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We consider measures for triangulations of R". A new measure 1s introduced based on the
ratio of the length of the sides and the content of the subsimplices of the triangulation. In a
subclass of triangulations, which 1s appropriate for computing fixed points using simplicial
subdivisions, the optimal one according to this measure is calculated and some of its
properties are given. It 1s proved that for the average directional density this triangulation 1s
optimal (within the subclass) as n goes to infinity. Furthermore, we compare the measures of
the optimal triangulation with those of other triangulations. We also propose a new trian-
gulation of the affine hull of the unmit simplex. Finally, we report some computational
experience that confirms the theoretical results.

Kev words: Triangulation, Average Directional Density, Fixed Point, Equilateral Triangles.

1. Introduction

For computing fixed points of a convex upper semi-continuous point-to-set
mapping, there are a rather great number of algorithms available using trian-
gulations and complementary pivoting techniques (see Scarf [13, 14], Eaves [1],
Eaves and Saigal [2], Merrill [10], Kuhn and MacKinnon [5], Van der Laan and
Talman [6,7.8]). The efficiency of these algorithms depends clearly on the
particular triangulation used (see Saigal [11] and Todd [15, 16]). Until now, three
theoretical measures of the efficiency of a certain triangulation have been
developed. The first one counts the number of simplices into which the trian-
gulation divides the unit cube. However, many triangulations have the same
number, whereas computational results show that they in fact differ in efficiency
(see Todd [16] and Saigal [11]). For n =3, 4 and 5 Mara [9] discovered a
triangulation with fewer simplices then the well-known triangulations. In the
case n = 3, it yields 5 simplices, whereas the K, H and J, triangulations yield 6
simplices. The generalization to arbitrary n is not known.

A second measure has been given by Saigal et al. [12]. They introduced the
concept of the diameter of a triangulation. The calculation by Saigal of the
diameter of K and H was confirmed by his computational experience. Also this
measure can only be used for triangulations that divide the unit cube.

The last measure is the average directional density (a.d.d.) introduced by Todd
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[15]. It 1s based on counting the number of simplices met by a straight line with
direction d, by averaging this number over all vectors d of unit length. Un-
fortunately, it 1s not known how to calculate the best triangulation according to
this criterion (Todd [16]).

In this paper we introduce a new measure for comparing triangulations. In an
appropriate subclass M of triangulations of R" we will compute the optimal one
according to this criterion. Moreover, it 1s shown that the a.d.d. of this trian-
gulation is lower than the a.d.d. of the K and H triangulations. We will prove
that in the limit our triangulation 1s optimal within M according to the a.d.d.
criterion. The new measure provides information about the local geometry of a
triangulation, and is invariant with respect to homogeneous scaling in R". The
a.d.d. measure, though, 1s global in character and depends on scale.

Section 2 contains some notation and definitions. In Section 3 the subclass M
of triangulations is specified and the new measure is presented. In Section 4 the
optimal triangulation within M is calculated and some of its properties are given.
Section S compares the latter with the H and K triangulations by computing for
each both their a.d.d. and their measure introduced in this paper. Section 6
presents a new triangulation of the affine hull of the unit simplex having, when 1t
is orthogonally projected on R", the same measure as the optimal one within M.
Section 7 shows that the theoretical superiority of the new triangulation 1s
confirmed by computational experience.

2. Notation and definitions

Let e(1), ..., e(n) be the unit vectors in the n-dimensional real space R". Define
I. as the set of integers {l, ..., n} and let y = (v, ..., y,) be a permutation of the
elements of I,. A k-dimensional simplex or k-simplex o, in R" (k =n) 1s the
convex hull of k+1 independent points vy’ ..., y* the vertices of oy =
a(v’, ..., y¥). A j-dimensional simplex 7; is called a j-face of the k-simplex oy
(j < k) if the vertices of 7; are a subset of the vertices of oy. Let 7,(0y) be the set
of 1-faces of o.. The diameter of a simplex oy is defined by max.e. ., |7/ where
|7]| denotes the length of 7 using the Euclidean norm.

A triangulation G of a k-dimensional subset F of R" is a collection of
k-simplices that satisfies the following conditions:

(1) F is the union of the simplices in G.

(2) The intersection of two k-simplices is empty or is a common face.

The mesh of a triangulation G is defined by mesh G = sup(diam o l o € O).

The K triangulation of R" is the collection of simplices a(y°, ..., ¥"), such that
all components of y° are integer and y' = y'~' + e(y;) for some permutation y of
I.. Note that the K triangulation has mesh Vn. Let A be a non-singular n X n
matrix. The triangulation AK of R" is the collection of simplices o(y’, ..., y")

such that all components of A~'y? are integer and y' = y'~' + a(y;) with a(j) the
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jth column of A. When A has 1’s on the diagonal, —1's on the upper diagonal,
and zeroes elsewhere, we have the H triangulation.

