epipolar constraint between database camera and query
camera.

is generated on each of the two image planes, respectively
when a point is projected onto two mutually different image
planes, and there is a corresponding relationship between
the two projection points. If two corresponding points or
matching feature points are represented by

(

ui,j,u
′
i,j

)

, then
this correspondence satisfies the epipolar constraints:

u′T
i,jFui,j = 0 (1)

where F = [fmn] is the matrix of the 3×3 order, called the
fundamental matrix, which contains the internal geometry
and the relative orientation between two cameras. In addition,
F is also constrained by (2):

detF = 0 (2)

Let x = [i, j, i′, j′] denote the descriptor of the corresponding
point

(

ui,j,u
′
i,j

)

, and then the solutions of (1) and (2) can be
described as: a given set {x1,. . . ,xn} of corresponding points
of a pair of images and a meaningful cost function. On the
one hand, the solution is used to represent any fundamental
matrix F and each pair of corresponding points x = xm(m =
1, . . . , n) deviates from the degree of formula (1). On the
other hand, a fundamental matrix F̂ 6= 0 is solved, and the
cost function is minimized based on (2) at the same time.
Since (1) and (2) have the same form when the two sides
are multiplied by a non-zero scalar, F̂ is a proportionally
obtained value. Excluding singular value constraints, we use
a special cost function J = J (F;x1,. . . ,xn) to characterize the
fundamental matrix F̂ that minimizes the cost function when
satisfying the constraint equation:

ˆF = argmin J (F; x1, . . . , xn) (3)

Assume

F̂ = argmin J (F; x1, . . . , xn)J (F; x1, . . . , xn)

= ‖F‖−2
F

n
∑

m=1

(

(

u′
i,j

)T
m

(

ui,j
)T
m

)2
(4)

where ‖F‖F =
(
∑

m,n f
2
mn

)1/2
denotes the Frobenius norm of

the fundamental matrix F.
Define ūi,j and ū′

i,j are centroids of
(

ui,j
)

m
and

(

u′
i,j

)

m
,

respectively, which are shown as:

ūi,j = 1

n

n
∑

m=1

(

ui,j
)

m

ū′
i,j = 1

n

n
∑

m=1

(

u′
i,j

)

m
(5)
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Assume ūi,j =
[

ī, j̄
]T
, ū′

i,j =
[

ī′, j̄′
]T
, (ui,j)m = [im, jm]T,

(

u′
i,j

)

m
=
[

i′m, j′m
]T
, where m =1,. . . ,n. The image coordi-

nates of each corresponding point are represented by the cen-
troid coordinates, the centroid coordinates of the m-th pairs
of corresponding point can be expressed as

[

im − ī, jm − j̄
]T
,

[

im
′ − ī′, jm

′ − j̄′
]T
. Then:

s =
(

1

2n

n
∑

m=1

∥

∥

(

ui,j
)

m
− ūi,j

∥

∥

2

)1/2

=
(

1

2n

n
∑

m=1

(

im − ī
)2 +

(

jm − j̄
)2

)1/2

s′ =
(

1

2n

n
∑

m=1

∥

∥

(

u′
i,j

)

m
− ū′

i,j

∥

∥

2

)1/2

=
(

1

2n

n
∑

m=1

(

im
′ − ī′

)2 +
(

jm
′ − j̄′

)2

)1/2

(6)

Then the normalized image plane coordinates can be
expressed as:

(

ũi,j
)

m
=
[(

im − ī
)/

s,
(

jm − j̄
/

s
)]T

(

ũ′
i,j

)

m
=
[(

i′m − ī′
)/

s′,
(

j′m − j̄′
)/

s′
]T

(7)

This definition ensures that the rms distance from
(

ũi,j
)

m
and

(

ũ′
i,j

)

m
to the origin of coordinate system where the

corresponding point is equal to
√
2. Then, the distance from

the plane origin can be replaced by the normalized distance
(

ũi,j
)

m
= T

(

ui,j
)

m
and

(

ũ′
i,j

)

m
= T′ (u′

i,j

)

m
, where

T=
(

s−1 0 −s−1 ī

0 s−1 −s−1 j̄

)

T′ =
(

s′−1 0 −s′−1 ī′

0 s′−1 −s′−1 j̄′

)

(8)

Let x̃i =
[

ĩm, j̃m, ĩ′m, j̃′m
]T
, and define F̂ALS as the

fundamental matrix that minimizes the cost function after
using the normalized value for the cost function. That is,
the value of fundamental matrix when the function F 7→
J
(

F; x̃1, . . . , x̃n
)

reaches theminimum value. The expression
defining the mapping relationship is:

F̃ =
(

T′−1
)T

FT−1 (9)

