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An obstacle detection method based on VM (VIDAR and machine learning joint detection model) is proposed to improve the
monocular vision system’s identification accuracy. When VIDAR (Vision-IMU-based detection and range method) detects
unknown obstacles in a reflective environment, the reflections of the obstacles are identified as obstacles, reducing the accuracy of
obstacle identification. We proposed an obstacle detection method called improved VM to avoid this situation. *e experimental
results demonstrated that the improved VM could identify and eliminate unknown obstacles. Compared with more advanced
detection methods, the improved VM obstacle detection method is more accurate. It can detect unknown obstacles in reflection,
reflective road environments.

1. Introduction

Obstacle detection has become a major concern in the field
of driver assistance systems due to the complexity of the
outdoor environment. Cameras (monocular, binocular,
infrared, etc.), lidar, and millimeter-wave radar are all ex-
amples of obstacle identification equipment. While lidar and
millimeter-wave radar are highly accurate at detecting ob-
stacles, their high cost limits their use in low-end vehicles
[1–3]. Due to the low cost, high detection accuracy, and
speed of vision-based obstacle identification equipment, it
has become more suitable for various vehicles [4, 5]. *e
vision-based sensor used in this study is a camera. Camera,
GPS, and IMU constitute an innovative sensor combination.
Compared with single sensor, the application of multisensor
information fusion technology can improve the reliability of
the whole system, enhance the reliability of data, improve
the accuracy, and increase the information utilization rate of
the system in solving the problems of detection, tracking,
and target recognition.

Machine learning is the process of training and iden-
tifying images using deep convolutional neural networks.
Compared with other image recognition technologies,

machine learning has an extremely high recognition rate for
specific images. While machine learning is capable of ac-
curate classification, it can only be used to identify known
obstacles. While the vehicle is in motion, using machine
learning to identify unknown obstacles may result in mis-
identification, posing a serious risk to the vehicle’s safety
(Figure 1). As a result, a method for detection and ranging
using vision and an IMU (inertial measurement unit) has
been proposed [6]. Given that VIDAR requires more time to
run than machine learning, a method combining VIDAR
and machine learning to detect obstacles has been proposed
(called the VM method). Machine learning is used to
identify known obstacles in the proposed method, while
VIDAR is used to detect unknown obstacles.

To avoid the situation in which VIDAR detects the re-
flection as an obstacle when used in a reflective environment
(Figure 2) and improve detection accuracy, a VIDAR-based
pseudo-obstacle detection method (called improved
VIDAR) has been proposed. *is method’s identification
procedure is as follows. *e rectangle of the obstacle was
determined. *e width of the obstacle rectangle was cal-
culated using the transformation relationship between pixel
coordinates and world coordinates, and then the height of
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the obstacle rectangle was calculated using the transfor-
mation relationship between pixel coordinates and world
coordinates. *e true obstacle is determined by the fact that
the actual height of the obstacle rectangle remains constant
throughout the ego-vehicle movement. If the obstacle is a
real one, tracking is continued.

To accelerate the detection speed of improved VIDAR,
we combined it with machine learning (this article uses the
faster RCNN algorithm) to identify known obstacles, which
we refer to as improved VM. *e improved VM obstacle
detectionmethod can quickly and accurately detect obstacles
on reflection roads. *e enhanced VM obstacle detection
procedure is as follows: first, machine learning is used to
identify known obstacles; second, the identified obstacles are
removed from the background area; and finally, pseudo-
obstacles are eliminated through the use of enhanced
VIDAR.

