
Western Michigan University Western Michigan University 

ScholarWorks at WMU ScholarWorks at WMU 

Master's Theses Graduate College 

4-1984 

An Improvement in the Performance of a Learning System for An Improvement in the Performance of a Learning System for 

Finite State Machines Finite State Machines 

Lea F. Fuller 

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 

Fuller, Lea F., "An Improvement in the Performance of a Learning System for Finite State Machines" 

(1984). Master's Theses. 1501. 

https://scholarworks.wmich.edu/masters_theses/1501 

This Masters Thesis-Open Access is brought to you for 
free and open access by the Graduate College at 
ScholarWorks at WMU. It has been accepted for inclusion 
in Master's Theses by an authorized administrator of 
ScholarWorks at WMU. For more information, please 
contact wmu-scholarworks@wmich.edu. 

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1501&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1501&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/1501?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1501&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/


AN IMPROVEMENT IN THE PERFORMANCE OF A LEARNING
SYSTEM FOR FINITE STATE MACHINES

by

Lea F. Fuller

A Thesis 
Submitted to the 

Faculty of The Graduate College 
in partial fulfillment of the 

requirements for the 
Degree of Master of Science 

Department of Computer Science

Western Michigan University 
Kalamazoo, Michigan 

April 1984

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



AN IMPROVEMENT IN THE PERFORMANCE OF A LEARNING
SYSTEM FOR FINITE STATE MACHINES

Lea F. Fuller, M.S.

Western Michigan University, 1984

A learning system is examined which is capable of 

learning a finite state machine from a class of finite 

state machines based on the observed behavior of the 

machine. The size of the search space becomes very large 

as the number of states in the machine increases. The 

size of the search space quickly becomes the limiting 

factor in the size of the class of machines which may be 

learned. An investigation is made of methods to improve 

the performance of the learning system. The application 

of a depth first approach to the development of the 

search space is shown to provide a significant reduction 

in the amount of space required to identify a machine. An 

heuristic estimator is used to guide the depth first 

search and is shown to have a potential for reducing the 

time required to identify the machine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOW LEDGMENTS

When undertaking an endeavor such as this, there are 

invariably people whose assistance is worthy of special 

note. My gratitude goes first to Dr. Dionysios Kountanis 

for setting me on the path of this research and whose 

guidance and infinite patience kept me there. My 

appreciation is also extended to Clark Equipment Company 

for the generous use of their equipment in the 

implementation and documentation of this research. My 

thanks go also to numerous people on the Clark staff for 

assistance in the production of this document. And

finally, my special thanks go to James W. Herrick. 

Without his support I would have never survived the 

ordeal.

Lea F. Fuller

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. 
While the most advanced technology has been used to photograph and reproduce 
this document, the quality of the reproduction is heavily dependent upon the 
quality o f the material submitted.

The following explanation o f techniques is provided to help clarify markings or 
notations which may appear on this reproduction.

1.The sign or “ target” for pages apparently lacking from the document 
photographed is “Missing Page(s)” . I f  it was possible to obtain the missing 
page(s) or section, they are spliced into the film along with adjacent pages. This 
may have necessitated cutting through an image and duplicating adjacent pages 
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an 
indication of either blurred copy because of movement during exposure, 
duplicate copy, or copyrighted materials that should not have been filmed. For 
blurred pages, a good image of the page can be found in the adjacent frame. I f  
copyrighted materials were deleted, a target note will appear listing the pages in 
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed, 
a definite method of “sectioning” the material has been followed. It  is 
customary to begin filming at the upper left hand comer of a large sheet and to 
continue from left to right in equal sections with small overlaps. I f  necessary, 
sectioning is continued again—beginning below the first row and continuing on 
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic 
means, photographic prints can be purchased at additional cost and inserted 
into your xerographic copy. These prints are available upon request from the 
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best 
available copy has been filmed.

University
Micixjfilms

International
300 N. Zeeb Road 
Ann Arbor, Ml 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1323150

FULLER, LEA FERN
AN IMPROVEMENT IN THE PERFORMANCE OF A LEARNING
SYSTEM FOR FINITE STATE MACHINES

WESTERN MICHIGAN UNIVERSITY M.S. 1984

University 
Microfilms

International 300 N. Zeeb Road, Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T A B L E  OF C O N TEN TS

ACKNOWLEDGEMENTS............................................ii

LIST OF FIGURES............................................. iv

Chapter

I. INTRODUCTION..,...................................... 1

Research Goals....................................... 2

Chapter Review....................................... 2

II. REVIEW OF SELECTED LITERATURE...................... 4

III. DEFINITIONS FROM AUTOMATA THEORY................. 16

IV. REVIEW OF KOUNTANIS' LEARNING SYSTEM.............22

Complexity of The Learning System F .............. 36

Size of The Search Space of The Semilattice 44

V. SEARCH METHODOLOGIES............................... 48

Tree Searches....................................... 48

Search Improvements................................ 52

VI. PERFORMANCE IMPROVEMENT OF THE LEARNING SYSTEM..61

Heuristically Guided Search.................. 63

Calculation of The Evaluation Function...........68

VII. IMPLEMENTATION................................   76

Results.............................................. 79

VIII. SUMMARY AND AREAS OF FURTHER RESEARCH........... 86

APPENDIX...................................................   .89

BIBLIOGRAPHY..........  108

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

FIGURE

1. Moore's Simple Experiment............................9

2. Moore's Multiple Experiment..........................9

3. A Finite State Automaton M ..........................17

4. Tabular Representation of Next State Function... .17

5. A State Diagram Representation..................... 18

6 . A Nondeterministic Finite State Automaton........ 19

7. A Deterministic Finite State Machine.............. 21

8 . Moore's Learning System.............................22

9. Kountanis' Learning System...................... ,,..23

10. Goal Machine of Class M(2,2,2)......................30

11. Sample Tree Developed by F(2,2,2)................... ^1

12. Search Space for F(i 2,2).......................... ^5
13. An M2 (1,1) Machine from Figure 12................. 37

14. Breadth First Tree Traversal....................... 49

15. Depth First Tree Traversal......................... 51

16. AND/OR Tree.  ......................................54

17. Depth First Search Tree for F(2 2,2)..............^

18. Summary of Test Runs..............     79

19- Sample Execution 1 of F ............................. 83

20. Sample Execution 2 of F ............................. 84

21. Implausible Machine for (a0)(a1).................. 88

22. Plausible Machine for (a0)(a1).....................88

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER I

INTRODUCTION

A current area of research in artificial 

intelligence is the study of learning, both how humans 

learn and how computers can be endowed with the ability 

to learn. The use of computers to study the learning 

process itself represents an attempt to understand the 

way in which humans learn. The learning ability of a 

computer system may be considered from several different 

perspectives. One is to declare that a system has the 

ability to learn if it can in some way improve its 

performance. This may be done by applying a new method 

for solving a problem or improving an existing one. A 

second approach is to amass large amounts of data on a 

particular subject and then apply this data in the form 

of an expert system. By manipulating rules defined on the 

collected data, such a system has the ability to reach an 

intelligent conclusion when posed a question pertaining 

to the subject about which it is knowledgeable. Yet 

another approach to learning is the area of inductive 

inference. This involves learning general properties of 

a subject based on examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Research Goals

2

In this work, attention is focused on the area of 

inductive inference. The particular application under 

consideration is that of deducing the structure of a 

finite state machine based on its observed behavior. The 

machine may be considered as being contained within a 

"black box" which prohibits the observer from knowing the 

structure of the machine. The inputs to the machine and 

the outputs from the machine are available for study and 

provide the primary means of the observer for deducing 

the structure of the machine. Restrictions will be 

placed on the machine which may be contained in the black 

box to reduce the problem of identification to a solvable 

one. The goal of this research is to study the 

performance of a particular learning system and to devise 

a method for improving its performance.

Chapter Review

Chapter II provides a review of selected literature 

pertaining to the concept of learning structure from 

behavior. Chapter III is a review of finite automata 

theory and provides some basic definitions used 

throughout this work. In chapter IV, the particular 

learning system under consideration is reviewed and the 

groundwork is laid for a discussion of performance 

improvement. Chapter V reverts to a more global level for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

a discussion of different search methodologies and a 

review of selected works in this area. A method for 

improving the performance of the learning system being 

examined using an informed depth first search guided by 

an heuristic is developed in chapter VI. In chapter VII, 

an implementation of the learning system with and without 

the informed depth first search method is discussed and 

the results are presented. Chapter VIII provides a 

summary of this work and areas of further research are 

proposed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER II

REVIEW OF SELECTED LITERATURE

Gold (1967) investigates the problem of learning a 

formal language by examining samples of the language. A 

language is defined to be a set of strings on some finite 

alphabet. A class of languages is defined in which all 

members of the class are defined over the same alphabet. 

Next a method for presenting information to a learner 

about an unknown member of the class of languages is 

defined. At quantized time intervals, a unit of informa

tion about the language is presented to the learner and 

he/she is asked to make a guess as to the identity of the 

language. The class of languages will be considered 

learnable (with respect to the method of presentation of 

information) if there exists an algorithm that can be 

applied by the learner which after some finite time 

allows all guesses to be the same and correct. Two 

methods of presentation are considered. In the first, 

all strings of the language are enumerated and presented 

to the learner in any order. In the second, there exists 

an informant who chooses the order that the strings are 

presented to the learner and who is able to provide data 

as to whether or not a string is in the language. Gold 

determines that the class of context sensitive languages

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is learnable through the use of an informant but not even 

the class of regular languages may be learned if only the 

method of enumerating strings from the language is used.

Biermann, Baum and Petry (1975) study the problem of 

synthesizing a program from a trace of its behavior. A 

computer display system is devised which allows the user 

to view any data structures which have been defined and 

the commands available for performing a calculation. The 

user manipulates commands and their operands through the 

use of a light pen on a screen just as if the calcula

tions were being made on a scratch pad. The display is 

constantly updated to allow the user visibility of the 

results of calculations. While a sample calculation is 

performed by the user, the computer records the sequence 

of steps taken as well as any information which the user 

supplies as a determining factor for some decision made, 

i.e. A is less than B. After one or more examples have 

been recorded, a program is created which performs the 

same calculations. If additional examples are then 

provided which contradict or augment the program already 

defined, the program is refined to accomodate the new 

data. As the development of the program requires a 

search of the possible alternatives which describe the 

observed calculations, the synthesis of non trivial 

programs could command a significant amount of time. 

Pruning techniques are applied to reduce the size of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



search space. A mechanism termed "failure memory" is

implemented which allows the program synthesizer to

remember previous steps in the synthesis which led to

failure and the conditions which were in effect at the 

time. If the same conditions are detected at some other 

stage of the search, the path under consideration is 

dismissed as a failure and is not investigated further. 

The failure memory is "initialized" before the synthesis 

begins by examining the set of sample computations and 

identifying conditions which will lead to a 

contradiction. The failure memory is also updated on a 

dynamic basis as the synthesis proceeds to include any 

failure conditions incurred so far. With the use of a 

pruning technique, the autoprogramming system has proved 

to be a practical tool.

Biermann and Krishnaswamy (1976) provide more 

information on the work done by Biermann, Baum and Petry 

(1975) with regards to the autoprogramming system. The 

computational environment of the user is described and 

the program synthesis technique is shown to be both sound 

and complete. The synthesized program is guaranteed to 

correctly execute the examples provided (soundness) and 

it is shown that every possible program (or its 

equivalent) can be created by the autoprogramming system 

(completeness).

Manna and Waldinger (1975) investigate the roles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



played by a priori knowledge and reasoning in program 

synthesis. Their work proposes that a great deal of

knowledge about the world in general and the specific 

problem to be solved is required by the program 

synthesizer. The ability of the synthesizer to reason is 

central to the process of constructing program. During 

the program construction formation of program branches, 

loops and the handling of statements with side effects 

are given special attention. Manna and Waldinger show 

that if there exists a program which can be modified to 

meet the newly specified needs, the strength of the 

program synthesis method is greatly enhanced. The tactics 

employed by the program synthesizer and the reasoning 

approach both build upon the available knowledge stored 

by the synthesizer in the construction of a program.

The work done by Moore (1956) represents the 

foundation for determining information about the 

structure of a finite state machine from its behavior. 

Moore develops the concept of an experiment as follows: 

The machine under investigation is said to reside within 

a black box, thus the experimenter is prevented from 

directly determining the answer to any questions 

regarding the structure of the machine. This may be 

considered a realistic restriction on the learning 

process. For example, if the object whose structure is 

being investigated is a bomb which may explode if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tampered with, any knowledge of the internals of the bomb 

must be obtained though external observations. After all, 

once the bomb has exploded, nothing more can be learned 

about it. The' experimenter is allowed to apply values 

from the input alphabet of the machine to the black box 

and observe the resulting output. From the observed

behavior of the machine, the experimenter is able to

deduce information about the structure of the machine or 

about some particular state of the machine.

Moore defines two types of experiments which may be 

performed. An experiment is said to be "simple" if only 

one copy of the machine is available. (This also presumes 

that the machine may not be reset to its initial state) . 

The experimenter chooses a sequence of input symbols to 

be applied to the machine. This sequence may be

completely determined before the beginning of the

experiment or it may be created as the experiment 

progresses, allowing the input values to be chosen as a 

result of some previously received output values. Figure 

1 gives a pictorial representation of a simple 

experiment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9
input symbols

Conclusion

output symbols

Sequential
Machine Experimenter

Figure 1. Moore’s Simple Experiment

An experiment is called a "multiple" experiment if 

more than one copy of the machine is available for 

testing. (All copies of the machine are assumed to be 

equivalent and initialized to the same state at the 

beginning of the experiment). The experimenter then sends 

copies of the input sequence to each of the machines and 

receives the corresponding output. Figure 2 gives a 

pictorial representation of a multiple experiment with k 

copies of a machine.

input symbols
input symbols

input symbols

Conclusion

output symbols
output symbols

output symbols

copy
of

mach

1st
copy
of

mach

copy
of

mach

ixperimenter

Figure 2. Moore's Multiple Experiment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

Moore defines several restrictions on the structure 

of the machines to be studied. Each machine is restricted 

to have a finite number of states, a finite number of 

input values and a finite number of output values. The 

output of a machine at each step of the experiment is 

determined solely from the current state of the machine 

and is not dependent on the previous input value. The 

behavior of the machine is strictly deterministic.

Moore investigates the concept of distinguishability

in depth. He proves, in Theorem 2, that it is not

possible to uniquely identify a machine in a black box if 

no bound is imposed on the number of states the machine

may have. The number of input and output values must also

be restricted if the machine is to be identified. Several 

theorems are proven with respect to:

1) The distinguishability of the states within a machine.

2) The distinguishability of two machines from the same 

class of machines.

3) The ability of the experimenter to identify the state 

the machine is in at the end of the experiment.

Moore also investigates the length of an experiment 

required to determine information regarding the internal 

structure of the machine or its current state.