In his papers [15,16] Todd proved that the a.d.d. of the K triangulation
denoted by N(K) is equal to {n + n(n — 1)/\/2}g, where

g, =2I'Gn)/(n — D)V #l(3(n — 1)).
The a.d.d. of a triangulation AK 1s (cf. [16])

N(AK) = (E | B[l + Z |B* - B"Il)g,,,
where B' is the ith row of A~

Since the a.d.d. of a triangulation depends on its mesh, we will compare
throughout this paper only triangulations with mesh Vn.

A triangulation G 1is called congruent if all its simplices are mutually con-
gruent. Note that the K triangulation 1s congruent. The simplex of a congruent
triangulation AK with y° equal to the zero vector and with y' =y~ + a(i),
i =1,...,n will be called the standard simplex of AK and 1s denoted by s, or

Sy, o5 )
3. The subclass M of triangulations and the SC measure
Throughout the paper we will restrict ourself to the subclass M of (a, B)

triangulations of R". A triangulation AK 1s called an («, B8) triangulation if the
matrix A 1s of the following form

a B B

B« s
A =

s B

_B - B a_

with the restriction that B8 i1s non-positive and that the sum of all columns 1s
strictly positive 1.e. that a +(n —1)8 > 0. An element of this subclass will be
denoted by A(a, ). It 1s easy to see that an («, 8) triangulation 1s congruent. It
seems to be adequate to use an element of this subclass in algorithms for
computing fixed points. Adding the ith column of A(a, 8) to a point y of R”"
means that only the ith component of y 1s increased, whereas all other com-
ponents are affected by the same amount. Thus going from y° to y" all
components have equally been increased by a +(n—1)B. Note that the K
triangulation 1s A(1, 0) and thus i1s an element of M.

To compare the a.d.d. of the triangulations in this subclass we have to
normalize the columns of the matrix A. To achieve triangulations with mesh Vn
it 1s only required to compute the maximum over the lengths of the one-faces of
the standard simplex. Unfortunately it i1s not easy to find an optimal triangulation
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according the a.d.d. criterion, not even in this subclass, since max.e, |7/ is a
nondifferentiable function of « and B. However, we can give a lower bound of
the a.d.d. for the subclass of («, B)-triangulations.

Lemma 3.1. Let AK be an (a, B)-triangulation with mesh AK <\ n. Then
N(AK)={(n -1+ (n—1?V8g,.

Proof. Let v, i =0, ..., n be the vertices of s,.
Suppose a >2. If 0=8>—1/(n—1), then a +(n —1)B > 1, which implies that

ly"]| = {a +(n—1)B}Vn>Vn,

contradicting the fact that |[y*|| <V n for all k. Suppose now B <—1/(n —1). Then
there exists an integer k, 1=k <n—1, such that kB =-1 and (k—1)8>—1.
Hence a +(k—1)B8>1 and |kB| = 1. Thus

Iy*|| = [k{a + (k — DBY + (n — k)(kB))"* > V/n,

again contradicting the fact that the mesh is less than or equal to Vn.

This together implies a <2. It is easily seen that the diagonal elements of
B(a, B), the inverse of A(a, B), are

{a+(n—-2)B}(a — BHa +(n—1)B}

and that its off-diagonal elements are

—Bl(a — B){a +(n — 1)B}.

Note that « — 8 > 0. Hence, |B| = 1/(a — B) for all i and ||B' — B’|| = V2/(a — B)
for all i <. So,

N(AK) =g {n + n(n — 1)|V2}/(a — B)

for all admissible «, 8. The restriction a+(n—1)8>0 implies a—B<
na/(n — 1) <2n/(n —1). The lemma follows now immediately.

Observe that for n goes to infinity the lower bound of the a.d.d. converges to
g.n’\V8.

Next we introduce the SC measure for the efficiency of a triangulation. Within
the class of (a, B) triangulations this measure is a differentiable function of
(a, B), and it is rather easy to find the optimal triangulation by analytical
computations.

Clearly for computing fixed points an efficient triangulation of R? is that which
divides the plane into equilateral triangles. This triangulation is congruent and,
moreover, all one-faces have the same length. However, in higher dimensions
there does not exist a congruent triangulation with simplices having one-
faces with equal length.
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The triangulation of R? with equilaterial triangles has the property that it
maximizes the area of the triangle, given the total length of its sides. With some
modifications the SC measure is based on this property and 1s given by

SC(AK) = max{ ) llr”z}m/{]detAl/n!}”".

o, €EAK \LrE€T|(0,)

Note that [det A|/n! is the content of any simplex of AK, and that Y .c. .., || is
the total squared length of the one-faces of the simplex o, By raising the
numerator to the power 3 and the denominator to the power 1/n the measure
becomes homogeneous of degree zero in («, B8). It 1s obvious that for n = 2 the
equilateral triangulation minimizes the measure SC.