2. Related Work

As the core section of automobile-assisted driving, obstacle
detection has emerged as a critical area of research in recent
years. Due to its simple ranging principle, the monocular
vision sensor has become the primary obstacle identification
equipment in obstacle identification. Many scholars have
conducted related research on obstacle identification to
accelerate the process. Traditional image object classification
and detection algorithms and strategies are difficult to meet
the requirements of image and video big data in terms of
processing efficiency, performance, and intelligence. Deep
learning establishes the mapping from low-level signals to
high-level semantics by simulating the hierarchical structure
similar to the human brain, so as to realize the hierarchical
feature expression of data, and has powerful visual infor-
mation processing capabilities. *erefore, in the field of
machine vision, the representative of deep learning-con-
volutional neural network (CNN) is widely used [7, 8].
Convolutional neural networks are also called cellular
nonlinear networks. Arena et al. have stressed the universal
role that cellular nonlinear networks (CNNs) are assuming
today. It is shown that the dynamical behavior of 3D CNN-
basedmodels allows us to approach new emerging problems,
to open new research frontiers [9]. Shustanov and Yakimov
proposed an implementation of the traffic signs recognition
algorithm using a convolution neural network; training of
the neural network is implemented using the TensorFlow
library and massively parallel architecture for multithreaded
programming CUDA; and the experiment proves the high
efficiency of this method [10]. Zhu et al. have proposed a
novel image classification framework that combines CNN
and KELM (kernel extreme learning machines). *ey
extracted feature categories using DenseNet as a feature
extractor and radial basis function kernel ELM as a classifier
to improve image classification performance [11]. Wang
et al. proposed the occlusion-free road segmentation net-
work, a fully convolutional neural network. *rough fore-
ground objects and visible road layouts, this method can
predict roads in the semantic domain [12]. *e accuracy of
obstacle identification is also continuously improved as new

machine learning concepts such as SegNet, YOLO v5, faster
RCNN, BigGAN, and mask RCNN are developed [13–20].
While machine learning is capable of accurate classification,
it can only be used to identify known obstacles. Unknown
obstacles may be missed while the vehicle is moving, which
will cause a serious impact on the vehicle’s safety.

Generally, obstacles are detected using significant in-
formation such as color and prior shape. Zhu et al. proposed
a method for detecting vehicles based on their edges and
symmetry characteristics [21]. *ey hypothesized the ve-
hicle’s location based on the image’s detected symmetric
regions. *e vehicle’s bounding box is determined using the
projected image of the enhanced vertical and horizontal
edges. Zhang et al. [21–23] used color information for
background removal and shadow detection to improve
object segmentation and background updating.*is method
is capable of rapidly and precisely detecting moving objects.
Zhang et al. [24] introduced Deep Local Shapes (DeepLS),
which are high-quality 3D shapes that can be encoded and
reconstructed without requiring an excessive amount of
storage. *is local shape of the scene decomposition sim-
plifies the prior distribution that the network must learn and
accelerates and accurately detects obstacles. However, in an
environment with reflections, the reflections contain sig-
nificant information about the obstacles they use, reducing
the accuracy of obstacle detection.

*e vehicle’s position is generally determined by high-
light information, such as the highlighted area and contour
features. Park and Song [25] proposed a front vehicle
identification algorithm based on contrast enhancement and
vehicle lamp pairing. Lin et al. [26] discovered that the
characteristics of headlights were more distinctive than the
contours of vehicles and had a greater identification effect
and thus proposed the use of lamps as a sign for vehicle
identification at night. *e Hough transform was proposed
by Dai et al. [27] as a method for intelligent vehicle iden-
tification at night. *is method divides the extracted lamps
into connected domains, extracts the lamps’ edges, and then
identifies the circle using the Hough transform. Finally, by
pairing the lamps, the vehicle’s location is determined.
Kavya et al. [28] proposed a method for detecting vehicles
based on the color of the brake lamp during braking in the
captured color image. *e feature information required for
the above identification method in a reflective environment
will detect lamp reflections. *e vehicle’s lamps will also be
paired, which will reduce the vehicle’s accuracy of identi-
fication. We used a modified VM to detect obstacles,
allowing for eliminating obstacles in the reflection, thereby
increasing obstacle detection accuracy.

3. Methodology of Improved VIDAR’s Pseudo-
Obstacle Detection

*e monocular visual identification method, based on
machine learning, is limited to identifying previously
identified obstacles. A vehicle collision accident may occur
when unknown obstacles are present on the road. When
VIDAR is used to detect obstacles, pseudo-obstacles in the
reflection environment are mistaken for real obstacles. *us,
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to increase the speed and accuracy of obstacle detection, we
use an improved VM.