Gill's (1961) investigations based on the work of 

Moore and others further clarifies the problem of state

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



identification. He classifies experiments into categories 

based on how the input sequence is constructed, the 

number of copies of the machine available for testing and 

the ability of the experiment to identify a minimal 

solution.

An experiment is said to be "preset" if the input 

sequence is completely designed in advance and is valid 

regardless of the initial state of the machine. It is 

said to be "adaptive" if the structure of the input 

sequence is dependent on the previously received output 

sequence. A simple experiment is one in which only a 

single copy of the machine is involved whereas a multiple 

experiment utilizes more than one copy of the machine. An 

experiment is called "optimal" if it is the shortest one 

which will yield the desired solution and "regular" if it 

does not guarantee a minimal solution.

Gill proposes a structure called a "successor tree" 

to be used during the process of identifying the initial 

state of a machine. Each level of the tree represents a 

refinement in the solution and is created as a result of 

a new value in the observed input/output sequence of the 

machine. The root of the tree contains a node 

representing the set of all possible states of the 

machine and each successive entry is revised to contain a 

subset of all of the states based on the partitioning 

effect of the input/output values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The two major contributions of Gill’s work are in 

refinements to the distinguishing problem; trying to 

determine which state the machine was in at the beginning 

of the experiment, and the homing problem; determining 

the sequence which will deliver the machine to its home 

state.

Trakhtenbrot and Barzdin (1973) provide an extensive 

development on the analysis of the behavior of finite 

state automata and their synthesis. The behavior of 

different types of automata, both outputless and automata 

with output, are studied. Treatment of the input 

sequences supplied to the machines (and output sequences 

received from the machines) is studied both as finite 

words over the input and output alphabets and w-words 

which represent infinite sequences of values from the 

input and output alphabets. The definition of a language 

which allows the construction of an automaton to model a 

problem is pursued in depth. A precise specification for 

such a language, termed a meta-language, is developed. 

The meta-language I is developed and shown to be as 

expressive as possible, allowing for the greatest 

possible freedom in the definition of the problem without 

endangering the ability to synthesize an automaton to 

model the problem. Trakhtenbrot and Barzdin also address 

the topic of identifying the structure of an automaton 

from its observed behavior. Algorithms are developed for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the identification of a machine within a black box based 

on the different types of experiments which may be 

applied and the restrictions placed on the machine to be 

identified.

Kountanis (1977) defines a learning system which is 

capable of learning the structure of a deterministic 

finite state machine from a class of finite state 

machines. The machines are restricted to have a bound on 

the number of states and a finite set of input and output 

values. The input and output alphabets are the same for 

all machines in a class. The machines are further 

restricted to be deterministic, completely specified, 

connected and to have only one initial state. The 

experiment applied to a machine is simple and the machine 

is assumed to begin the experiment in its initial state. 

The learning system, which itself takes the form of a 

nondeterministic finite state machine, focuses attention 

on the learning portion of the experiment defined by 

Moore, as opposed to the teaching portion. The learner is 

passive and only observes the input/output sequences 

applied to the machine. The learner has no say in 

determining the values of the input sequence. This 

function is the responsibility of the teacher and is not 

investigated in detail. The learning system is proven to 

converge to the machine to be identified provided the 

input/output sequence meets certain necessary and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sufficient conditions. A tree structure similar to that

defined by Gill (1961) is used to represent the

identification process. The tree developed by Kountanis 

differs from that of Gill in that the root of the tree 

represents a machine with only one state and no 

transitions. Each successive level represents the

possible machines which would explain the behavior 

observed so far. This difference in the interpretation of 

the tree structure is due to the nature of the problem to 

be solved. Gill attempts to determine a particular state 

of a machine which meets some criterion whereas Kountanis 

is attempting to identify the structure of the entire 

machine.

Kountanis and Mitchell (1979) evaluate the

complexity of Kountanis' learning system with respect to 

the implementation used. Homomorphic images of the 

learning system are developed in an effort to reduce the 

size of the problem space.

Reibling (1983) extends the learning system defined 

by Kountanis to determine the structure of a probablistic 

automaton from a class of probablistic automata with

stationary transition probabilities. This is accomplished 

by relaxing the restriction that the machines be 

deterministic and the existence of a reset function is 

added to allow the automaton to be reset to its initial 

state. The reset function allows multiple experiments to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



be performed on the machine to provide for the 

computation of probabilities for the state transitions. 

The complexity of the new learning system is investigated 

and is found, as expected, to be more complex than the 

learning system for deterministic machines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER III

DEFINITIONS FROM AUTOMATA THEORY

In this chapter, several definitions about finite 

state automata are provided which are pertinent to this 

research.

A finite state automaton is defined as a system

M(S, I, f, q0 , F)

where

S is a finite, nonempty set of states 

I is a finite input alphabet 

f is the next state function

qp is the initial state of M and is a member of S 

F is a subset of S and is the set of final states

The next state function f is defined as

f : S x I — > S

A sentence x over the alphabet I is said to be accepted 

by M if when the sentence is applied to M, with M

starting in its initial state, the resulting state of M 

is a member of the set of final states F. This may be

represented as

f(q0 ,x) = P, P in F 

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A finite state automaton may be defined by listing 

the states, input alphabet and set of final states and 

then enumerating all of the possible values for the next 

state function. Such a definition is presented in Figure

3. Another method of listing the values for the next 

state function is to create a table, indexed by the 

states of the machine and the values of the input 

alphabet. The entries in the table correspond to the 

values of the next state function. Figure 4 shows such a 

table for the machine defined in Figure 3 .

S = {q0 »̂  1 ̂ f : fU o » a) = %
I = {a , b} f(qQ ,b) = q1

F = {q 1} f(qi,a) = qQ

f (q-| b) = q.,

Figure 3. A Finite State Automaton M

a b

^0 ^0

*1 Qo <11

Figure 4. Tabular Representation of Next State Function

Another means of representing a finite state

automaton is through the use of a state diagram. In this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

type of representation, a directed graph is used to 

depict the structure of the automaton. Each node 

represents a state and is labelled with the name of the 

state. An arc between two nodes, say q and p, with the 

label i, indicates that if the automaton is in state q 

and receives an input value i, control of the machine is 

transferred to state p. Figure 5 shows the state diagram 

of the finite state automaton defined in Figure 3*

By listing the states of an automaton, its input 

alphabet and the set of final states and then enumerating

all of the values of the next state function, one is said

to have defined the behavior of the automaton. In the

same way, a state diagram can be said to define the

structure of an automaton. In the discussion to follow, a 

state diagram will most often be used to define an 

automaton.

A deterministic finite state automaton is a finite 

state automaton for which the next state function f

b

a

Figure 5. A State Diagram Representation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



defines only one possible state as the destination from a 

given state for a given input value.

A nondeterministic finite state automaton is a finite 

state automaton for which the next state function f 

defines a set of states (possibly empty) as the 

destination from a given state for a given input value.

f (q , a) = {p-|,p2J q, Pi , P2 in s » a in I

This allows an automaton M in state q, upon receipt of

the input value a to transfer control to either state p^

or state p2 . Figure 5 depicts a deterministic finite

state automaton and Figure 6 shows a nondeterministic 

finite state automaton.

Figure 6 . A Nondeterministic Finite State Automaton

A finite state machine is an adaptation of a finite 

state automaton in which the concept of a set of final 

states is removed and an output alphabet and output 

function defined. A finite state machine is defined as:

f(q,a) = p, q,p in S, a in I

a . b

a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

M(S, I, 0, f, g, Sq )

where

S is a finite, nonempty set of states 

I is a finite input alphabet 

0 is a finite output alphabet 

f is the next state function 

g is the output function 

Sq is the initial state of M

The next state function f is defined as

f : S x I — > S

The output function g may be defined in one of several 

ways. The value of g may depend solely on the current 

state of M, in which case g is defined as

g : S — > 0

Or, the value of g may depend on the previous state of M 

and the input value received. Then g is defined as

g : S x I — > 0

The latter definition of g will be used throughout this 

work. An example of a deterministic finite state machine 

is presented in Figure 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

Figure 7- A Deterministic Finite State Machine

A finite state machine is referred to as a "state 

transducer" since it converts a sequence of values over 

the input alphabet into a sequence of values over the 

output alphabet.

A deterministic finite state machine is said to be 

connected if for every state q in S, there exists an 

input sequence x such that

f : (qQ ,x) = q

that is, any state of the machine may be reached from the 

initial state given the proper sequence of input values.

A deterministic finite state machine is defined as 

being completely specified if for each state q in S, a 

transition from q is defined for every member of the 

input alphabet I.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER IV

REVIEW OF KOUNTANIS' LEARNING SYSTEM

Kountanis (1977), in his development of a learning 

system, further refines the concept of the experimenter 

defined by Moore (1956). Moore's model of a learning 

system defines a black box containing a finite state 

machine and an experimenter which observes the behavior 

of the machine in the black box. Figure 8 gives an 

illustration of Moore's learning system.

input symbols

Conclusion

output symbols

Sequential
Machine Experimenter

Figure 8 . Moore's Learning System

Kountanis replaces the experimenter by its two major 

components, the teacher and the learning system. The 

teacher is responsible for generating the sequence of 

input values to be submitted to the machine in the black 

box. Both the input supplied to the machine and the 

corresponding output serve as the information supplied to 

the learning system. The .learning system, after receiving 

the entire input/output sequence will produce an exact

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



copy (up to isomorphism) of the machine in the black box, 

provided that the input/output sequence meets certain 

conditions. Kountanis* concept of a learning system is 

shown in Figure 9.

output from m

automaton
input to m

Teacher

Learnin
System

"Black box "

Figure 9. Kountanis' Learning System

The objective of this learning system is to uniquely 

identify (up to isormorphism) a finite state machine from 

a class of finite state machines. The class of finite 

state machines has several restrictions placed on it to 

allow the machine in the black box to be identified. It 

has been proven (Moore 1956) that it is impossible to 

identify a completely unknown finite state machine, (i.e. 

one in which there are no restrictions placed on its 

structure). The class of finite state machines will be 

defined as follows.

Definition 4.1: Define M(p,q,r) to be the class of finite 

state machines with the following characteristics

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

1) All machines in the class are defined over the same 

set of input and output sets with p and q their respective 

cardinalities.

2) There exists a bound r on the number of possible 

states

3) Each machine must be deterministic, completely 

specified, connected and have only one initial state.

Definition 4.2: Let m ^ , a member of the class of machines 

M(p,q,r), be defined as follows

mi = ( ,  I, 0, fi> ®i> ®0i^
where

Si is the set of states of machine mi, cardinality < r 

I is the input set over which every machine of M(p,q,r) 

is defined, cardinality = p 

0 is the output set over which every machine of M(p,q,r) 

is defined, cardinality = q 

fi is the next state function of mi 

gi is the output function of mi 

sqi is the initial state of mi

Several restrictions are placed on the learning system:

1) Only simple experiments will be performed. Only one 

copy of the machine is available for study and it cannot 

be reset to its initial state during the experiment.

2) The learning system does not participate in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

generation of the input sequence for the machine in the 

black box. This function is the responsibility of the 

teacher.

Kountanis* learning system, henceforth referred to as F, 

uses a tree structure during the identification of the 

machine. The root of the tree contains a machine with a 

single state and no transitions emanating from it. As 

each successive input/output pair is received, new 

machines are conjectured which could explain the behavior 

exhibited so far.

The following properties of the semilattice 

developed by the learning system F are stated in this 

work as definitions and where necessary are supported by 

an intuitive explanation. They are developed in full and 

proven by Kountanis in his dissertation. The reader is 

referred to Kountanis (1977) for a more rigorous 

treatment.

Definition 4.3: Let M be a deterministic finite state

machine M = (S, I, 0, f, g, sQ ) defined (perhaps 

partially defined) over the input set I and the output 

set 0. For some state s of the machine M, we say that the 

input/output pair (i,o) in (1x0) is permissible for M in 

state s if and only if either of the following conditions 

is true.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

1) f(s,i) and g(s,i) are both defined and f(s,i) = s' for 

some s' in S and g(s,i) = o.

2) f(s,i) and g(s,i) are not defined.

Definition 4.4: An input/output pair (ifo) in (1x0) is

not permissible for the machine M in state s if and only 

if both of the following are true.

1) f(s,i) and g(s,i) are both defined.

2) s(s,i) ss1 for some s ’ in S and g(s,i) £ o.

The concept of permissibility may be intuitively 

viewed as follows. For a machine M in some state s, an

(1.0) pair is permissible if a transition already exists 

from the state s with the label (i,o) or no transition

yet exists from the state s for the input value i. The

pair (i,o) is not permissible if a transition exists from

the state s with an input label of i but an output label

different than o. This concept is necessary in order to 

prevent a violation of the restriction that the machine M 

is a deterministic machine.

New machines are conjectured for each permissible

(1.0) pair by creating all possible simple extensions of 

existing machines.

Definition 4.5: For two deterministic finite state

machines Mi = (Sp I-p 0-] , f-j, g-| , s01  ̂ anc*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

M2 = (S2 , I2 » °2 » f2 » g2 » s02 »̂ both belonSin6 to the
class of machines M(p,q,r), M2 is said to be a simple 

extension of M-| if and only if conditions 1 , 2 and 3 and

either 4 or 5 listed below are met. For machine Mi in

state s in Si, for the input/output pair (i,o) in (1x0):

1) The pair (i,o) is permissible.

2 ) I2 = I1 U {i} -

3) 02 = 0t U {o} .

4) The machine Mi is isomorphic to a submachine of M2 : M2 

has an additional transition from the state in M2 which 

is the image of the state s in Mi and the label of the 

transition is the pair (i,o). The initial state of 

machine M2 is the image of the initial state of machine 

M 1.

5) The machine Mi is isomorphic to a submachine of M2 : M2 

contains one more state than Mi, M2 contains a transition 

from the state in M2 which is the image of the state s in 

Mi to the new state with a label of the pair (i,o). The 

initial state of machine M2 is the image of the initial 

state of machine Mi.

A more intuitive description of definition 4.5 is 

the following.

1) The input/output pair (i,o) does not violate the 

restriction that the machine is deterministic.

2) The input set of M2 is the same as the input set of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

M-j, or is enhanced by the value of i.

3) The output set of M2 is the same as the output set of

M-|, or is enhanced by the value of o.

4) The machine M2 contains the same number of states as

the machine M-j but a new transition is added from the 

state s (of M-|) to some other state in the machine with 

the label ( i , o ) .

5) The machine M2 has one more state than the machine M-| . 

This new state is reached by a transition from the state 

s (of M^) with a label (i,o).

Note that condition 4 of the above assures that any 

machine is a simple extension of itself at any of its 

states by any (i,o) pair for which the next state and 

output functions are defined. The isomorphism in this 

case is the identity.

For the remainder of this research, the generation 

of simple extensions will be said to be by Rule 1 if the 

new machine is created through condition 4 of definition 

4.5 or by Rule 2 if created through condition 5.

For each machine conjectured, the learning system F 

is said to remember the machine M along with a state s of 

M. The state s is called the remembered state of M and 

represents the current state of M in the processing of 

the input/output sequence received thus far.