Since ũi,j = Tui,j, ũ′
i,j = T′u′

i,j, so
(

u′
i,j

)T
Fui,j =

(

ũ′
i,j

)T
Fũi,j, thus (9) is derived. Then, the inverse mapping

F̃ 7→ F can be used to estimate F after F̂ALS is obtained
using the normalized data. The method for estimating the
fundamental matrix F is expressed as F̂HRT, which can be
obtained by:

F̂HRT = T′TF̂ALST (10)

The two smallest eigenvalues of the matrix are approxi-
mately equal when the ratio between the largest eigenvalue
and the second smallest eigenvalue of a matrix is large, result-
ing in the instability between corresponding feature values,

so F̂HRT is introduced. That is, the corresponding feature
vectors change greatly when the input of the matrix changes
slightly. The above disadvantages can be effectively improved
after the change of (10).
After the fundamental matrix is estimated by the above

method, the essential matrix can be obtained:

E = K1FK2 (11)

where K1 and K2 represent the camera’s internal parameter
matrix, respectively. The fundamental matrix F differs from
the essential matrixE, the essential matrixE contains only the
relative orientation between two cameras after being multi-
plied by the camera’s internal parameter matrix. The transfer
vector t and the rotationmatrixR between two cameras can be
further determined according to the essential matrix E. First
of all, the sigular value decomposition of the essential matrix
E results inE∼U diag(1,1,0)VT, where det(U)>0, det(V)>0,
then:

t ∼ tu = [u13, u23, u33]
T

Ra = UDVT or Rb = UDTVT (12)

There are four situations for the final solution:

PA = [Ra | tu ] , PB = [Ra | −tu ] ,

PC = [Rb | tu ] , PD = [Rb | −tu ] (13)

The point in the image must be in front of the camera
according to the actual situation, so the unique solution can
be obtained from the above four solutions based on this con-
dition. In order to maintain the generality, this paper assumes
that P = [Rr |tr ] is the final solution and sets X and X′

as the coordinates of points in space in the database camera
and query camera coordinate system, respectively. Therefore,
there is:

X′ = RrX + tr = Rr

(

X + R−1
r tr

)

(14)

where R−1
r tr denotes the transfer vector in the database cam-

era coordinate system, denoted by td . The vector passes the
line between the database camera’s optical center and the
query camera’s optical center. In other words, this vector
represents the relative orientation (slope) between two cam-
eras. Furthermore, it needs to be transformed into a world
coordinate system to show the relative orientation of two
cameras in the world coordinate system.
Assume that the coordinate of the reference point in the

world coordinate system is Xg, there is:

X = RXg + t (15)

where R is the absolute rotation matrix obtained by the
database camera with reference to the world coordinate sys-
tem, and t is the transfer vector obtained by the database
camera with reference to the world coordinate system.
Change (15) as follows:

Xg = R−1X − R−1t (16)
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It can be seen that -R−1t denotes the conversion relation-
ship between the transfer vector in the database camera coor-
dinate system and the transfer vector in the world coordinate
system. So, there is:

ttotal = −R−1td = −R−1R−1
r td (17)

Assume that the database’s absolute rotation matrix R is
known, and then the vector ttotal gives the direction relation-
ship between the database camera and the query camera in
the world coordinate system.
Assume that n images captured by the database camera at

n position match with the query images, then a straight line
between n database cameras’ optical center and the query
camera’s optical center can be made by the transfer vector
ttotal . The n straight lines intersects at one point, which is
the position of the query camera’s optical center, ie the user’s
position. However, there is an inevitable error in the estima-
tion of the fundamental matrix F, so that there exists an error
in the estimation of the transition vector, thus causing the
n straight lines not to reach a point. To solve this problem,
we assume that Ni denotes the number of matching points
between the i-th database image and the query image, and
di denotes the distance from the i-th straight line. The opti-
mal estimated position is obtained by solving the following
problem:

min
x,y

∑

i

Nidi(x, y) (18)

where

di(x, y) = |aix + biy+ ci|
√

a2i + b2i

(19)

where the linear equation of the i-th direction line is aix +
biy+ ci = 0.

The above problem is essentially a convex optimization
problem, so the optimal estimation point can be obtained by
using the convex optimization theory. The optimal point is the
final positioning result and the user’s position.

V. IMPLEMENTATION AND PERFORMANCE ANALYSIS

A. EXPERIMENT ENVIRONMENT

The database adopted in this experiment is our own laboratory
indoor scene, which is the 12th floor corridor of Building
2A, Science Park, Harbin Institute of Technology. There are
800 RGB images in the database, the image size is 224×224,
and the floor plan is shown in Fig. 4. In addition, the length
and width of this experimental corridor are 20m and 10m. For
the convenience of the experiment, the lower right corner of
the corridor in Fig. 5 is regarded as the coordinate origin of
world coordinate system, and the direction of corridor is used
as the Xw axis and Yw axis of world coordinate system. At the
same time, to evaluate the performance of proposed position-
ing algorithm, the experiment is performed in different indoor
scenes, such as an office, a corridor, and a gymnasium.