3.1. Transformation from World Coordinates to Pixel
Coordinates. *e camera can project objects in the three-
dimensional world into a two-dimensional image by cap-
turing an image. In reality, the imaging model establishes a
projection mapping relationship between three-dimensional
and two-dimensional space. *e coordinate transformation
is required to convert the world coordinate system’s coor-
dinates to the camera coordinate system’s coordinates. A
rigid body transformation is used to convert the world
coordinate system to the camera coordinate system. It is
determined by the camera’s external parameters.*e camera
coordinate system to pixel coordinate system transformation
converts three-dimensional coordinates to two-dimensional
plane coordinates, as determined by the camera’s internal
parameters. Although both the pixel and image coordinate
systems are located on the imaging plane, their origins and
units of measurement are distinct. *e origin of the image
coordinate system is the point at which the camera’s optical
axis intersects the imaging plane, which is typically the
imaging plane’s midpoint.

Suppose the internal parameters matrix is M. Project
Q(X, Y, Z) in the physical world to the image plane q(x, y).
By adding a dimension w to q(x, y), which is the expansion
of q(x, y, w), obtain w � Z. Point q is in the form of

homogeneous coordinates. Combine the rotation matrix R
and the offset matrix T to obtain the external parameter
matrix K, where cx and cy are the offsets. *e coordinate
transformation is shown in Figure 3.

*e internal parameters of the camera are obtained by
Zhang Zhengyou demarcate to determine the transforma-
tion relationship between world coordinates and pixel
coordinates.
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3.2. Obstacle Ranging Model. *e range of obstacles is as
follows (Figure 4). Let f be the focal length of the camera; h

be the installation height of the camera; μ be the pixel size; z

be the camera pitch angle; (x0, y0) be the intersection of the
image plane and the optical axis of the camera; set to (0, 0);
(x, y) be the coordinates of intersection points of obstacles
and pavement plane set to P; and the horizontal distance d
between the object point and the camera is

Figure 1: *e results of obstacle identification based on faster RCNN.
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Figure 2: *e results of car detection based on VIDAR on reflection roads.
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d �
h

tan z + arctan y0 − y( μ/f ( 
. (2)

Assume that Y1 is the Y-axis in the previous image, Y2 is
the Y-axis in the previous image. When the camera moves
from Y1 to Y2 on the axis of the imaging plane (Figure 5), let
A be an imaging point for obstacle’s top in the subsequent
image, B be the same imaging point for obstacle’s top in the
latter image, A′ is the object point of A, and B′ is the object
point of B. d1 is the horizontal distance between A′ and the
camera; similarly, d2 is the horizontal distance between B′
and the camera. d1 and d2 can be obtained from Equation
(3).*e camera moved a certain distance Δd during the time
between the previous and subsequent images; d1 � d2 + Δd,
but d1 � d2 + Δd + Δl actually. As a result, the A′ and B′

have height if d1 ≠ d2 + Δd, and static obstacles can be
identified by Δl if Δd is known.

Additionally, if the obstacle is moving (as illustrated in
Figure 6), the Δl can also be used as an obstacle judgment.
*e verification process has been shown in the paper [6].

3.3. Static Obstacle IdentificationModel. *ere are two types
of static obstacles: real static obstacles and static pseudo-
obstacles. Static real obstacles refer to actual road obstacles.
*e reflections identified as real obstacles during the obstacle
identification process are called static pseudo-obstacles. It is
a type of pseudo-obstacle that reflects some road obstacles
but does not affect the vehicle’s driving safety. To improve
the accuracy of obstacle identification, we must identify and
remove static pseudo-obstacles.