To identify the machine contained in the black box,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the learning system uses the following procedure. The 

tree of candidate machines, each of which represents a 

possible solution, is initialized to contain a single 

node called the root. This node represents a machine with 

only one state and no transitions. As each successive

(1.0) pair is received, a new level of conjectural 

machines is added to the tree. For each machine in the 

current level (starting at level 0 with the root), the 

new (i,o) pair is evaluated. If the (i,o) pair is not 

permissible, no further development of this machine is 

done. If the (i,o) pair is permissible, then two cases 

exist. First, there already exists a transition from the 

remembered state of the current machine with the label

(1.0). In this case, the new state of the machine 

indicated by f(s,i) becomes the remembered state of the 

machine and processing of this machine is complete. 

Second, no transition with the label (i,o) exists so all 

possible simple extensions of the machine are generated 

through the application of Rule 1 and Rule 2. Rule 1 

generates all possible simple extensions which contain a 

transition from the remembered state of the current 

machine to all possible states of the machine. Rule 2 may 

generate one machine or none. If the bound on the number 

of states has not yet been reached , a new machine is 

created with an additional state and a transition from 

the previously remembered state to the new state with the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

label (i,o). If the bound on the number of states has

been reached, no new machines are generated through Rule

2 .

A sample of the operation of F is presented for

reference.

Let M(p,q,r) = M(2,2,2)

Let f(2,2,2) be the learnin8 system designed to
learn M(2,2,2)

Let I = {a ,b} , cardinality p = 2

Let 0 = {0,1}, cardinality q = 2

Let the bound on the number of states r = 2

The goal machine to be identified is presented in Figure

10 .

a/0 b/1

b/0

a/1

Figure 10. Goal Machine of Class M(2,2,2)

Let the input/output sequence received =

(ao)(b1)(b0 )(a 1)(a0 )(a0 )

Figure 11 shows the rree structure developed by F for 

learning the goal machire described.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

I I l-Q
f-Q'

CM
CM
CM

l<5

-Q

<3

-Cf
l-Cj

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 

11
. 

Sa
m

pl
e 

Tr
ee

 
D

ev
el

op
ed

 
b

y



There are two types of labels which appear in Figure 

11. The first type has the form (x,y) and represents an 

input to the learning system. Transitions with this type 

of label indicate the control structure of the tree of 

conjectural machines. The second type of label (x/y) is 

used to represent a transition within one of the 

conjectural machines. A transition with this type of 

label is said represent a control of the structure of an 

individual machine. This is referred to as a "local" 

control of the learning system. The arrows at the end of 

global transitions lines (those marked by (x,y) labels) 

indicate the state of the candidate machine remembered by 

the learning system along with the candidate machine.

The connection of two machines by a transition with 

an (x,y) label means that the machine in the lower level 

is an extension of the machine in the higher level. The 

conjectural machines of each level of the tree are simple 

extensions of the machines at the predecessor level.

The successive set of conjectural machines which the 

learning system computes in response to the received 

input/output pairs are listed below. Since each 

conjectural machine has only one initial state, we may 

use the name of the initial state as the name of the 

corresponding machine. Each machine is represented by a 

pair (M,s) where M is the name of the machine and s is 

the name of the remembered state.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Received (i,o) pair Computed conjectural machines
(aO) {(M1,1),(M2 ,3))

(b 1) {(Mi,,4) ,(M5 ,6 ) ,(M7 ,7) , (Mg, 10)}

(bO) {(Mn  ,11) ,(M13,14) ,(M15,15) ,(M17,18)>

(a1) {(Mig,19),(M21,22),(M23,23),(M25,26)}

(aO) {(M19,19),(M23,24)}

(aO) {<M19,19)J

We can see from the example that the only 

conjectural machine which has not been "pruned" from the 

tree is the machine M1g . This conjectural machine is the 

machine to which the learning system converges and is 

identical, up to isomorphism, to the goal machine in 

Figure 10.

It is worth noting that the input sequence may be 

divided into two parts. The head part, consisting of the

(i,o) pairs (aO)(b1)(bO)(a 1) , covers every transition of 

the goal machine. All machines conjectured by F after 

processing the head part are completely specified. The 

remaining (i,o) pairs (a0)(a0 ) form the tail part of the 

sequence and serves to distinguish the goal machine from 

among the completely specified candidate machines.

The previous example only illustrates the 

development of the tree for a particular sequence of 

input/output pairs. It is interesting to study the tree 

which would result if one were to consider all possible

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



values which could be received for a particular class of 

machines. This is useful in evaluating the complexity of 

the search space developed by F. For this example, the 

learning system represented will be F (  ̂ 2 2) which can 

learn any machine from the class of machines M(1,2,2).

Let I = {a}, cardinality = 1

Let 0 = {0,1}, cardinality = 2

Let r = 2, the bound on the number of states

The name of the initial state of each machine will be 

used as the name of the conjectural machine as in the 

previous example. Figure 12 illustrates the entire search 

space for the system F(1 2 ,2)* The successive sets of 

machine state pairs created by F(-| 2 ,2 ) are as foll°ws:

Level 0 - {C Mq ,0)}

Level 1 - {(M1,1),(M2 ,3),(Mi|i5),(M6 ,6)}

Level 2 - {(M? ,8),(Mg ,9),(M11,12),(M13,13),(M15,16>, 

(M1? ,17,M 19,20),(M21 ,21)}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 

12
. 

Se
ar

ch
 

Sp
ac

e 
fo

r 
F



Kountanis proves that the set of all conjectural 

machines of a learning system F forms a semilattice. The 

learning system F is also shown to converge to the goal 

machine provided that the input/output sequence meets the 

following necessary and sufficient conditions.

1) The sequence x is composed of a head part x^ and a 

tail part xt .

2) xh covers all transitions of the goal machine

3) xj. distinguishes each of the machines resulting from

the processing of x^.

Complexity of The Learning System F

In this section, several features of the complexity 

of the semilattice are evaluated and the size of the

search space created by F is examined.

Definition 4.6: The width of the semilattice at a

particular level is the number of conjectural machines at 

that level.

Definition 4.7: The depth of the semilattice at a

particular level is the minimum number of transitions in

a trace from the initial machine to a conjectural machine 

at that level. This is equivalent to the length of the 

sequence of (i,o) pairs received so far.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Definition 4.8: The depth of the semilattice is the depth
of the last level.

Definition 4.9: M.- a is said to denote a conjecturalA 1 J
machine M in the i *̂1 level of the semilattice with j 

states.

Definition 4.10: When enumerating the states of a

conjectural machine, s^ will denote the remembered state 

of M.

Definition 4.11: Let n.̂ (t-, ,t2 ,.. . ,tj) denote the number

of conjectural machines in the i ^  level of the 

semilattice which have j states, where t-| , t2 , •••tj are 

the number of transitions emanating from the 

corresponding states s-p s2 ,...Sj of the machines. 

mj_(ti ,t2 , . . . ,tj) will denote one of these machines. As an 

example, consider the machine from Figure 12,

reproduced below in Figure 13. This is an M2(1,1) 

machine, a representative of the set N2 (1,1).

a /0

aTT

Figure 13. An M2 (1,1) Machine from Figure 12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The value of N2 (1,1) for Figure 12 would be 8

because there are eight such M2 (1,1) machines in level 2 

of the learning system F(i 2 ,2 )*

Definition 4.12: If j denotes the number of states of a

conjectural machine in the i ^  level of the semilattice, 

then min(j) = 1 and max(j) = i + 1.

The value of the minimum is easy to discern by

examining the machine Mq at level 0 of the semilattice. 

The maximum number of states is derivable by the 

observation that at each level at most one state can be 

added if Rule 2 is used to generate the new machine. 

Since the machine Mq contains one state, the maximum for

a machine a level i is i + 1.

Definition 4.13: If T^ denotes the total number of
4* Utransitions of a machine at the r  level of the 

semilattice, then T^ = i.

A simple extension of a machine has one more 

transition than its predecessor. The machine Mq at level 

0 has no transitions and at each level at most one 

transition may be added. Therefore T^ = i.

Definition 4.14: Let T = {t|t is the number of

transitions emanating from a state in n^Ct-] ,t2 ,. •. »tj) J • 

Then,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tmax = raax(T) = (i-j+2) 

tmin = min(T) = 0

The minimum value tm^n is easy to see. For the 

machine Mq has no transitions emanating from its single 

state. Also, a machine created through Rule 2 will have 

one state (the newly added state) with no transitions. 

The maximum, tmax> may be derived by considering that 

each of the conjectured machines is defined to be 

connected. Therefore, every state with the possible 

exception of the remembered state must have at least one 

state emanating from it. To obtain the maximum value, 

substitute the minimum values for all other states of M. 

This yields

0 + 1  + 1  + ... + b^ax +•••  + 1  — i or 

0 + (j-2 ) 1 + tmax = i or 

^max = (i-J+2)

Definition 4.15: The maximum and minimum values for t.j

for all conjectural machines of the form mj^Ct^ ,t2 ,... ,tj) 

is given by

fc1min = 0 

bimax =  ̂b-J + 1)
This is similar to Definition 4.14 with the exception 

that the value of t-| cannot be zero yielding 

timax  ̂ ••• 1 = i

bimax = d-j+1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Definition 4.16: The width of the semilattice at level i
is given by

where Njj is the number of machines at level i with j 

states.

Definition 4.17: If there exists a bound r on the number

of states of each conjectural machine, the depth D of the 

semilattice may be defined as

D = pr

where p is the cardinality of the input set I.

Every conjectural machine in a level of the 

semilattice is a simple extension of a machine in the 

previous level. But a simple extension of a machine M has 

exactly one more transition than its predecessor. 

Therefore, the depth of the semilattice is equal to the 

number of possible different transitions in a completely 

specified, deterministic machine with r states which is 

defined over the input set I and the output set 0. There 

are p possible different transitions emanating from each 

state of a completely specified machine over I. Thus, 

from r states there will be pr different transitions in 

the machine. Therefore, D = pr.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

Definition 4.18: If there exists a bound r on the number

of states allowed for a conjectural machine and the

cardinality of the input set is given by p then

1) for i £ (r— 1) the width of the semilattice is given 

by

i + 1
»i = .1 , Nu

J = 1

where is defined as the number of machines in the

semilattice at level i with j states.

2) for r £ i pr, the width of the semilattice is 

given by

“i =

where Njj is the number of machines in the semilattice at 

level i with j states.

Definition 4.19: For a learning system with input sets I

and 0 having cardinalities p and q respectively, then the 

number of machines a level i of the semilattice having 

one state with no transitions emanating from it is given 

by

ni(0 ,t2 ,tg, . . . ,tj) = (p-t2+1 )qN^_i (12~ 1 »t » • • * >tj) 

where

1 < j < i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

12 ,  ̂ 0

N0 (0) = 1

These machines will be the ones created from machines in 

level (i — 1) through the application of Rule 2. Consider 

such a machine in level i. The remembered state t 1 will 

have no transitions emanating from it, hence t-j = 0. The 

remembered state of the predecessor machine t2 will have 

had a new transition added to the new state t^, hence the 

value of t2-1 in Mi_ 1(t2-1,..•,tj). For each such 

Mi-1(12” 1»ts,..•,tj) machine there are

(p-(t2~ 1))q = (p-t2+1)q possible transitions. This is

given by the fact that the number of transitions possible 

from the state t2 of M̂ _-] is limited by the number of 

input values not yet used to label a transition from that 

state, (p-(t2-1)), multiplied by the number of possible 

output values which may be associated with each input 

value, q. Thus the possible labellings for a transition 

is given by (p-(t2-1))q = (p-t2+1)q« Each of the 

(p-t2+ 1)q transitions may be attainable for each of the 

Ni_i(t2-1,ts,...,tj) machines. This yields the value of 

(p-t2+1 )qNj__i (t2-1 ,tg, • . • ,tj) which must be evaluated for 

all values of j.

Definition 4.20: For a learning system with input sets I

and 0 having cardinalities p and q respectively, then the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

number of machines at level i of the semilattice having 

no state with zero transitions emanating from it (all 

states have at least one transition) is given by

3
Ni (t-j , t2 , . . . , t j ) = y' (p-tk+1 )qN^_i (tk-1 > tk+i ,. . . >tj{_i)

k= 1

where the addition of indices is carried out modulus j

11 , t2 i•••* t j  ̂ 0

1 < j < i

These machines will be the ones created from machines in 

level (i— 1) through the application of Rule 1. Each of 

the machines will have the same number of states as

its predecessor in level (i— 1) but a new transition will 

have been added to the state t-j of M.j_ from some state tk 

of The new transition may carry any of the (p-

tk+1)q labellings. This is derived from the number of 

input values not yet used to label transitions from the 

remembered state tk of Mi„i > (p-(tk-1)) or (p_tk+ 1)

multiplied by the number of possible output values which 

may be applied, q. The number of machines in level (i— 1) 

which may have created the new machines at level i is 

given by -j (tk-1 , tk+1 , . . . , tk_-|) where a machine of the 

form Mi_ 1(tk-1,tk+1,...,tk_1) may have any one of the 

forms

Mi_ 1(11 — 1,t2 ,•••

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

Mi_i (t2“ 1 1 j  • • • >̂ *| ̂

M ^ _ 1  —  1 » ^ i  > • • • » ^ j „ “i )

Each of these machine may take any of the (p-tk+1)q 

labellings yielding

Ni(ti ,t2 , . . . ,tj) = (p-t.j + 1)qNi_-j (11 -1 , . . . ,tj) +

( p—12+1 )qN^_'] (t g - 1 ^ 1 ̂
• • • • • • •

(p— 4j + 1 ) Q _ •] ̂ ̂ j “ ̂ i^i t • • • »kj_i)

j= ^ 1 (p—tĵ +1)qN^_^ (tĵ -1 ,tĵ +-| , . . . , tk-1 ̂ 
k= 1

where the addition of the indices is carried out with 

modulus j arithmetic because the configured machines have 

j states numbered from 1 to j .

Size of The Search Space of The Semilattice

To understand the need for an improvement in the 

performance of the learning system F, it is useful to 

examine the size of the search space created by the 

semilattice. It is not possible to determine the exact 

size of a problem space unless the class of machines to 

be solved is known and the input/output sequence for a 

given machine is known. However, some information can be 

determined as to the maximum size of the search space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This is directly applicable to the performance of F since 

in order to determine the goal machine, F must

essentially examine all of the candidate machines in the 

search space.

First to be investigated is the rate at which the

semilattice can grow.

In order to determine the growth rate of the 

semilattice, it is necessary to determine how many 

conjectural machines can be generated from a single 

machine if the largest possible growth rate is assumed.

The number of descendants of a machine M is dependent on

the (i,o) pair received. If the (i,o) pair is not 

permissible for the machine M in its remembered state, no 

successors are generated. If a transition already exists 

from the remembered state of M with a labelling of (i,o), 

then one machine is generated (a copy of the current 

machine). If no transition exists with the label (i,o), 

then two cases exist

1) The machine M does not yet contain the maximum number 

of states allowed (j < r). In this case, j machines will 

be added by adding a transition from the remembered state 

to each of the j states of M (by Rule 1). In addition, 

one machine will be generated by Rule 2.