FIGURE 5. Floor plan for experiment in corridor scene.

B. PERFORMANCE EVALUATION OF PIXEL THRESHOLD

BASED EIGHT-POINT METHOD

Ideally, the pixel coordinates of the matching feature points
on the two camera pixel planes satisfy constraint relationship
of (20). In the actual situation, the image noise is generated
when the camera captures the signal, and there is no non-
zero solution in (20) under the noise interference. At first,
the fundamental matrix can be estimated by different meth-
ods. And then the epipolar error of fundamental matrix in (21)
is adopted to calculate the solution error of the fundamental
matrix:

pd
TFpq = 0 (20)

Therefore, the epipolar error of fundamental matrix in this
paper is defined as:

Errθ = pdθ

TFpqθ
(21)

where Errθ represents the epipolar error of fundamental
matrix solution for the θ -th pair matching feature points,
pdθ

and pqθ
represent the pixel coordinates of the matching

feature point pairs of images, respectively.
The traditional eight-point method, the pixel threshold

based eight-point method and the traditional eight-point
method + RANSAC are adopted to estimate the fundamental
matrix, respectively. Then, 90 pairs ofmatching feature points
are randomly selected to calculate the corresponding epipolar
error, as shown in Fig. 6.
It can be seen from Fig. 6 that the epipolar error caused

by the pixel threshold based eight-point method is signifi-
cantly smaller than the epipolar error caused by the traditional
eight-point method and the traditional eight-point method +
RANSAC. The main reason is that the pixel threshold based
eight-point method eliminate the matching feature points
with severe pixel drift by using the pixel threshold, which
improves the accuracy of fundamental matrix estimation.
The positioning performance analysis of pixel threshold

based eight-point method is implemented in the 12th floor
corridor. At the same time, the experimental scene is the
same except that different fundamental matrix calculation
methods. We can know that the positioning precision is
greatly improved by using the pixel threshold based eight-
point method in Fig. 7.

C. PERFORMANCE EVALUATION OF POSITIONING

The performance of each positioning algorithm is analyzed
in the three cases. By calculating the Euclidean distances
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FIGURE 6. CDFs of fundamental matrix calculation epipolar error by
various methods.

FIGURE 7. CDFs of position errors by various methods.

TABLE 2. Location errors of various positioning methods.

between the estimated and true locations of query camera,
the location errors by various positioning algorithms are
obtained. An accuracy improvement rate iim is introduced to
show the performance improvement of proposed algorithm:

iim =
(∣

∣ep − ec
∣

∣

/

ec
)

· 100% (22)

where ep and ec denote the average errors of proposed algo-
rithm and comparative algorithm. The experiment results are
shown in Table 2. The abbreviations, i.e., Avg., Max., and
Impro., are adopted to represent the average errors, the max-
imum errors and the improvement rates in this paper.

FIGURE 8. CDFs of position errors by various positioning methods.
(a) CDFs of position errors in office scene; (b) CDFs of position errors in
gymnasium scene; (c) CDFs of position errors in corridor scene.

As shown in Table 2, the performance of proposed algo-
rithm evidently outperforms the other two algorithms in the
three cases for the average positioning errors. The main
reason is that the proposed algorithm takes advantage of
both pixel threshold based eight-point method and improved
epipolar constraint to estimate the position of query camera.
It can be seen that the precision improvements of proposed
algorithm can reach at least 48.42% in all experimental cases
compared with the other algorithms.

VOLUME 8, 2020 26947



S. Yang et al.: Improved Vision-Based Indoor Positioning Method

The CDFs of the position errors by various positioning
algorithms in the office scene, the gymnasium scene, and the
corridor scene are shown in Fig. 8.
The maximum position errors of the proposed algorithm

are limited within 50cm, 59cm, and 70cm in the three exper-
imental scenes. Compared with the comparative algorithms,
the precision of proposed positioning algorithm is improved
by at least 52.88% and 45.36%, respectively. Themain reason
is that this paper proposes the pixel threshold based eight-
point method to improve the accuracy of fundamental matrix
calculation. At the same time, the improvement of traditional
epipolar geometry has improved the positioning precision
greatly.

VI. CONCLUSION

In this paper, a pixel threshold based eight-point method was
proposed. The proposed algorithm added the pixel thresh-
old as the new selection criterion to avoid the presence
of pixel coordinate distortion among the selected matching
feature point pairs, thus improving the accuracy of solving
fundamental matrix. At the same time, the improved epipolar
constraint was adopted to estimate the position of query cam-
era. Performance simulation shows that the proposed algo-
rithm has a signification improvement in terms of positioning
precision.
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