3.3.1. Static Real Obstacle Identification. First, we used the
VIDAR to detect stereo obstacles and determine which
object point on the obstacle is the furthest away in the
horizontal and vertical directions to construct a rectangle
(the obstacle rectangle, Figure 7). Let A (x1, y1) be the first
imaging point for the identification of the width of the
rectangular road surface of the obstacle, B (x2, y1) be the
other imaging point for the identification of the width of the
rectangular road surface of the obstacle, and A′ be the object
point of A; similarly, B′ is the object point of B. *e hor-
izontal distances d1 between A′ and the camera can be
calculated by Equation (2). Similarly, the horizontal dis-
tances d2 between B′ and the camera can also be calculated.
*e width of the obstacle rectangle can be calculated using
the pinhole imaging principle and the geometrical rela-
tionship between cameras.
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When the camera moves from Y1 to Y2 on the axis of the
imaging plane (Figure 8), let C (x3, y2) be an imaging point
for identifying the width of the opposite side of the obstacle,
D(x4, y2) be another imaging point for the identification of

the width of the opposite side of the obstacle, C′ be the object
point of C, and D′ be the object point of D. (4) and (5) have
the same width. *e height of the pseudo-obstacle rectangle
is calculated.
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3.3.2. Static Pseudo-Obstacle Identification. *e procedure
for identifying pseudo-obstacles is similar to the procedure
for identifying real obstacles. However, when obstacles are
detected using VIDAR, the object points of the obstacles are
different from their actual positions (Figure 9). We detect

pseudo-obstacles using VIDAR and construct a rectangle
(pseudo-obstacle rectangle) from the object points on the
pseudo-obstacle (the object points are the farthest in the
horizontal and vertical directions). Let A be the first imaging
point for pseudo-obstacle width identification with (x1, y1),
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Figure 3: Schematic diagram of coordinate transformation.
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B be the other imaging point for pseudo-obstacle width
identification with (x2, y1), A′ be the object point of point A,
and B′ be the object point of point B. *e horizontal dis-
tances d1 between A′ and the camera can be calculated using
(2). Similarly, the horizontal distances d2 between B′ and the

camera can also be calculated using (2), and the width of the
pseudo-obstacle rectangle can be calculated by the pinhole
imaging principle and the geometrical relationship between
cameras.
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When the camera moves from Y1 to Y2 on the axis of the
imaging plane (Figure 10), after the pseudo-obstacle moved,
let C (x3, y2) be an imaging point of the rectangular width of
the identified pseudo-obstacle and D (x4, y2) be another
imaging point of the rectangular width of the pseudo-ob-
stacle, and C′ be the object point of C and D′ be the object

point of D. At this point, the width of the object point of the
pseudo-obstacle changes from W1 to W2. Similarly, W2 can
be solved using the pinhole imaging principle and the
geometrical relationship between cameras. *e rectangular
height of the pseudo-obstacle can be obtained by (5) and (6)
and the triangle similarity principle.
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3.4. StaticObstacle IdentificationModel. Moving obstacles are
classified as either moving real obstacles or moving pseudo-
obstacles. Moving real obstacles refers to obstacles on the road.
*e reflections identified as real obstacles during the obstacle
identification process are referred to as moving pseudo-ob-
stacles. It is a type of pseudo-obstacle that replicates some road
obstacles but does not destroy the vehicle’s driving safety. We
must identify and removemoving pseudo-obstacles to improve
accuracy when identifying obstacles.

3.4.1. Static Pseudo-Obstacle Identification. *e steps for
identifying real moving obstacles are identical to those for
real static obstacles (Figure 11). VIDAR is used to detect
stereo obstacles, construct obstacle rectangles, and calculate
their width. After the ego-vehicle and obstacle have been
moved, the width of the obstacle rectangle is recalculated
and then the obstacle height is solved using the triangle
similarity principle.
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3.4.2. Moving Pseudo-Obstacle Identification. *e steps for
identifying moving pseudo-obstacles are identical to those
for static pseudo-obstacles (Figure 12): detecting stereo
obstacles with VIDAR, determining the pseudo-obstacle

rectangle, and calculating the pseudo-obstacle rectangle’s
width. Following the ego-vehicle and pseudo-obstacle
movement, the height of the pseudo-obstacle is calculated
using the width of the pseudo-obstacle’s imaging point.
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3.5. Removal Model of Pseudo-Obstacles. *e ego-vehicle
movement assesses the obstacle’s authenticity. Using (3) and
(5), the widths of obstacles and pseudo-obstacles when the
vehicle moves for the first time are calculated. When the

vehicle resumes motion, the width and height of the obstacle
and pseudo-obstacle are also calculated using (4) and (6),
and the heights of the obstacle and pseudo-obstacle are
determined by their widths. Compared with the calculated
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results for obstacles, detected obstacles are those with a
similar height.