2) The machine M contains the maximum number of states 

allowed (j = r). In this case, only Rule 1 may be used to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

generate successors. There are r new machines created by 

adding a transition from the remembered state of M to 

each of the r states of M.

The maximum number of descendants possible for each 

machine upon the receipt of a new (ifo) pair is then 

given by r. This leads to an absolute worst case 

complexity of the number of machines at level i of the 

semilattice of r1 . This could only be the case if at each 

level of the semilattice, each machine generated r 

successors. In reality, this will never be the case. 

Initially, Mq only contains one state. At each successive 

level, a maximum of one state may be added to a machine 

therefore, a machine with r states could not exist before 

level (r — 1). However, this worst case value allows us to 

establish an upper bound on the size of the search space 

created by the semilattice.

The maximum depth of the semilattice has already 

been established as D = pr. This is the level at which 

all machines are completely specified. After this level, 

no new machines may be generated. A machine may be 

retained if it successfully accepts the tail portion of 

the input/output sequence or it may be "pruned" from the 

semilattice if the (i,o) pair represents a nonpermissible 

transition. At level pr, the maximum number of machines 

which may have been created is represented as follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47
1 machine Mg, level 0

r machines at level 1

r2 machines at level 2

• • • • •

rpr machines at level pr

This yields a total of 1 + r + r2 + ... + rpr or

pr

I " k
r 

k=0

which may be expressed as

1 _ rpr+1

1 - r

One can easily see that the size of the search space 

grows exponentially with respect to the constraints 

placed on M(p,q,r). The size of the search space quickly 

becomes the determining factor in limiting the the class 

of machines for which the learning system may be 

implemented. It is for this reason that the rest of this 

research is dedicated to attempting to find a method to 

reduce the size of the search space which must be 

examined in an effort to improve the performance of the 

learning system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER V

SEARCH METHODOLOGIES

In this chapter, two types of search will be 

examined. Both types of search are applicable to 

searching a tree structure such as the semilattice 

developed by the learning system F. The study of search 

methodologies is presented in an effort to devise 

possible ways to improve the performance of the learning 

system.

As each successive input/output pair is received by 

F, a new level in the tree of conjectural machines is 

created. All possible machines are developed until the 

one which describes the behavior of the goal machine is 

identified. This is roughly equivalent to having all of 

the possible machines already defined and then searching 

through them to find the one which matches the goal 

machine. If a method exists for minimizing the amount of 

search done, the method can be converted for use in 

minimizing the development of the tree of conjectural 

machines.

Tree Searches

One method of searching a tree structure for a 

particular node is called the breadth first search. With 

this approach, all of the nodes of the tree at one level

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

are developed or searched before any of the nodes in a 

succeeding level. For the tree depicted in Figure 14, the 

nodes would be developed by a breadth first search in the 

sequence A, B, C, D, E, F, G.

Figure 14. Breadth First Tree Traversal

The breadth first search is advantageous in that it 

is a conservative approach. If a goal node exists in the 

tree, the breadth first search is guaranteed to find it 

even if the depth of the tree is infinite or effectively 

infinite. If the goal node is likely to be found high in 

the tree, a breadth first search may be a good choice. 

Because it develops all of the nodes at one level before 

moving on to the next one it can be very wasteful, 

particularly if the tree is very broad but shallow or if 

the goal node is not very likely to occur high in the 

tree. In general, the worst case expected for the 

performance of a breadth first search is said to be of 

order N, denoted 0(N), where N is the number of nodes in 

the tree. This implies that in the worst case, N nodes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

will be expanded before a solution is found. In the case 

of the semilattice, a breadth first search would be 

expected to expand the worst possible number of nodes. A 

solution cannot exist in the semilattice before level pr 

as the goal machine is defined to be completely specified 

and the semilattice must be expanded to level pr before 

all machines are completely specified. This requires the 

expansion (worst case) of

pr

k=o

nodes.

Another method of searching a tree is the depth 

first search. Starting at the root of the tree, only one 

successor branch is pursued. At each successive level, 

one branch of the tree is chosen and pursued. This 

process continues until the search reaches the last level 

of the tree, or some other restriction is used to limit 

the search if the depth of the tree is infinite or 

effectively infinite. If a solution has not been found 

and the search reaches the bottom of the tree, it backs 

up to the previous level and investigates another 

alternative node. For the tree depicted in Figure 15, if 

the convention is to examine the left child of a node 

before the right, the nodes would be developed in the 

sequence A, B, D, E, C, F, G.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

Figure 15. Depth First Tree Traversal

This method can yield a solution more quickly than a 

breadth first search, however, it is not guaranteed to 

find the shortest solution in the tree. The search 

terminates after the first solution has been found. This 

may be considered an aggressive yet dangerous type of 

approach. Without a limit to the depth of the search, it 

may continue infinitely. The worst case performance of 

the depth first search is said to be of order N, denoted 

0(N) where N is the number of nodes in the tree. The 

worst case performance results when the only solution in 

the tree is found in the last branch of the tree 

examined. In application to the tree of the semilattice, 

this worst case is no worse than the breadth first 

search. In the best possible case, the search will 

terminate with the first completely specified machine 

found which accepts the entire input/output sequence. 

This occurs by level pr. The search is guaranteed to 

terminate because the input/output sequence is of finite

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

length. If a machine is located by a depth first search 

which accepts the entire input/output sequence, it is 

guaranteed to be a solution that is isomorphic to the 

goal machine. This is true because the sequence in 

input/output pairs is constrained to contain a head part 

which covers all transitions of the goal machine and a 

tail part which uniquely distinguishes the goal machine 

from the set of all possible completely specified 

machines. This analysis would seem to imply that the

application of some type of depth first search to the

development of the semilattice would yield an improvement 

in the performance of the learning system.

Search Improvements

In an attempt to reduce the amount of time and/or 

space required by a search, there are basically two

approaches which may be taken. One is to reduce the size

of the search space and the other is to reduce the number 

of elements examined (through some type of improvement on 

the search method).

To actually reduce the size of the search space, it 

may be possible to redefine the problem to be solved in 

different terms such that the size of the new search 

space is smaller than the original one. An example of 

this is the mutilated chessboard problem.

Suppose two diagonally opposed corner squares .are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53
removed from a standard 8 X 8 square chessboard. Can 
31 rectangular dominoes, each the size of exactly 
two squares be so placed as to exactly cover the 
remaining board ?

If the search space is defined to contain the

configurations which may be obtained by placing dominoes

on the mutilated chessboard, the search space is very

large. If, however, one observes that every dominoe

placed on the board must cover both a black and a red

square, and that the squares removed from the corners are

both of the same color, the answer becomes obvious. The

search was avoided altogether.

Probably the most interesting means of improving the

efficiency of a search procedure is through the use of an

heuristic. Some knowledge about the domain of the problem

is brought to bear to reduce the amount of searching

done. The meaning of "heuristic" is not well agreed upon.

However, in the context of reducing the amount of search

to be done, the following definition will suffice.

Heuristic: A piece of knowledge capable of
suggesting actions to follow or implausible ones to 
avoid. (Lenat 1982)

Using an heuristic to guide a search has received much

attention. Two types of search which easily demonstrate

the use of an heuristic are those done on adversary game

trees and graph searches.

An adversary game tree is a structure used in game

playing systems to model the decisions which may be made

by two opponents making alternate moves. All possible

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

choices in the game are known, there is no element of 

chance as in a card game. Adversary game trees are 

usually constructed using an AND/OR tree. The tree is 

drawn from one players perspective with nodes 

representing that players moves drawn as OR nodes, and 

his/her opponents moves drawn as AND nodes. Figure 16 

shows a typical AND/OR tree.

Figure 16. AND/OR Tree

Moves are evaluated by assigning a value to each of the 

nodes which represents the relative value of that move to 

the player. The player whose perspective is represented

by the tree if often referred to as MAX and nodes which

are favorable to him/her are given high values and nodes 

which are favorable to his/her opponent, named MIN are 

given low values. Often positive values are used for MAX 

and negative values are used for MIN. The tree may then

be searched to the tip nodes and the best possible move

determined. This can prove to be a major undertaking (or 

an impossible one) if the search space is large which it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

often is.

The Alpha-Beta pruning technique eliminates the 

unnecessary exhaustive search done on an AND/OR tree to 

evaluate each of the nodes. A tip node is evaluated as 

soon as it is created and its value is backed up to the 

preceeding nodes if appropriate. If a node which has been 

evaluated thus far represents the best possible choice 

which could be made, no more nodes at successive levels 

need to be investigated. A lower bound is established on 

MAX’S nodes, said to be an alpha value, and represents 

the worst that MAX could do. An upper bound is 

established on MIN's moves, said to be a beta value, and 

indicates the best move that MIN could make. The bounds 

on the backed-up values may be revised but it may be 

noted that

1) The alpha value of MAX nodes (including the start 
node) can never decrease, and

2) The beta values of the MIN nodes can never 
increase.

Because of these constraints, the following rules for 

discontinuing the search may be stated.

1) Search can be discontinued below any MIN node 
having a beta value less than or equal to the alpha 
value of any of its MAX node ancestors. The final 
backed-up value of this MIN node can then be set to 
its beta value. This value may not be the same as 
that obtained by a full search, but its use results 
in selecting the same best move.

2) Search can be discontinued below any MAX node 
having an alpha value greater than or equal to the 
beta value of any of its MIN ancestors. The final

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56
backed up value of this MAX node can then be set to 
its alpha value.

During search, the alpha and beta values are computed as

follows:

1) The alpha value of a MAX node is set equal to the 
current largest final backed-up value of its 
successors.

2) The beta value of a MIN node is set equal to the 
current smallest final backed-up value of its 
successors.

Much research has been done in the analysis and 

possible improvements of the Alpha-Beta pruning 

technique. One work of interest is that of Nau (1983)* 

Nau investigates the effect of the depth of the search 

made as related to the quality of the decision made as a 

result of the search. It is mathematically shown, in this 

work, that an increase in the depth of the search does 

not necessarily improve the quality of the decision made.

In fact, there exist a class of searches which as the 

depth of the search is increased, the quality of the 

decision can actually worsen to the point of being 

equivalent to a random choice. This condition is referred 

to as "pathology" and is caused by the fact that as the 

search depth increases, the likelihood of all children of 

a node having the same value increases (using some static 

evaluation function to determine the value of the nodes). 

This effectively reduces the choice of which path to 

follow to a random one. The types of searches for which 

this condition was found to exist are those used to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

evaluate game trees, such as the previously described 

AND/OR tree.

A classic algorithm for graph search procedures is 

called A as developed by Nilsson (1971)* In the algorithm 

A, each arc of the graph is assigned a finite cost. The 

cost of a path in the graph is the sum of the costs of

each arc in the path. As each node in the graph is

developed, it is assigned a cost g(n) which represents 

the minimal-cost path located so far from the start node 

to the node n. Also associated with each node is an 

estimated cost h'(n) of the minimal-cost path from the 

node n to a goal node. The cost of the path from the

start node to a goal node which passes through the node n

is represented by

f(n) = g(n) + h 1(n)

As each node is visited, the value of f(n) is computed.

To choose the next node in the graph to search, the node

with the smallest value of f(n) is used. It has been

proven by Nilsson (1971) that if sufficient constraints

are placed on the heuristic h'(n), the algorithm A is

guaranteed to terminate and provide the cost of the

minimal-cost solution path. The restriction placed on the

heuristic h'(n) is that h' must satisfy the admissibility

condition which states:

The heuristic search estimate h* is called 
admissible if for every node n in the search graph 
G, h'(n) < h(n)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

where h(n) is the actual cost of the minimal-cost path
from a node n to a goal node. In other words, h'(n) must

underestimate the true value of h(n).

Bagchi and Mahanti (1983) as well as others have

scrutinized algorithm A and proposed enhancements. Two

other algorithms are compared to Nilsson's and the

behavior of each is studied when the admissibility

condition is relaxed. Other, less stringent, restrictions

on the heuristic estimator are examined. These are

defined below.

A heuristic function h' will be called nonmisleading 
if the following condition holds. Let m and n be any 
two nodes in the search graph such that m -i s and n 
i s where s is the start node. Let P-j be any path 
from s to m and Pp be any path from s to n. Let 
C(Pj^) be the cost of the path P^. Then

CCP.,) + h '(m) < C(P2 ) + h'(n) => C(P-|) + h(m) < C(P2 ) + K(n)

An heuristic is defined to be proper as follows

1) A path P1 is a subpath of path P2 if every arc in 
Pi is present in Pp.

2) A heuristic h' is proper if the following 
condition holds. Let m and n be any two nodes in the 
search graph, such that m i s and n i s, where s is 
the start node. Let Pi be any path from s to m and 
P2 any path from s to n , such that Pi is not a 
subpath of Pp and Pp is not a subpath of P ^  Let 
C(P^) be the cost of the path P^. Then

C(P-|) + h 1 (m) < C(P2 ) + h ' (n) => C(P1) + h(m) < C(P2) + h(n)

Wilkins (1982) provides a distinction between a 

parameter controlled search and a knowledge controlled 

search. A search is said to be parameter controlled, if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

the heuristic used in the search uses a parameter which 

is not related to the problem to terminate or direct the 

search. An example of such a parameter would be the depth 

limit imposed on a depth first search. A search is said 

to be knowledge controlled if knowledge of the problem is 

employed as the controlling factor in limiting or

directing the search. An example of this is a threshold 

value which must be exceeded before an alternative is 

considered a viable move and further exploration is

terminated. The calculation of the threshold value would 

be dependant on the problem domain.

The application of an heuristic to prune a branch 

from a tree is another method of reducing the search 

space (as in the Alpha-Beta technique). If it can be

determined, without an exhaustive search, that a node in

the tree cannot possibly lead to a solution (or that a

better choice already exists), the node is pruned from

the tree. No further development of the node or its

successors takes place. Pruning techniques usually 

require a great deal of knowledge of the problem being 

solved before they can be applied. If a branch of the 

tree is pruned by a not-so-well informed heuristic, a 

solution to the problem might never be found !