Since for a congruent triangulation the maximum is achieved by every
n-simplex o,, we can restrict ourself to the standard simplex of a triangulation.
So, for the class of congruent triangulations

sCaK)={ 3 ”T”?‘}m/{ldet Alln

TET[{.‘-‘"}

Because of the homogeneity of degree zero in (a, 8), we will set 8 equal to —1
in the following lemma.

Lemma 3.2. For an («, —1) triangulation, we have

SC(a,—1)=r,(n*—n—-2an +2a +2a)"* {(a —n + )(a + 1)1}V,
where r, = (n)""{n(n + 1)(n +2)/12}'".
Proof. The components of the (k + 1)th vertex of the standard simplex are given

by vi=a—k+1,i<k and y¥=—k, i >k
So,

Iy =y =1y*"=y) =y, 0=j<k=n.

Hence, the number of one-faces with length |[y*|| is n—k+1, k=1, ..., n. This
means that the square of the numerator 1s equal to

E ”7”12 i (n—k+ k(e —k+ 1)+ (n—k)k?
k=1
= ”(H st l)(n +2)(n2— n—2an + 2« +2a2)/12

Moreover, it is easy to see that Det A(a, —1)=(a —n + 1)(a + 1)*'. From these
results the lemma follows immediately.

4. The optimal triangulation

In this section we compute the optimal triangulation within M according to the
SC measure. Again we set B equal to —1 because of the homogeneity.
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Theorem 4.1. SC(n+Vn+1,-1)=min,-,_; SC(a, —1).

Proof. Denote (n*—n—2an +2a +2a’)/{(a —n+ Da+ D" H" by Cl(a,n),
then

dSC(a, _1) =1

) dC(a, n)
1/2
v 2 Cla,.n) “r;

da
= D(a,n)[Ra+1—n)a—n+1)(a+1)
—(n*—n—-2an +2a*+2a){a+1+(a@—n+1)(n—-1}n]

where D(a, n)= C(a, n) "?r,(a + 1) " "(q — n + 1)~ n*2In,

Certainly D(a, n) is positive for a« >n —1, all n. Setting the expression
between the main brackets equal to zero, we obtain after simple calculations that
the only feasible solution is @« = n +Vn + 1. It is left to the reader to verify that
this solution indeed minimizes the function SC(«a, —1) for a > n — 1.

Next we give some properties of the simplices of the optimal triangulation.

Lemma 4.2. The barycenter of any simplex of the optimal («a,—1) triangulation
has equal distance to every vertex of the simplex. This distance is equal to

n'?(n +2)"2(1+Vn + 1)2V3.

Proof. The ith component of the barycenter b of the standard simplex of any
(a, —1) triangulation is equal to {(n + 1)a —ia —3n(n —1)—i+ 1}/(n + 1). Clearly.
the distance between the barycenter and the jth vertex (of the standard simplex)
1S

n

' 1/2
Sb—a+G-DF+ 3 b+ 7], j=0.n

After simple calculations it can be seen that for the optimal triangulation this
distance 1s independent of j and 1s equal to

n 1/2
(2 b%) =n"?(n +2)"(n +2+2Vn + N"2V3,
i=1
which completes the proof, since the triangulation 1s congruent.

The lemma means that the simplices are as ‘“‘round” as possible within M.

Lemma 4.3. The standard simplex of the optimal («a,—1) triangulation has the
following properties:

(a) Iy Il =lly"=**'ll, k=1,...,n;
D2l — Loy 4+ 1)1+ Vi + 1 ' s odd,
(b) max ”T” T { ’ /2 ” ;*f:ll _[)( 1/2 : ”2) If i .iS
r€7)(s,) y" =y f=3n""(n+2)"(1+ Vn+1) ifnis even.
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Proof. (a) Clearly y¥=n+Vn+1—(k—1) for i<k and y¥=—k for i>k,
k=1,..., n. Consequently,

Iy IF = lly"=**"

P=k(n—k+1+Vn+1)P +(n—-kk*—(n—k+1)(k+Vn+1)>
—(k-Dn=-k+1)¥*=0, k=1,...,n.

(b) Since ||y* — y!||=|[y*7|, for 0=j <k =n,

max|7|| = max]y*|.
k

Hence,

max|7||= max {k(n + Vn+1—k+ 1)+ (n — k)k*}".
K

[t is easy to see that this maximum is attained for k =3(n + 1) if n is odd and for
k=2inand k=3%n+2)if n is even.