*e process of obstacle identification is as follows:

(1) Confirm stereo unknown obstacles. Machine
learning is used to identify known obstacles, obtain
images after removing the known obstacles, and then
screen out stereo unknown obstacles using VIDAR’s
obstacle detection principle.

(2) Construct an obstacle rectangle. To construct a
rectangle, locate the object points on the obstacle that

are the furthest apart in the horizontal and vertical
directions (Figure 13 and Figure 14).

(3) Calculate the horizontal distance. Determine the
horizontal distance from the object point to the
camera according to VIDAR.

(4) Identify obstacles. First, calculate the width W of the
obstacle rectangle. Second, determine the relation-
ship between the height hv and width W through the
triangle similarity principle.

(5) Calculate the rectangular height of real and pseudo-
obstacles by using the same width when vehicles and
obstacles move. Calculate the height value twice,
compare the two height values, and determine the
identified obstacle.

*e overall flow of obstacle identification is shown in
Figure 15.

4. Obstacle Identification Experiment and
Effect Analysis

We analyze the identification effect of the VM and improved
VM in two environments. On the movable platform, the
experimental equipment, including the camera unit and
IMU, is installed (Figure 16(a)). A scale model of the vehicle
is used to simulate a specific obstacle. To simulate the un-
known obstacle, a beverage bottle cap is used (Figure 16(b)).
*e polished paper is used to create a reflection of the road
(Figure 16(c)).*e camera’s video captured at a frame rate of
20 fps is utilized to generate an image sequence, and then
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obstacle detection on the generated image sequence is
performed.

4.1. Improved VIDAR and Improved VM Simulation
Experiments. A beverage bottle cap is used as an unknown
obstacle, and the angular acceleration and acceleration of the
ego-vehicle are obtained from the IMU installed in the ego-
vehicle. *e quaternion method is used to solve the camera
attitude and update the camera pitch angle. *e image is
processed by a fast image region matching method based on
MSER. Acceleration is used to calculate the horizontal
distance between the vehicle and the obstacles. *e height of
the obstacle rectangle by keeping the actual width constant
during the vehicles and obstacles movement is calculated,
the authenticity of the identified obstacles by keeping the

height unchanged is confirmed, and the real obstacles are
marked.

*e previous image and latter image are used to judge
whether the height of the obstacle rectangle has changed
(Figure 17).

In the VM and improved VM comparison experiments,
the faster RCNN is used to identify known obstacles and to
identify known obstacles as background, while VIDAR and
improved VIDAR are used to perform secondary detection
on the background-removed image to identify unknown
obstacles (Figure 18, Figure 19, and Figure 20).

*e detection of unknown obstacles in this paper is
shown in Figure 19 and Figure 20. While VIDAR in the VM
is capable of identifying the bottle cap, the cap’s reflection is
also detected as an obstacle, resulting in low obstacle
identification accuracy. When the improved VIDAR is used

Point

(a)

Obstacle 
Rectangle

(b)

Figure 13: *e first image. (a) *e feature points. (b) Construction of the obstacle rectangle by the feature points.

Point

(a)

Obstacle 
Rectangle

(b)

Figure 14: *e second image. (a) *e feature points. (b) Construction of the obstacle rectangle by the feature points.
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to detect unknown obstacles, the obstacles in the reflection
without height can be eliminated, compensating for the
unknown obstacles being misdetected in the reflective en-
vironment. As a result, the improved VM detects obstacles
more precisely than the baseline VM.