With regard to improving the performance of the

learning system F, it is believed that the application of 

an informed depth first search which uses an heuristic to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

choose which node in the tree to develop next will result 

in an increase in the size of the class of machines 

M(p,q,r) which may be learned by F for a given 

implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER VI

PERFORMANCE IMPROVEMENT OF THE LEARNING SYSTEM

It is believed that the application of a depth first 

approach to the development of the tree of candidate 

machines will improve the performance of the learning 

system F. The depth first approach has two advantages 

over the breadth first method. First, the goal machine 

may be located faster, that is with the development of 

fewer candidate machines. In the breadth first approach, 

the learning system is guaranteed to create all 

conjectural machines up through level pr. (This is the 

level at which all of the machines in the tree are 

completely specified.) In the semilattice with a depth of 

D = pr, there may be as many as

conjectural machines. The average number of machines 

created is the same as the worst case. All of the 

machines through level pr are developed before any 

attempt is made to identify the goal machine. In the 

depth first approach, only one branch of the tree is 

developed at a time. The best possible performance would 

be achieved when the goal machine exists at the end of

pr

k=0

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62
the first branch of the tree to be developed. This would 

require developing only (worst case) r machines at each 

level for pr levels, for a total of pr(r) machines. In 

the worst case, every branch of the tree would be

developed, locating the goal machine in the last branch 

of the tree developed. However, the worst case in the 

depth first approach is the same as the average case in 

the breadth first approach. Therefore, a depth first 

approach can do no worse than a breadth first approach 

and may yield a significant improvement. Because fewer 

machines are likely to be conjectured, the time to

identify the machine in the black box will be less.

The second way that the depth first approach can 

improve on the breadth first method is that fewer

machines need to be remembered by the learning system at 

any given time. As only one branch of the tree is

developed at a time, the maximum number of machines to be 

remembered is pr(r). When a branch of the tree is proven 

to not contain a goal machine, all machines in that 

branch of the tree may be "forgotten" by the learning

system, reducing the amount of space required to

represent the semilattice.

As the semilattice has been proven to converge to a 

goal machine, we know that a goal machine exists in the 

semilattice. The breadth first approach is guaranteed to

locate the goal machine. Can the same be said of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



,63
depth first approach? The answer is yes as shown below.

1) The depth of the semilattice is finite, attaining a 

depth D = pr. The depth first development is guaranteed 

to proceed to level pr before a goal machine can be 

identified as the goal machine, constrained to be a 

completely specified machine, could not occur higher in 

the tree than level pr.

2) The input/output sequence is of finite length. The 

head part identifies all completely specified machines 

and the tail part uniquely identifies (up to isomorphism) 

the goal machine from the set of completely specified

machines. The length of the head part is pr and the

length of the tail part is guaranteed to be no greater 

than pr.

3) Therefore the depth first approach is guaranteed to 

terminate because of the finite length of the 

input/output sequence. If the depth first method 

identifies a machine which accepts the entire 

input/output sequence, the machine is guaranteed to be 

isomorphic to the goal machine because the input/output

sequence is constrained to identify the goal machine from

the class of machines M(p,q,r).

Heuristically Guided Search

To choose the order in which the branches of the 

tree are developed, an heuristic will be used to guide

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the depth first search. Because the search does not make 

its choice at random, it is called an informed depth 

first search. By choosing the branch of the tree which is 

most likely to lead to the goal machine, the number of 

conjectural machines developed will be kept to a minimum, 

hence reducing the time required to identify the machine 

in the black box. The heuristic to be used will be 

referred to as the "greatest number of descendants" or 

GND. It is expected that the machine with the greatest 

number of descendants will have the best chance of 

leading to a goal machine. This procedure develops the 

fullest branch of the tree first. If this proves

unsuccessful, then the next fullest branch of the tree is 

investigated. The procedure for the development of the 

tree of candidate machines using the GND heuristic to 

guide the depth first search is as follows.

1) At each level of the tree accept a new (i,o) pair. If 

there are no more input/output pairs a solution has been 

found. Otherwise, prune all conjectural machines for

which the (i,o) pair is nonpermissible from the

remembered state.

2) Next, apply an evaluation function E which calculates 

the number of descendants to each of the conjectural

machines in the tree at the current level.

3) Choose the machine with the largest value of E and 

develop this machine. That is, add all possible simple

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65
extensions of the machine to the tree. In the event of a 

tie, one possible resolution is to choose the first 

machine generated (the left most offspring).

4) If a machine cannot be expanded, delete that machine 

from the tree and choose the machine with the next 

highest value of E. If all machines at a level have been 

exhausted without finding a solution, back up to the 

previous level and continue with the next possible 

machine at that level.

The application of this method to the search space 

illustrated in Figure 11 would result in the following 

sequence of machines being generated. Each machine is 

named using the name of its initial state. The pair (M,s) 

indicates a conjectural machine M and its remembered 

state s.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66
Input Level Machines

0 {(M0,0)}
(a, 0)

(b, 1) Choose M-|

2 {(M4 ,4),(M5 ,6 )}

(bf 0) M/j pruned, choose M^ 

3 {(Min,11),(M13,14)}

( a , 1) M-|i pruned, choose M ^  

4 {(Mig,20),(M21,22)}

(a, 0) 
(a, 0)

M i g accepts, choose M-j g 

accepts, choose M^g 

End of inputs, goal machine = M-jg

Only 9 conjectural machines are developed using the 

depth first approach as opposed to the 15 developed by 

the breadth first approach. Figure 17 illustrates the 

tree developed by F (2 2 2) usin6 the informed depth first 

approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

-Q,-Q

•Q <3-o<3

l-Q

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re
 

17
. 

^e
pt

h 
F

ir
s

t 
Se

ar
ch

 
Tr

ee
 

fo
r 

F



Calculation of The Evaluation Function

68

In this section, several methods for calculating the 

evaluation function E are examined and one is selected as 

being more feasible to implement than the others.

The first method of calculating the number of 

descendants of a machine is the direct application of the 

functions developed by Kountanis (1977). See Definitions 

4.19 and 4.20 in this work for a definition of these 

functions. For a machine at level i of the semilattice, 

to calculate the total number of descendants, one can 

calculate the number of simple extensions, thus 

determining the number of descendants in level i+1 . Next, 

for each machine in level i+1, calculate all possible 

extensions. Continue this process until the number of 

descendants in level pr, the last level of the 

semilattice, are known. The sum of all these values would 

be the total number of descendants of the machine at 

level i. This method has several drawbacks. One is that 

the configuration for each machine must be known in order 

to determine the number of simple extensions possible. 

More specifically, one must know the number of states of 

the machine, the number of transitions from the 

remembered state and the labels on all transitions from 

the remembered state. Another problem is that the entire 

input/output sequence must be known at the first level of 

the tree in order to know the configurations of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

descendants of each machine (some machines may be pruned 

from the tree because of nonpermissible (i,o) pairs). In 

order to evaluate the total number of descendants of each 

machine, as much work must be done as in the development 

of the entire search tree when no evaluation function is 

applied. Because of this, an exhaustive evaluation of 

descendants to the last level of the semilattice is 

rejected as being too expensive and resulting in no 

savings of either time or space.

The next method of calculating the number of 

descendants of a machine involves defining a generating 

function which is equivalent to the recursive formulas 

presented in Definitions 4.19 and 4.20. A generating 

function g is a single quantity which represents an 

entire sequence of values such as

g(z) = aQ + a-|Z + a2z2 + ... = Y. anz0
n>0

By evaluating the function g for successive values of z,

G is said to generate the sequence. If such a function 

exists for the formulas of Definitions 4.19 and 4.20, it 

would allow the calculation of the number of descendants 

of a machine without the exhaustive development of the 

intervening machines.

One example of a generating function is the 

polynomial identity

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



70

1 - xn+1
1 + X +  X 2  + ... + xn

X

This was used earlier to calculate the total number of 

machines in the search space of the learning system F.

Another application of generating functions is in 

the solution of recurrence relations. Suppose we are 

given the following recurrence relation an = an_-j + an_2 

with the initial conditions ag = 0, a-j = 1 . We want to 

find a generating function of the form

To do this, we substitute the recurrence relation for

an_ixn + nxn . Summing the terms, this can be rewritten as

g( x) = aQ + a<| x + n

every term in g(x) except aQ and a^, which gives anxn

00
g (x) - a0 - a-i x = £  anxn

n=2

00

n-2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

= x(g(x)-aQ) + x2g(x)

Setting aQ = 1 and a^ = 1 we have

g(x) — 1—X = x(g(x)-1) + x2g(x)

So

g(x)(1-x-x2 ) = 1

or

g(x) = 1/(1-x-x2 )

To locate a generating function for calculating the 

number of descendants of a machine involves solving the 

following recurrence relations

ni(1,t2>tg,...,tj) = (p— t2+1)QNj__i(t2 — 1 ft^» • • • »tj)

where

1 < j < i

^2 * ,.••,tj  ̂ 0

N0 (0) = 1

and

j
(11 , t2 > • • • ) t j) = V  (P~tj^+1 ) QN^_ 1 (tj£-1 , tĵ + -j , . . . , t|̂ _ i )

k=1

where the addition of indices is carried out modulus j 

t“l *t2 » * * ■ »tj  ̂ 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



These recurrence relations do not represent a well 

behaved series such as 1 + x + + ... + xn but instead

are dependant on the configurations of the machines at 

each level of the tree. It is not possible to calculate 

the number of machines at level pr without knowing the 

configurations of the machines at level pr-1. An attempt 

was made to evaluate these functions for several levels 

of the recursion in the hope that some type of behavior 

could be observed which would better lend itself to the 

discovery of an equivalent generating function. The 

following shows the result of expanding the recurrence 

relations to 4 levels. The notation used is that 

presented in Definition 4.11, N represents the total 

number of machines in the tree developed thus far.

Level 0 N = Nq (0)

Level 1 N = N-j (1) + N^O.1)

Level 2 N = N2 (2) + N2 (0,2) + N2 (1,1) + N2 (0,1,1)

Level 3 N = N3 (3) + N3 (0,3) + N3(0,1,2) + ^(0,2,1) +

N3(1,1,1) + N3(0,1,1,1)

Evaluating each of the above using the cardinalities of 

the input and output sets p and q yields

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73
Level 0 N = 1 (by definition)

Level 1 N = pq + pq

Level 2 N = (p-1)q(pq) + (p-1)q(pq) + 2pq(pq) + pq(pq)
= 5(pq)2 - 2qpq 

Level 3 N = (p-2)q[(p-1)qpq] + (p-1)q[(p-1)qpq] +

pq(p-1)qpq + (p-1)q2pqpq +

3pqpqpq + pqpqpq 

= pq(q2(p-1)(5P-3)) + 4(pq)3

It is fairly obvious that determining a generating 

function for calculating the number of machines at a 

given level of the tree is far from trivial. Research in 

this direction was abandoned.

A simpler approach does exist which has neither the 

complexity of attempting to determine a generating 

function nor the time and space required to perform an 

exhaustive evaluation of the number of descendants of a 

machine. It is this approach which will be applied. 

Rather than trying to find a perfect estimator of the 

total number of descendants, we will content ourselves 

with a local estimator which gives an indication of which 

machine is likely to have the most descendants even 

though the exact number of descendants is not known. This 

estimator will calculate the number of descendants of a 

machine at the next level of the tree only. The number of 

possible simple extensions of a machine for a given (i,o)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74
pair is readily available. One needs to know only the

following:

1) The number of states of the machine

2) The bound on the number of states

3) The transitions from the remembered state

By computing only the number of descendants at the

next level, the heuristic becomes a worse estimator of

the value of a path but should still provide a fairly 

reasonable estimate. The more descendants a machine at 

level i has at level i+1, the more descendants it is

likely to have at level i+2, i+3> ••• pr• Assuming the

next (i,o) pair is known, determine if the (i,o) pair is 

permissible. If not, the machine is pruned from the tree. 

If the (i,o) pair is permissible, then the number of 

descendants of a machine M is calculated as follows:

NDj„j = j + k

where

ND^ = Number of descendants of machine M

j = The number of states of the machine M

k = 0 if r-j = 0

1 if r-j > 0

where r is the bound on the number of states

The cardinality of the input and output sets is not 

a factor because the (i,o) pair is known and the new 

transitions will have only one possible labelling, namely

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

(i,o).
The first term, j, calculates the number of machines 

generated through the application of Rule 1. A new

transition, with the label (i,o), is added to each of the

j states of the machine M. The second term, k, calculates 

the number of machines generated through the application 

of Rule 2. If the number of states j of the machine M has 

not yet reached the bound on the number of states

possible, one machine is generated. If the bound has been 

reached, no machines are generated.

It is expected that the application of an

informed depth first search using the greatest number of 

descendants heuristic will improve the performance of the 

learning system and increase the size of the class of 

machines M(p,q,r) which F can learn for a given 

implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER VII

IMPLEMENTATION

The learning system F is implemented using both 

the breadth first development of the tree and the 

informed depth first search. Two variations of the 

informed depth first search are included to test

different methods for the resolution of ties between 

machines which have the same number of descendants. One 

form of tie resolution chooses the leftmost descendant of 

a machine and the other chooses the rightmost descendant. 

In addition, a depth first search which uses no heuristic 

is included to measure the validity of the greatest 

number of descendants heuristic. The implementation is 

written in Pascal and run on a Digital Equipment

Corporation PDP 11/70. Several criterion are used to 

evaluate the relative performance of each method.

1) The execution time required to identify the goal

machine is calculated for each method. The test runs were 

made in a controlled environment (single user) to ensure 

the integrity across multiple runs (by eliminating 

distortions in execution time caused by other users of 

the machine). Even though the test runs were made in a 

stable environment, the runtime statistics can only

provide a rough evaluation of the performance. The 

program must still compete with system activities. Some

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77

distortion can be caused by the time required for access 

of disk storage. Also, the elapsed runtime is expressed 

in ticks (60 ticks = 1 second) which is a rather broad 

estimator considering the number of machine instructions 

which may be executed in 1 tick.

2) The total number of machines generated is calculated. 

This indicates the amount of search required and is 

directly proportional to the time required to identify a 

machine.

3) The largest number of machines in existence at one 

time is computed. This gives a measure of the space 

requirements of each method.

4) The number of machines which are deleted, or 

"forgotten" by the learning system is also computed. This 

indicates the relative merit of the depth first 

technique. Comparison of this value between the depth 

first methods indicates a measure of the validity of the 

GND heuristic.

Some special features of the implementation are as 

follows:

1) The entire input/output sequence is read in and 

stored internally to the program before any of the 

methods are run. In a real application, all of this 

information might not be available at the beginning of 

the experiment. However, for the purpose of evaluating 

the different search techniques, this is valuable to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78

improve the accuracy of the comparison. The cost of
accepting the input/output sequence is constant across 

all three methods.

2) No error checking is performed. Only when a condition 

is relevant to the logic flow of the program is the value 

of a variable checked. This is done to keep the size of 

the code to a minimum. On PDP 11 architecture, a task 

image (the executable program image) has a limited size. 

Both the instruction space and the data space of the

program reside within the task image. This provides a 

boundary on the amount of space available for the

development of the tree of conjectural machines. There 

are ways of obtaining a larger data space but these were 

not pursued. For this research, the space within the task

image is sufficient for measuring the relative space

needs of the different search techniques.

The following summarizes the results of the

implementation. For a complete listing of the program 

code used in the implementation, the reader is referred 

to the Appendix.

Most of the analysis was performed on the class of 

machines M(3 ,3 ,3)• For machines with 2 or fewer states, 

the search space is so small that the performance of all 

of the methods is indistinguishable and the runtime 

statistics are inconclusive. For machines with 4 or more

states, the problem space becomes too large for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

development of valid test data without the use of an 

implementation for the teaching portion of the 

experimenter. The size of the search space for machines 

with 3 states is sufficiently large to test the merits of 

the different search methods.

Figure 18 provides a summary of the statistics of 

four test runs.

Largest Total
Run1
time

Run2
time

Run3
time

Run4
time

#
mach.

space
(bytes

BFS 45 45 45 45 266 25872

DFS 48 40 23 12 21 2058

IDFS (left) 50 41 24 12 18 1764

(right) 50 51 14 26 18 1764

Figure 18. Summary of Test Runs 

Results

All three of the depth first methods provide a 

significant improvement over the breadth first method in 

the amount of space required to identify the goal 

machine. As shown in Figure 18, the breadth first method 

requires an order of magnitude more space than the depth 

first methods. For this implementation, the largest class 

of machines which could be learned using a breadth first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80
search was M(3»3*3)« Using a depth first search, the 

largest class of machines which could be learned was 

expanded to M(6 ,6 ,6 ). The space needs of all of the depth 

first methods are essentially equivalent, requiring only 

enough space to develop one branch of the tree at a time.

As expected, the time required to develop the search 

space using the breadth first method is usually the 

largest. However, the amount of time required by the 

depth first methods is not consistently less than that of 

the breadth first search. This is because the number of 

machines which must be developed is highly dependant on 

the location of the goal machine within the tree. When 

the goal machine resides in the first portion of the tree 

to be searched, the time required is reduced by a 

significant amount. However, if the goal machine is in 

the last portion of the tree to be searched, the time 

required increases and approaches that of the breadth 

first search. This performance supports the anticipated 

behavior.

The informed depth first search technique does not 

provide the expected improvement over the uninformed 

depth first search. Restricting the scope of the 

evaluation function to a local one has a limiting effect 

on the merit of the evaluation function. However, this is 

not necessarily the only reason for the observed behavior 

of the informed depth first search. To fully understand

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

the limited benefit of the GND heuristic, it is necessary
to study the growth pattern of the tree of candidate

machines. The tree is found to grow in a very symmetric

fashion. After level r, most of the conjectural mahines 

contain the maximum number of states. Thus, the 

evaluation function returns the same value for all 

machines in that level. This reduces the choice of the 

next machine to develop to an arbitrary one, the same as 

in the uninformed search. Also, the machines at any level 

tend to be pruned from the tree, as a result of 

nonpermissible (i,o) pairs, in a symmetrical fashion. 

This further reduces the distinction of the number of

descendants of a machine.

The most important decision as to which machine to 

search first occurs at level 1 of the tree. The root node 

has only two descendants, regardless of the size of the 

class of machines to be learned. One machine is generated 

through the application of Rule 1 and one through the 

application of Rule 2. If the "correct" half of the tree, 

the one containing the goal machine, is chosen first at 

level 1, the time required to locate the goal machine is 

greatly reduced. If not, then the search proceeds to 

develop the half of the tree which does not contain the 

goal machine before returning to develop the half of the 

tree which does contains the solution. Figure 19 shows a 

sample execution of F when the machine to be identified

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i 8 2

lies in the first half of the tree searched. Figure 20 

shows a sample execution when the goal machine is in the 

second half of the tree searched.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For the class of machines M(3,3>3)
Using heuristic 1 : Leftmost son with greatest value of 
With an input/output sequence of: (a0)(b0)(a1)(b1)(c0) 
(a2)(c2 )(c1)(b2)(c1)(a0 )(a2)(a1)(c2 )(b0 )(b1)(b2 )(b0 )

SEARCH METHOD: Breadth First Search
Elapsed Run Time: 46 ticks
Total Machines Developed: 467
Largest Number of Machines at One Time 264
At 98 bytes per machine, total space = 25872 bytes
Number of machines deleted 310

MACHINE 1118

a b c

1 2,0 2,2 2,0
2 3,2 3,0 1,1
3 3,1 1,1 2,2

SEARCH METHOD: Informed Depth First Search
Elapsed Run Time: 13 ticks
Total Machines Developed: 111
Largest Number of Machines at One Time 18
At 98 bytes per machine, total space = 1764 bytes
Number of machines deleted 97

MACHINE 321

a b c

1 2,0 2,2 2,0
2 3,2 3,0 1,1
3 3,1 1,1 2,2

SEARCH METHOD: Depth First Search
Elapsed Run Time: 12 ticks
Total Machines Developed: 111
Largest Number of Machines at One Time 21
At 98 bytes per machine, total space = 2058 bytes
Number of machines deleted 91

MACHINE 321

a b c

1 2 , 0 2 , 2 2 , 0
2 3,2 3,0 1,1
3 3,1 1,1 2,2

Figure 19. Sample Execution 1 of F

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For the class of machines M (3,3,3)
Using heuristic 1 : Leftmost son with greatest value of 
With an input/output sequence of: (aO)(bO)(a 1)(b1)(cO) 
(a2)(c2 )(c1)(b2 )(c1)(a0 )(a2)(a1)(c2 )(b0)(b1)(b2 )(b0)

SEARCH METHOD: Breadth First Search
Elapsed Run Time: 45 ticks
Total Machines Developed: 467
Largest Number of Machines at One Time 264
At 98 bytes per machine, total space = 25872 bytes
Number of machines deleted 310

MACHINE 13**9

a b c

1 1,0 2,0 3,0
2 2,1 1,1 3,1
3 3,2 1,2 2,2

SEARCH METHOD: Informed Depth First Search
Elapsed Run Time: 50 ticks
Total Machines Developed: 443
Largest Number of Machines at One Time 18
At 98 bytes per machine, total space = 1764 bytes
Number of machines deleted 432

MACHINE 1297

a b c

1 1 ,o 2,0 3,0
2 2,1 1,1 3,1
3 3,2 1,2 2,2

SEARCH METHOD: Depth First Search
Elapsed Run Time: 49 ticks
Total Machines Developed: 443
Largest Number of Machines at One Time 21
At 98 bytes per machine, total space = 2058 bytes
Number of machines deleted 426

MACHINE 1297

a b c

1 1,0 2,0 3,0
2 2,1 1,1 3,1
3 3,2 1,2 2,2

Figure 20. Sample Execution 2 of F

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



85
Where the informed and uninformed depth first 

searches both choose the same path, the execution time of 

the informed method is slightly higher due to the 

additional processing required in the calculation of the 

evaluation function. This increase in time however is 

minimal and does not represent a serious limitation of 

the informed method.

In summary, the depth first strategy for developing 

the tree of candidate machines provides a significant 

improvement in the amount of space required to learn a 

finite state machine from a class of finite state 

machines. The time required for a depth first search is 

usually no more than that of a breadth first search and 

can be substantially less.

The GND heuristic, at least the local version used 

in this implementation, does not provide a significant 

improvement over the arbitrary choice of which machine to 

develop made by the uninformed depth first search. The 

application of a GND heuristic with a larger scope may 

provide better results but the symmetry of the tree of 

candidate machines will restrict any such heuristic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER VIII

SUMMARY AND AREAS OF FURTHER RESEARCH

This research investigates an improvement of the 

performance of a learning system for finite state 

machines. Through the application of a depth first 

approach to the development of the search space, the size 

of the class of machines which can be learned, for a 

given implementation, is doubled. An heuristic estimator 

is used to guide the depth first search in its choice of 

which machine to expand at each stage of the process. The 

depth first approach is found to provide a significant 

savings in the amount of space required to learn a finite 

state machine from a class of finite state machines. The 

heuristic estimator can provide an improvement in the 

amount of time necessary to identify the goal machine 

depending on the location of the goal machine in the 

search space.

There are several areas of research that this thesis 

does not address or that are an extension of the work 

done here.

1) Can a method of calculating the total number of 

descendants of a machine be found which does not require 

an exhaustive development of all subsequent machines yet 

may be computed in a reasonable amount of time, thus 

making the GND heuristic a more valuable estimator ?

86

Reproduced with permission of the copyright owner. Further reproduction  prohibited without permission.



8 7

2) Is there a better heuristic than the greatest number 

of descendants which could be used to determine which of 

the conjectural machines to develop first ?

3) Can an heuristic be defined which correctly determines 

at the first level of the tree, which half of the tree 

contains the goal machine ?, If so, the unnecessary 

search performed when the GND heuristic chooses 

incorrectly could be eliminated. A pruning heuristic 

which could evaluate a conjectural machine and determine 

that it cannot possibly lead to a goal machine is one 

such approach. One suggestion along this line of 

reasoning is to evaluate the entire input/output sequence 

before developing any conjectural machines to identify 

the characteristics which lead to a contradiction. If a 

machine exhibiting these characteristics is detected, 

there would be no need to develop it further. An example 

of this is that if the same input value occurs 

consecutively in the input/output sequence with different 

output labels, then the machine which accepts the string 

must have at least two states and the transition upon 

receipt of the first (i,o) pair must lead to a different 

state. For an illustration of this, consider Figures 21 

and 22. For the string (a0)(a1), the machine in Figure 21 

is ruled out while the machine in Figure 22 is still a 

feasible candidate for further development.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 21. Implausible machine for (a0)(a1)

a/0

Figure 22. Plausible Machine for (a0)(a1)

An heuristic of this type is similar to the failure 

memory process developed by Biermann, Baum and Petry 

(1975) in their work on program synthesis.

4) Rather than improving the search technique employed, 

can the structure of the semilattice be redefined by some 

other structure which would reduce the amount of search 

needed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



.APPENDIX

PROGRAM LEARN (INPUT, OUTPUT, INFILE, OUTFILE);

(# This program is an implementation of the learning system 
F as defined by Dionysios Kountanis. The breadth first 

development of the tree of candidate machines is performed 
and then two different depth first methods are used to 
develop the tree of candidate machines for a performance 
comparison. *)

TYPE
10 VALS = ARRAY [1.-73 OF CHAR;

CONST

Maximum
Maximum

MAXP = 4
MAXQ = 4
MAXR = 4; (*
MAXIO = 32; (*
MAX_LEV =32; (#
ZERO = 0;
INPUT_VALS = IO_VALS('a', 
OUTPUT_VALS = I0_VALS('0' 
BLANK = ' ';
NOT COMP = -1;

(* Maximum cardinality of input set 
(# Maximum cardinality of output set 

Maximum number of states for M(p,q,r)
length of I/O sequence 2(pr) 
level in tree of machines pr

*)
*)
*)
*)
*)

* b 1 •d
14 i •f' , 

*5 1
? g •); 
•6 ')

TYPE
I0_PAIR = RECORD

INPUT : CHAR;
OUTPUT : CHAR;
END;

MACH_PTR = "MACHINE;
MACHINE = RECORD

NUM_SMPL_EXT : INTEGER;
NUM_STATES : INTEGER;
NUM_DESC : INTEGER;
REMEM_ST : INTEGER;
INIT_ST : INTEGER;
PARENT : MACH_PTR;
RIGHT_NBR : MACH_PTR;
LEFT_NBR : MACH_PTR;
DEVELOPED : BOOLEAN;
NUM TRAN : ARRAY [1..MAXR] OF INTEGER;
TRANS STATE : ARRAY [1..MAXR,1..MAXP] OF INTEGER; 
TRANS~LABEL : ARRAY [1..MAXR,1..MAXP] OF I0_PAIR; 
DESCEN : ARRAY [1..MAXR] OF MACH_PTR;
END;

SEARCH_METHOD = (BFS, IDFS, DFS) ;
D A T A  F T !  F  -  T F Y T -

TIM_ARR = ARRAY [ 1 . .8] OF INTEGER;

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

VAR
T M F T T  F nilTFTI F  • DATA F T I F -
INFILE^NAME, 0UTFILE_NAME PACKED ARRAY [1..20] OF CHAR; 
IO_LIST : ARRAY [1..MAXI0] OF IO_PAIR;
CUR_LEVEL, MAX_LEVEL : INTEGER;
P, Q, R : INTEGER;
10 LEN : INTEGER*
TOT_MACH, LARG_MACH, CUR_MACH, DEL_MACH : INTEGER; 
RUN_TIME_STRT, RUN_TIME_END : INTEGER;
NEXT_INIT : INTEGER;
LIST HEAD : ARRAY [ZERO..MAX_LEV] OF MACH_PTR;
LIST_TAIL : ARRAY [ZERO..MAX_LEV] OF MACH_PTR;
ROOT : MACH_PTR;
SEARCH_TYPE : SEARCH_METHOD;
GOAL_MACH : MACH_PTR;
MORE_TO_DO : BOOLEAN;
S_TIME : TIM_ARR;
HEUR_TYPE : INTEGER;
SRCH_STRT, SRCH_END : INTEGER;
SEARCHES : ARRAY [1..3] OF SEARCH_METHOD;

(* This procedure will read in the configuration for the
class of machines M(p,q,r) which is to be learned. *)

PROCEDURE GET_CONF;

BEGIN

SEARCHES[1] := BFS;
SEARCHES[2] := IDFS;
SEARCHESC3] := DFS;
WRITE ('Input file: ');
READLN (INFILE_NAME);
IF (INFILE_NAME = ' EX ') THEN

MORE_TO_DO := FALSE 
ELSE 

BEGIN
WRITE ('Output file: »);
READLN (OUTFILE_NAME);
WRITE ('Starting search method (1-3).' ’);
READLN (SRCH_STRT);
WRITE ('Ending search method (1-3): ');
READLN (SRCH_END);
WRITE ('Type of GND heuristic (1-3): ');
READLN (HEURJTYPE);
WRITELN;

RESET (INFILE, INFILE_NAME);
REWRITE (OUTFILE, OUTFILE_NAME);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

READLN (INFILE, P) 
READLN (INFILE, Q) 
READLN (INFILE, R) 
MAX_LEVEL := P * R

END;

END; (* GET_CONF #)

(# Get cardinality of input set *) 
(# Get cardinality of output set *) 
(# Get maximum number of states *)

(* This procedure will read in the entire sequence of 
input,output pairs representing the behavior of the 
machine to be identified. This data is stored in an 
internal array IO_LIST to be used by the different tree 
development methods. Although this data may not be 
available at the beginning of an experiment in a real 
experiment, is made available for this implementation 
to minimize the run time discrepancies of the different 
methods *)

PROCEDURE GET_IO_SEQ;

VAR
I : INTEGER;

BEGIN
I := 1;
WHILE NOT EOF(INFILE) DO

BEGIN
READLN (INFILE, I0_LIST[I].INPUT, IO_LIST[I].OUTPUT);
I : = I + 1 ;

END;
10 LEN •- I - 1 •

END;~(*GET_IO_SEQ'*)

(* This procedure will print the configuration of the class 
of machines for which a candidate machine is being learned. 
The behavior of the machine in the black box, represented 
by a sequence of (i,o) values which serve as inputs to the 
learning system are also printed. #)

PROCEDURE PRINT_CONFIG;

VAR
I, OUT_COUNT : INTEGER;