4.2. Analysis of the Identification Result of Improved VM and
Improved VIDAR. In the experimental test, a pure electric
vehicle is used as the test vehicle (Figure 21). A

MV-VDF300SC industrial digital camera is used as a
monocular vision sensor.*is model camera adopts the USB
2.0 standard interface and has a high resolution, precision,
and clarity. *e camera’s performance parameters are listed
in Table 1.*e camera is installed at the height of 1.60m and
collects real-time environmental data (we only used the left
camera). *e HEC295 IMU is mounted on the bottom of the
test vehicle and is used to locate and read the vehicle’s

Machine learning at
t to detect known

obstacles

Background
extraction

h

f

P
Δd Calculation

Camera Data
Update Camera Data at tе 

ROI Extraction Feature Points 
Extraction

Non-road 
Obstacle Screening

Construct Obstacle
Rectangle

Inertial Data 
Acquisitiont=0

t=t+1/f

W at t

Camera Movingt=t+ΔtCamera Moving hv1 and hv2 at 
t+Δt

Feature Points
Tracking
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t+2Δt
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Y

Y

Real Obstacle
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Figure 15: Improved VM pseudo-obstacle identification flowchart.

IMU

Movable Platform

Camera Unit

(a) (b) (c)

Figure 16: Experimental equipment. (a) Mobile platform, camera unit, IMU. (b) Vehicle scaled model (known obstacle) and unknown
obstacle model. (c) Polished paper simulates reflection road.

Obstacle

Figure 17: Detection result of bottle cap.

car

car

Figure 18: Faster RCNN identification effect diagram.
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motion status in real time. GPS is used to determine a precise
location. Digital maps are utilized to obtain precise road
data, such as distance and slope. *e computing unit is used

to perform real-time data processing. In the process of
calculation, multisensor data processing is the combination
and processing of multisource information, which is rather

car

car

Obstacle

Obstacle

Figure 19: VM identification effect diagram.

car

car

Obstacle

Figure 20: Improved VM identification effect diagram.

Camera

GPS+IMU

Computing processing
unit and digital map

Figure 21: Schematic diagram of the test vehicle.

Table 1: Some performance parameters of the MV-VDF300SC camera.

MV-VDF300SC
Highest resolution 2048∗1536 Power requirements (V) 5
Output color Color Power consumption (W) Rated <5
Frame rate (fps) 12 Operating temperature (°C) 0–60
Output method USB 2.0 Dimensions (mm) 43.3∗ 29∗ 29
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complicated. Fuzzy logic can deal with complex systems
[29]. It can coordinate and combine the acquired infor-
mation to improve the efficiency of the system and effectively
deal with the knowledge acquired in the scene.

Accurate calibration of camera parameters was a pre-
requisite for the whole experiment and is a very important
task for obstacle detection methods. In this paper, Zhang
Zhengyou’s camera calibration method was adopted to
calibrate the DaYing camera. First, the camera was fixed to
capture images of a checkerboard at different positions and
angles. *en, key points of the checkerboard were selected
and used to establish a relationship equation. Finally, the
internal parameter calibration was realized. *e camera
calibration process and result are shown in Figure 22.

Camera distortion includes radial distortion, thin lens
distortion, and centrifugal distortion. *e superposition of
the three kinds of distortion results in a nonlinear distortion,
the model of which can be expressed in the image coordinate
system as follows:

δx(x, y) � s1x x
2

+ y
2

  + 2p1xy + p2y
3

+ k1x x
2

+ y
2

 

δy(x, y) � s2y x
2

+ y
2

  + 2p2xy + p1y
3

+ k1x x
2

+ y
2

 
,

⎧⎨

⎩

(9)

where s1 and s2 are the centrifugal distortion coefficients; k1
and k2 are the radial distortion coefficients, and p1 and p2
are the distortion coefficients of thin lenses.

Because the centrifugal distortion of the camera is not
considered in this paper, the internal reference matrix of the
camera can be expressed as shown in

M �

5.9774e + 03 0 949.8843

0 5.9880e + 03 357.0539

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (10)

*e calibration of the camera’s external parameters can
be calculated by taking the edge object points of lane lines.
*e calibration results are shown in Table 2.