BEGIN
PAGE (OUTFILE);
WRITELN (OUTFILE, 'For the class of machines M(' , P:1,

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



92
Q:1 * ' R :1 ')') •

WRITELN (OUTFILE,’'Input file: INFILE NAME,
' Output file: ', 0UTFILE_NAME7;

WRITELN (OUTFILE, 'Using heuristic ', HEUR_TYPE:1);
CASE HEUR_TYPE OF

1 : WRITELN (OUTFILE,
'Leftmost son with greatest value of E ');

2 : WRITELN (OUTFILE,
'Rightmost son with greatest value of E ');

3 : WRITELN (OUTFILE,
'Greatest value of E with least transitions from', 
' remembered state');

END;
WRITE (OUTFILE, 'With an Input,Output Sequence: ');
OUT_COUNT := 31; (* Length of above literal *)
FOR I := 1 TO 10_LE N DO

BEGIN (* Just for pretty print *)
WRITE (OUTFILE, '(*, IO_LIST[I].INPUT:1, ',',

IO_LIST[I].OUTPUT:1, ')');
OUT COUNT := OUT_COUNT + 5;
IF TOUT_COUNT > 70) THEN 

BEGIN
0UT_C0UNT := ZERO;
WRITELN (OUTFILE);

END;
END;

WRITELN (OUTFILE);
END; (* PRINT_CONFIG *)

(# This procedure prints the statistics for a tree 
development method *)

PROCEDURE PRINT_STATS;

VAR
I, MACH_SZ : INTEGER;

BEGIN
WRITELN (OUTFILE);
WRITELN (OUTFILE);
WRITELN (OUTFILE);
WRITE (OUTFILE, 'SEARCH METHOD: ');
CASE SEARCH_TYPE OF

BFS : WRITELN (OUTFILE, 'Breadth First Search');
IDFS : WRITELN (OUTFILE, 'Informed Depth First Search');
DFS : WRITELN (OUTFILE, 'Depth First Search');
END;

WRITELN (OUTFILE, 'Elapsed run time: ',
RUN_TIME_END-RUN_TIME_STRT:3, ' ticks'); 

WRITELN (OUTFILE, 'Total Machines Developed’, TOT_MACH:4);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

WRITELN (OUTFILE, 'Largest Number of Machines at One Time',
LARG_MACH:4);

MACH_SZ := SIZE (MACHINE);
WRITELN (OUTFILE, 'At ', MACH_SZ:3, ’ bytes per machine',

', required a total', ' space of ', 
MACH_SZ*LARG_MACH:5, ' bytes');

WRITELN (OUTFILE, 'Number of Machines Deleted ',
DEL_MACH:4);

END; (* PRINT_STATS *)

(* This procedure will print out a machine 

PROCEDURE PRINT_MACHINE (MACH : MACH_PTR);

VAR
I, J, K, L : INTEGER;
PT_VAL : CHAR;

BEGIN
W R T T F T  N f O U T F T I F f -

WRITELN (OUTFILE,’'MACHINE ', MACH".INIT_ST:4); 
WRITELN (OUTFILE);

');
I

5
', INPUT_VALS[I]:1, ' '); 

');

WRITE (OUTFILE, ’
FOR I := 1 TO P DO 

WRITE (OUTFILE,
WRITELN (OUTFILE)
WRITE (OUTFILE, '
FOR I := 1 TO P DO 

WRITE (OUTFILE,
WRITELN (OUTFILE);
FOR I := 1 TO MACH''.NUM_STATES DO 

BEGIN
WRITE (OUTFILE, ' ' , 1 : 1 , '  ') ;
FOR J 1 TO P DO 

BEGIN
PT_VAL := BLANK;
K := ZERO;
FOR L := 1 TO MACH".NUM TRAN[I] DO

IF (MACH".TRANS_LABELll,L].INPUT = INPUT_VALS[J]) 
THEN

K := L;
IF (K > ZERO) THEN

PT_VAL := MACH". TRANS__LABEL[I,K]. OUTPUT;
IF (PT__VAL = BLANK) THEN 

WRITE (OUTFILE, ' ')
ELSE

WRITE (OUTFILE, ' ', MACH".TRANS_STATE[I,K]:1 ,
•,', MACH".TRANS_LABELCI,K].OUTPUT:1);

END;
WRITELN (OUTFILE);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94
END;

END; (# PRINT_MACHINE #)

(# This is a system defined procedure which returns the 
system time. *)

PROCEDURE GETTIME (VAR S_TIME : TIM_ARR);
NONPASCAL;

(# This function will construct a time value from the ticks 
and seconds portion of the system time for use in 
determining the elapsed run time of each of the search 
methods. *)

FUNCTION MAK_TIME( S_TIME : TIM_ARR):INTEGER;

BEGIN
GETTIME (S_TIME);
MAK_TIME := (S_TIME[6]#60) + (S_TIME[7])j

END;

(* This procedure will return a pointer to the goal machine. *) 

PROCEDURE FIND_GOAL (VAR MACH : MACH_PTR);

BEGIN
MACH := LIST_HEAD[MAX_LEVEL];

END; (* FIND_GOAL *)

(* This procedure will clean up the tree structure developed. 
All space used by machines of the tree is released. *)

PROCEDURE CLEANUP (VAR MACH : MACH_PTR);

VAR
I : INTEGER;
T_MACH : MACH_PTR;

BEGIN
IF (MACH'\NUM_DESC = ZERO) THEN 

DISPOSE (MACH)
ELSE

BEGIN
FOR I := 1 TO MACH''. NUM DESC DO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95
CLEANUP (MACH".DESCEN[I]); 

DISPOSE (MACH);
END;

END; (* CLEANUP *)

(# This procedure will add a machine to the list of machines 
for the level specified. A linked list of machines is kept 
for each level of the tree to allow easy access to the 
machines at that level without having to trace from the 
root of the tree to locate a particular machine. #)

PROCEDURE ADD_TO_LIST (MACH : MACH_PTR; LEVEL : INTEGER);

BEGIN
IF (LIST_HEAD[LEVEL] = NIL) THEN 

BEGIN
LIST_HEAD[LEVEL] := MACH;
LIST_TAIL[LEVEL] := MACH;

END
ELSE

BEGIN
MACH".LEFT_NBR := LIST_TAIL[LEVEL];
LIST_TAIL[LEVEL]".RIGHT_NBR := MACH;
LIST_TAIL[LEVEL] := MACH;

END;
END; (* ADD_TO_LIST #)

(* This procedure will remove a machine from the list of 
machines in the specified level of the tree. A linked 
list of machines is kept for each level of the tree to 
allow quick access to a machine in a specified level of 
the tree. *)

PROCEDURE REM_FRM_LIST (MACH : MACH_PTR; LEVEL : INTEGER);

VAR
T_MACH : MACH_PTR;
HEAD : BOOLEAN;

BEGIN
u p  A n  . _ p  A T o p .

IF (LIST_HEAD[LEVEL] = MACH) THEN
BEGIN

LIST_HEADCLEVEL] := MACH".RIGHT_NBR;
IF (LIST_HEAD[LEVEL] <> NIL) THEN 

LIST_HEAD[LEVEL]".LEFT_NBR := NIL;
HEAD := TRUE;

END;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96
IF (LIST_TAIL[LEVEL] = MACH) THEN 

BEGIN
LIST_TAIL[LEVEL] := MACH".LEFT_NBR;
IF (LIST_TAIL[LEVEL] <> NIL) THEN 

LIST_TAIL[LEVEL]".RIGHT_NBR := NIL;
END

ELSE
IF NOT HEAD THEN 

BEGIN
T_MACH := LIST_HEAD[LEVEL];
WHILE (T_MACH <> MACH) DO

T_MACH := T_MACH".RIGHT_NBR;
T MACH".LEFT_NBR".RIGHT_NBR := T_MACH".RIGHT_NBR; 
T_MACH".RIGHT_NBR".LEFT_NBR := T_MACH".LEFT_NBR; 

END;
MACH".RIGHT_NBR := NIL;
MACH".LEFT_NBR := NIL;

END; (* REM_FRM_LIST *)

(# This procedure will create a new machine and initialize 
all fields »)

PROCEDURE CREATE_MACH (VAR MACH : MACH_PTR);

VAR
I, J : INTEGER;

BEGIN
NEW (MACH);
WITH MACH" DO 

BEGIN
NUM_SMPL_EXT := NOT_COMP;
NUM_STATES := ZERO;
NUM_DESC := ZERO;
REMEM_ST := ZERO;
INIT_ST := ZERO;
PARENT := NIL;
RIGHT_NBR := NIL;
LEFT_NBR := NIL;
DEVELOPED := FALSE;
FOR I := 1 TO R DO 

BEGIN
NUM_TRAN[I] := ZERO;
DESCENCI] := NIL;
FOR J := 1 TO P DO 

BEGIN
TRANS STATE[I ,J] := ZERO;
TRANS__LABEL[ I,J].INPUT := BLANK; 
TRANS_LABEL[I,J].OUTPUT := BLANK;

END;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

END;
END;

END; (# CREATE_MACH #)

(# This procedure initializes the run time statistics before 
the invocation of each method. The tree of candidate 
machines is initialized to contain the root machine #)

PROCEDURE INITJ5TATS;

VAR
I : INTEGER;

BEGIN
DEL_MACH := ZERO;
FOR I := ZERO TO MAX_LEV DO 

BEGIN
LIST_HEAD[I] := NIL; 
LIST_TAIL[I] := NIL; 

END;

(* Create the root of the tree #)

CUR_LEVEL := ZERO;
CREATE_MACH (ROOT);
ROOT".INIT_ST := 1;
NEXT INIT := 2;
ROOT~.REMEM_ST := 1;
ROOT".NUM_STATES := 1;
TOT_MACH := 1;
CUR_MACH := 1;
LARG_MACH := 1;

(* Add root to list of machines at current level *) 
ADD TO_LIST (ROOT, CUR_LEVEL);

END; T* INIT_STATS #)

(* This procedure will maintain the counts of total machines 
in existence and the largest number of machines so far. 
(Also the current number of machines in existence). #)

PROCEDURE INC_COUNTS;

BEGIN
TOT_MACH := TOT_MACH + 1;
CUR MACH := CUR_MACH + 1;
IF TCUR MACH > LARG MACH) THEN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

LARG_MACH := CUR MACH; 
END; (# INC_COUNTS *7

(# This procedure will set up control to be at the next level 
of the tree. Current level is not allowed to exceed the 
maximum level. #)

PROCEDURE NEXT_LEVEL (VAR IO_PTR : INTEGER);

BEGIN
IF (CUR_LEVEL < MAX_LEVEL) THEN 

CUR_LEVEL := CUR_LEVEL + 1;
IO_PTR := IO_PTR + 1;

END; (* NEXT_LEVEL *)

(# This procedure will remove a descendant machine from the 
parent machine. #)

PROCEDURE DEL_SON (PARNT, SON : MACH_PTR);

VAR
I, J : INTEGER;

BEGIN
I := ZERO;
REPEAT

I := I + 1;
UNTIL (PARNT''.DESCENEI] = SON);
FOR J := I TO PARNT''. NUM_DESC-1 DO

PARNT'' .DESCEN[J] : = PARNT''. DESCENT J+1 ] ;
PARNT''. DESCENCPARNT''.NUM DESC] := NIL;
PARNT''. NUM_DESC := PARNT*'. NUM_DESC - 1;

END; (* DEL_SON *)

(* This procedure will delete a machine from the tree. A 
fatal error is declared if the machine to be deleted has 
any descendants. *)

PROCEDURE DELETE_MACH (VAR MACH : MACH_PTR);

VAR
PARNT : MACH_PTR;

BEGIN
PARNT := MACH^.PARENT;
DEL SON (PARNT, MACH);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

DISPOSE (MACH);
DEL_MACH := DEL_MACH + 1; 
CUR MACH := CUR_MACH - 1; 

END; T# DELETE_MACH #)

(* This procedure will add a transition from the remembered 
state of the machine to the specified state with a label 
using the given input,output values. *)

PROCEDURE ADD_TRAN (MACH : MACH_PTR; INPUT, OUTPUT : CHAR;
NEW_ST : INTEGER);

VAR
NUM_T : INTEGER;

BEGIN
WITH MACH" DO 

BEGIN
NUM_T := NUM_TRAN[REMEM_ST] + 1;
NUM_TRAN[REMEM_ST] := NUM_T;
TRANS_LABEL[REMEM_ST,NUM_T].INPUT := INPUT;
TRANS_LABEL[REMEM_ST,NUM_T].OUTPUT := OUTPUT; 
TRANS_STATE[REMEM_ST,NUM_T] := NEW_ST;
REMEM_ST := NEWEST;

END;
END; (* ADD_TRAN #)

(# This procedure will copy one machine to another. Only the 
configuration of the machine is copied and not the 
interrelationships between machines in the tree structure. *)

PROCEDURE COPY_MACH (OLDM : MACH_PTR; VAR NEWM : MACH_PTR);

VAR
I, J, NUM : INTEGER;

BEGIN
WITH NEWM" DO 

BEGIN
NUM_STATES := OLDM".NUM_STATES;
PARFNT •- nr DM-
REMEM_ST := OLDM".REMEM_ST;
INIT_ST := NEXT_INIT;
NEXT_INIT := NEXT_INIT + NUM_STATES;
FOR I := 1 TO NUM_STATES DO 

BEGIN
NUM__TRAN[I] := OLDM".NUM TRAN[I ] ;
FOR J := 1 TO NUM TRAN[17 DO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100
BEGIN

TRANS STATE[I,J] := OLDM".TRANS_STATE[I ,J];
TRANS LABEL[I,J].INPUT :=

OLDM".TRANS_LABEL[I,J].INPUT; 
TRANS LABEL[I,J].OUTPUT :=

OLDM".TRANS_LABEL[I,J].OUTPUT;
END;

END;
END;

NUM := OLDM".NUM_DESC + 1;
OLDM".NUM_DESC := NUM;
OLDM",DESCEN[NUM] := NEWM;

END; (* COPY_MACHINE *)

(* This procedure applies the static evaluation function E 
to a machine to calculate the number of descendants a 
machine can have by creating simple extensions of the 
machine. *)

PROCEDURE EVALUATE (MACH : MACH_PTR);

VAR
E, L : INTEGER;

BEGIN
E := MACH".NUM_STATES;
IF (E < R) THEN 

E : = E + 1 •
MACH".NUM_SMPL_EXT := E;

END; (* EVALUATE *)

(* This function will determine if the specified (i,o) pair 
is permissible for the given machine in its remembered 
state. If a transition already exists from the remembered 
state with the (i,o) pair for a label, this fact is 
returned along with the state specified by the transition. *)

FUNCTION PERMISS (MACH : MACH_PTR; INPUT, OUTPUT : CHAR;
VAR TRAN_ALREADY : BOOLEAN;
VAR NEW_ST : INTEGER):BOOLEAN;

VAR
R_ST, I, NUM_TRAN : INTEGER;
STOP : BOOLEAN;

BEGIN
PERMISS := TRUE;
TRAN ALREADY := FALSE;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



101
NEW_ST := ZERO;
R_ST := MACFr .REMEM_ST;
NUM TRAN := MACH''. NUM_TRAN[ R_ST] ;
IF TNUM_TRAN > ZERO) THEN 

BEGIN
STOP FALSE;
I : = 1 ’
WHILE ((NOT STOP) AND (I <= NUM_TRAN)) DO 

BEGIN
IF (MACH''. TRANS_LABEL[R_ST, I] .INPUT = INPUT)
THEN

IF (MACH''. TRANS_LABEL[R_ST,I].OUTPUT = OUTPUT) 
THEN 

BEGIN
NEW__ST := MACH''.TRANS_STATE[R_ST,I]; 
TRAN_ALREADY := TRUE;
STOP := TRUE;

END
ELSE

BEGIN
PERMISS := FALSE;
STOP := TRUE;

END;
I := I + 1;

END;
END;

END; (* PERMISS *)

(* This procedure will is used by the depth first development 
techniques to determine which of the machines at a level 
to develop first. If the informed depth first search 
method is being used, the (leftmost) machine with the 
largest value of the static evaluation function E will be 
returned. If the depth first method is being used, the 
first (leftmost) machine will be returned. *)

PROCEDURE CHOOSE_MACH (I0_PTR, LEVEL : INTEGER; VAR BEST :
MACH_PTR; VAR TRAN : BOOLEAN;
VAR N_ST : INTEGER);

VAR
MACH, T_MACH : MACH_PTR;
MAX_E, NEW_ST, MIN_T, R_ST : INTEGER;
TRAN_ALREADY : BOOLEAN;

BEGIN
BEST := NIL;
IF (SEARCH_TYPE = IDFS) THEN

BEGIN
MAX_E := ZERO;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102
MIN_T := P + 1;
MACH := LIST_HEAD[LEVEL];
WHILE (MACH <> NIL) DO 

BEGIN
T_MACH := MACH".RIGHT_NBR;
IF ((MACH".DEVELOPED) OR (NOT PERMISS 

(MACH, IO_LIST[IO_PTR].INPUT,
10 LIST[IO_PTRJ.OUTPUT, TRAN_ALREADY, NEW_ST))) 

THEN 
BEGIN

REM_FRM_LIST (MACH, LEVEL);
DELETE_MACH (MACH);

END
ELSE

BEGIN
IF (MACH".NUM_SMPL_EXT = NOT_COMP) THEN 

EVALUATE (MACH);
CASE HEUR TYPE OF

1 : IF IMACH".NUM_SMPL_EXT > MAX_E) THEN
BEGIN

MAX_E := MACH".NUM_SMPL_EXT;
BEST := MACH;
TRAN := TRAN_ALREADY;
N_ST := NEW_ST;

END;
2 : IF (MACH".NUM_SMPL_EXT >= MAX_E) THEN

BEGIN
MAX_E := MACH".NUM_SMPL_EXT;
BEST := MACH;
TRAN := TRAN_ALREADY;
N_ST := NEW_ST;

END;
3 : IF (MACH".NUM_SMPL_EXT >= MAX_E) THEN

BEGIN
R_ST := MACH".REMEM_ST;
IF (MACH".NUM_TRAN[R_ST] < MIN_T) 
THEN 

BEGIN
MAX_E := MACH".NUM_SMPL_EXT;
BEST := MACH;
TRAN := TRAN_ALREADY;
N_ST := NEW_ST;
MIN_T := MACH".NUM_TRAN[ R_ST]; 

END;
END;

END;
END;

MACH := T MACH;
END;

END
ELSE (# Assume DFS *)

BEGIN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

MACH := LIST_HEAD[LEVEL];
WHILE ((MACH <> NIL) AND (BEST = NIL)) DO 

BEGIN
T MACH := MACH".RIGHT_NBR;
IF ((MACH".DEVELOPED) OR (NOT PERMISS 

(MACH, IO_LIST[IO_PTR].INPUT,
IO_LIST[IO_PTR].OUTPUT, TRAN_ALREADY, NEW_ST)))

THEN
BEGIN

REM_FRM_LIST (MACH, LEVEL);
DELETE_MACH (MACH);

END
ELSE

BEGIN
BEST := MACH;
TRAN := TRAN_ALREADY;
N_ST := NEW_ST;

END;
MACH := T_MACH;

END;
END;

END; (* CHOOSE_MACH *)

(# This procedure will create a duplicate of one machine at 
the specified level and set the new remembered state to 
the one indicated. *)

PROCEDURE DUPLICATE (MACH : MACH_PTR; LEVEL, NEW_ST : INTEGER);

VAR
NEW_MACH : MACH_PTR;

BEGIN
CREATE_MACH (NEW_MACH);
C0PY_MACH (MACH, NEW_MACH);
ADD_TO_LIST (NEW_MACH, LEVEL);
NEW_MACH".REMEM_ST := NEW_ST;
INC COUNTS;

END; T* DUPLICATE *)

(# This procedure will generate all simple extensions of a 
machine through the application of Rule 1. This generates 
all successors which have the same number of states as the 
parent machine and one more transition to one of the other 
states of the machine. *)

PROCEDURE RULE1 (VAR MACH : MACH PTR; 10 PTR, LEVEL : INTEGER);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10H

VAR
I • INTEGFR*
NEW_MACH : MACH_PTR;

BEGIN
FOR I := 1 TO MACH".NUM_STATES DO 

BEGIN
CREATE_MACH (NEW_MACH);
COPY_MACH (MACH, NEW_MACH);
ADD_TRAN (NEW_MACH, IO_LIST[IO_PTR].INPUT,

10 LIST[IO_PTR].OUTPUT,I);
ADD_TO_LIST TNEW_MACH, LEVEL);
INC_COUNTS;

END;
END; (* RULE1 #)

(* This procedure will create the simple extension of a
machine through the application of Rule 2. This machines 
will have one more state than the parent machine and an 
added transition from the old rmembered state to the newly 
added state. *)

PROCEDURE RULE2 (VAR MACH : MACH_PTR; I0_PTR, LEVEL : INTEGER);

VAR
NEW_MACH : MACH_PTR;

BEGIN
IF (MACH".NUM_STATES < R) THEN 

BEGIN
CREATE_MACH (NEW_MACH);
C0PY_MACH (MACH, NEW_MACH);
NEW_MACH" . NUM_STATES : = NEW_MACH" . NUM__STATES + 1; 
NEXT_INIT := NEXT_INIT + 1;
ADD_TRAN (NEW_MACH, I0_LIST[I0_PTR].INPUT,

I0_LIST[I0_PTR].OUTPUT,
NEW_MACH".NUM_STATES);

ADD_TO_LIST (NEW_MACH, LEVEL);
INC_COUNTS;

END;
END; (* RULE2 *)

(* This procedure will develop the tree of candidate machines 
in a breadth first fashion. This is the method defined by 
Kountanis. The procedure terminates when the entire 
input,output sequence has been processed. #)

PROCEDURE BREADTH_FIRST;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

VAR
IO_PTR, NEW_ST : INTEGER;
T_MACH, MACH : MACH_PTR;
TRAN_ALREADY : BOOLEAN;

BEGIN
IO_PTR := 1;
CUR_LEVEL := ZERO;
WHILE (IO_PTR <= IO_LEN) DO 

BEGIN
MACH := LIST_HEAD[CUR_LEVEL];
WHILE (MACH <> NIL) DO 

BEGIN
T_MACH := MACH".RIGHT_NBR;
IF (PERMISS (MACH, IO_LIST[IO_PTR].INPUT,

10 LISTCIO PTR].OUTPUT, 
TRAN_ALREADY, NEW_ST)) THEN 

IF (TRAN_ALREADY) THEN
IF (CUR_LEVEL < MAX_LEVEL) THEN

DUPLICATE (MACH, CUR_LEVEL+1, NEW_ST) 
ELSE

MACH".REMEM_ST := NEW_ST
ELSE

BEGIN
RULE2 (MACH, IO_PTR, CUR_LEVEL+1); 
RULE1 (MACH, IO_PTR, CUR_LEVEL+1);

END
ELSE

BEGIN
REM_FRM_LIST (MACH, CUR_LEVEL); 
DELETE_MACH (MACH);

END;
MACH := T_MACH;

END;
NEXT_LEVEL (IO_PTR);

END;
END; (» BREADTH_FIRST *)

(# This procedure will perform a depth first development of 
the tree of candidate machines. If the search method 
being performed is the informed depth first search which 
uses the greatest number of descendants heuristic, a 
static evaluation function is applied to choose which 
machine in the tree to develop next. If the search method 
is a simple depth first search, the "left most" machine 
in the current level is developed first. *)

PROCEDURE DEPTH_FIRST;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VAR
TRAN_ALREADY, RE_USE : BOOLEAN;
IO_PTR, NEW_ST : INTEGER;
MACH : MACH_PTR;

BEGIN
CUR_LEVEL := ZERO;
RE_USE := FALSE;
IO_PTR := 1;
WHILE (IO_PTR <= 10_LEN) DO 

BEGIN
IF NOT RE_USE THEN

CHOOSE_MACH (IO_PTR, CUR_LEVEL, MACH, TRAN_ALREADY 
NEW_ST)

ELSE
BEGIN

IF NOT (PERMISS (MACH, IO_LIST[IO_PTR].INPUT, 
IO_LIST[IO_PTR].OUTPUT, TRAN_ALREADY, 
NEW_ST)) THEN

BEGIN
REM_FRM_LIST (MACH, CUR_LEVEL);
DELETE_MACH (MACH);
RE_USE := FALSE;

END;
END;

IF (MACH <> NIL) THEN 
BEGIN

IF (TRAN_ALREADY) THEN
IF (CUR_LEVEL < MAX_LEVEL) THEN

DUPLICATE (MACH, CUR_LEVEL+1, NEW_ST)
ELSE

BEGIN
MACI-P .REMEM_ST := NEW_ST;
RE_USE := TRUE;
MACH".NUM_SMPL_EXT := NOT_COMP;

END
ELSE

BEGIN
MACH".DEVELOPED := TRUE;
RULE2 (MACH, IO_PTR, CUR_LEVEL+1);
RULE1 (MACH, IO_PTR, CURJLEVEL+1);

END;
NEXT_LEVEL (IO_PTR);

END
ELSE

BEGIN
IF (LIST_HEAD[CUR_LEVEL] = NIL) THEN 

CUR_LEVEL := CUR_LEVEL - 1;
IO_PTR := CUR LEVEL + 1;

END;
END;

END; (# DEPTH_FIRST #)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(# Main program #)

BEGIN
MORE_TO_DO := TRUE;
WHILE (MORE_TO_DO) DO 

BEGIN
GET CONF;
IF TMORE_TO_DO) THEN 

BEGIN
GET_IO_SEQ;
PRINT_CONFIG;
FOR SEARCH TYPE := SEARCHES[SRCH_STRT] TO

SEARCHES[SRCH_END] DO
BEGIN

INIT_STATS;
RUN_TIME_STRT := MAK_TIME (S_TIME); 
CASE SEARCH_TYPE OF

BFS : BREADTH_FIRST;
IDFS : DEPTH_FIRST;
DFS : DEPTH_FIRST;
END;

RUN_TIME__END := MAK_TIME (S_TIME); 
FIND_GOAL (GOAL__MACH) ;
PRINT_STATS;
PRINT_MACHINE (GOAL_MACH);
CLEANUP (ROOT);

END;
END;

END;
END. (# MAIN *)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B IB L IO G R A P H Y

Bagchi, A. and Mahanti, A. "Search Algorithms Under 
Different Kinds of Heuristics - A Comparative 
Study." Journal of The Association of Computing 
Machinery 30 (January 1983): 1-21.

Barr, Avron and Feigenbaum, A., eds. Handbook of 
Artificial Intelligence. Vol. 1. Los Altos: William 
Kaufmann, 1981.

Berliner, Hans. "The B* Tree Search Algorithm: A best
First Proof Procedure." Artificial Intelligence 12 
(1979): 23-40.

Biermann, A. W.; Baum, R. I. and Petry, F. E. "Speeding 
Up the Synthesis of Programs from Traces." IEE^ 
Transactions on Software Engineering SE-2 (September 
1976): 141-153.

Cohen, Paul R. and Feigenbaum, Edward A., eds. Handbook 
of Artificial Intelligence. Vol. 3. Los
Altos: William Kaufmann, 1982.

Gill, Arthur. "State-Identification Experiments in Finite 
Automata." Information and Control 4 (1961): 132-
154.

Gold, E. Mark. "Language Identification in the Limit." 
Information and Control 10 (1967): 447-474.

Hopcroft, John E. and Ullman, Jeffrey. Formal Languages
and Their Relation to Automata. Reading: Addison 
Wesley, 1969.

Horowitz, Ellis and Sahni, Sartaj. Fundamentals of 
Computer Algorithms. Potomac: Computer Science 
Press, 1978.

Knuth, Donald E. The Art of Computer Programming. Vol. 1: 
Fundamental Algorithms. Reading: Addison Wesley,

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109
1973-

Kountanis, Dionysios I. "A State Automaton as a Model of 
a Learning System Which Can Learn Any Machine from a 
Class of Machines.” Ph. D. dissertation, University 
of Pennsylvania, 1977*

Kountanis, Dionysios I. and Mitchell, Brian T. "Affect of 
Representation on The Complexity of a Learning 
System." Computer Science Report #2. Western 
Michigan University, Kalamazoo, Michigan. 1979

Lenat, Douglas B. "The Nature of Heuristics." Artificial 
Intelligence 19 (1982): 189-249-

Manna, Zohar and Waldinger, Richard. "Knowledge and 
Reasoning in Program Synthesis." Artificial 
Intelligence 6 (Summer 1975): 175-208.

Moore, Edward F. "Gedanken-Experiments on Sequential 
Machines." Automata Studies. (1956): 129— 153-

Nau, Dana S. "Decision Quality As a Function of Search 
Depth on Game Trees." Journal of The Association., of 
Computing Machinery 30 (October 1983): 687-708.

Nilsson, Nils J. Principles of Artificial Intelligence. 
Palo Alto: Tioga Publishing Company, 1980.

Nilsson, Nils J. Problem Solving Methods in Artificial 
Intelligence. New York: McGraw Hill, Inc., 1971.

Reibling, Lyle A. "A Learning Strategy for a Class of 
Probablistic Automata." Masters thesis, Western 
Michigan University, 1983.

Trakhtenbrot, B. A. and Barzdin, Ya. M. Finite Automata 
behavior and synthesis. Translated from Russian by 
Louvish, D. New York: American Elsevier Publishing 
Company, 1973.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Tucker, Alan. Applied Combinatorics. New York: John Wiley 
and Sons , 1980.

Wilkins, David E. "Using Knowledge to Control Tree 
Searching." Artificial Intelligence 18 (January 
1982): 1-51.

Winston, Patrick Henry. Artificial Intelligence. 
Reading: Addison Wesley, 1979-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	An Improvement in the Performance of a Learning System for Finite State Machines
	Recommended Citation

	tmp.1510596519.pdf.e0M7a