Due to a lack of reflection road images in the public data
set and the fact that different camera parameters would affect
range accuracy, we created a VIDAR-Reflection Road da-
tabase (Figure 23) with a total of 2000 images. *e MV-
VDF300SC camera unit was used to record the experiment
in its natural environment. *e test roads were Xuezhai
Road and Jiefang East Road in Jinan, Shandong Province,
and traffic environment images were collected during rainy
days from 10 : 00 to 11 : 00 and 19 : 00 to 20 : 00.

Figure 24 depicts the identification result for the two
images. *e VM and improved VM accuracy are compared
by counting the number of TP, FP, TN, and FN obstacles in
each image frame. Let a be an obstacle that is correctly
identified as a positive example; b be an obstacle that is
incorrectly identified as a positive example; c be an obstacle
that is correctly identified as a negative example; and d be an
obstacle that is incorrectly identified as a negative example.
*en, TP � 

n
i�1 ai, FP � 

n
i�1 bi, TN � 

n
i�1 ci, and

FN � 
n
i�1 di. *e comparison of the detection effects of VM

and improved VM in the reflection environment is shown in
Table 3.

In the results’ analysis, accuracy (A), recall (R), and
precision (P) were used as evaluation indices for the two
obstacle detection methods, calculated through

A �
TP + TN

TP + TN + FP + FN
, (11)

R �
TP

TP + FN
, (12)

P �
TP

TP + FP
. (13)

*e accuracy, recall, and precision of the method pro-
posed in this paper are shown in Table 4.

As demonstrated by the experimental results in Table 4,
the accuracy of obstacle identification is increased when
using the improved VM for obstacle identification in a
reflective environment. Due to the weather and other fac-
tors, there are times when misidentification and missed
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Figure 22: *e camera calibration result.

Table 2: Calibration results of camera external parameters.

External parameter type Parameter size
Pitch angle 1.25
Yaw angle 3.65
Rotation angle 2.45
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identification occur during the experiment. However, the
improved method proposed in this paper improves obstacle
identification accuracy.

Additionally, we compared our method’s detection ac-
curacy to other commonly used target detection methods.
Table 5 summarizes the detection results. It is obvious that
the proposed obstacle detection method outperforms state-
of-the-art methods in terms of accuracy.

*e term “real time” refers to the processing of each
image frame collected over time. In terms of detection speed,
2000 images were processed using improved VIDAR, VM,
VIDAR, VM, and YOLO v5. Table 6 summarizes the average
detection times for the five identification methods.

As shown in Table 6, an improved VM takes longer to
determine the authenticity of obstacles than a VM. Similarly,
improved VIDAR requires more time to determine the

Figure 23: A partial sample of the VIDAR-Reflection Road data set.

Figure 24: Comparison of detection results of VM and improved VM in an environment with reflection.
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authenticity of obstacles when compared with VIDAR. Due
to the fewer feature points, improved VM detects faster than
improved VIDAR, and less time is required. As a result,
using an improved VM for obstacle detection takes not only
advantage of machine learning’s speed but also improves
identification accuracy.

5. Conclusion

*is paper first proposes an improved VIDARmethod based
on VIDAR and then combines machine learning to propose
an improved method for VM obstacle identification. On the
basis of machine learning to detect known obstacles, VIDAR
is used to determine whether there is an obstacle with height
by calculating the position of road imaging points, the
obstacle rectangle is determined for nonroad obstacles, and
then the obstacle height (including real obstacles and
pseudo-obstacles) is calculated by using the obstacle imaging
points of two frames before and after the vehicle moves. By
calculating the height after moving again (including real
obstacles and pseudo-obstacles), the two heights are com-
pared to determine the authenticity of the obstacle, so as to
realize the obstacle detection. *is paper aims to show the
effect of obstacle detection using improved VM in the en-
vironment with reflection. *e experimental results indicate
that when compared with VM, the improved VM method
for obstacle detection is more accurate in a reflective en-
vironment. Because the method proposed in this paper

needs a lot of calculations, improving the efficiency of the
proposed method will be the next research direction. In
addition, obstacle detection is a prerequisite for obstacle
avoidance, and an improved obstacle avoidance method is
also a future research direction.
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