Part (a) of the lemma means that the distance between y” and y" is equal to
that of v and y'', i =1, ..., n. Thus using the fixed point algorithm of Van der
[Laan and Talman [7] the length of the extra direction they use 1s equal to the

length of all other directions. Moreover, the angles between any two rays (see
Todd [17]) are equal.

5. The comparison of various triangulations

To compare the optimal («, B) triangulation with the well-known K and H

triangulations we will compute both their average directional density and their
SC measure.

The a.d.d. of the (n + \V/n + 1, —1) triangulation is equal to g,n{(n + 1)}'2/(1 +
V' n +1). Using Lemma 4.3 for normalizing the mesh, we easily obtain

n(n+ 1)/8"*n(n+2)}"* if nis even,

_ ) 8n
N = {5 e + 1) i is odd.

where A*K is the normalized (n +Vn + 1, —1) triangulation with mesh Vn.
Clearly, N(A*K) converges to the lower bound of Lemma 3.1 as n — .
Table 1 gives N(G)/g, for various values of n and G equal to H, K and A*K.

The values of N(K) and N(H) were obtained from Table 1 of Todd [16].

Table 1
The a.d.d. of the H, K and A*K triangulations for various n (mesh equal to Vn)

Nl 2 3 4 5 9 5 20 30 50 100 .

H | 34 76 137 221 820 2694 534 1420 4942 27316  ~4n¥?1S
K 34 72 125 191 599 1635 289 645 1782 7100  ~ni\V/2

A¥K:- 1. 24 49 77 116 335 876 152 3134 910 3553  ~n?V8
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Next we compute the SC measure for the three triangulations. Since the H
triangulation 1s non-congruent we have to compute

max{ S [}

o, €EH \7E€T(0,)

[t can easily be shown that this maximum 1s achieved for the simplices with
vertices y' = y' '+ h(vy;) where h(j) is the vector with jth component equal to 1,
(j — 1)th component equal to —1 and zeroes elsewhere, and where vy 1s the
permutation

_ {(2, 4. ....n,1,3,....n—1) 1if n1s even,
Y71a.3,....n.2.4,....n—1) if nis odd.

The maximum is then equal to 3(n*+2n*—n +2)"? if n is odd and 3(n*+2n?)"? if
n is even. Since for the H triangulation |Det A| = 1, its measure is

r.{3n/(n + 1)} if n 1s even,

SC(H) = {rn{3(n3+ 2n*—n+2)/n(n+ D(n+2)}"* if n is odd,

both converging to r,\V/3 as n — x=.

The SC measure of the K-triangulation is r, V2, for all n, which follows from
Lemma 3.2 for a —» .

From the same lemma we get that the SC measure of the (n+Vn+1,—1)
triangulation is r,(n + 1)"*", which converges to r,.

Table 2 gives SC/r, of the H, K and A*K triangulation for various values of n.

Table 2
The SC measure of the H, K and A*K triangulations for various n

NI 2 3 4 S g T MEC. TERY Ea Y i b

H |.4] [.4] |.48 .55 1.37 1.64 1.67 1.69 1.70 1.71 1.72 =
K .4 [.4] [.4]
A*K 14 1.32 1.26 1.22 .20 [.14 [.10 [.08 1.06 1.04 1.02 =1

—— ——— —_——

6. Triangulations of the affine hull of the unit simplex

In this section a new triangulation of the affine hull T" of the n-dimensional
set S" ={x ER?} E:II x; = 1} 1s proposed and compared with the standard trian-
gulation QK of S" (see Kuhn [4] and Scarf [14]), where Q is defined as by Todd
[16]. When applying a fixed point algorithm on S", finding label i according to the
standard labelling rule means that there is an incentive to decrease the ith
component to find other labels. Instead of increasing only one component with
that amount as done for the standard triangulation, it seems more natural to
increase all other components with the same amount which must be equal to a

fraction n~' of the amount with which the ith component is decreased. Therefore
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rJ
o0
9

we propose to triangulate the affine hull of S" according to the (n+1)Xn
triangulation matrix T defined by

l —n
1 = ]
—n
L 1 _

i.e. the so-called T triangulation of T" with gridsize m (m > 0) is the collection
of simplices o(y°, ..., y") such that for an a priori chosen gridpoint z in T,

V=z+m"'S", ait(i) for (unique) integers a;, i=1,..,n and y =
yi'+ m~'t(y;), j=1, ..., n for some permutation y = (y,, ..., v,) of the elements
o) i [

We will prove now that the SC measure of the T triangulation of T" is equal

to SC(A*K). Of course, in the definition of the measure of a triangulation of
T" the term |det A|/n! must be changed into the content of the simplex o,.

Lemma 6.1. For the T triangulation of T" holds
SC(T) = r,(n + 1)\

Proof. Note that the SC measure of a triangulation of 7" 1s again homogeneous
and that the T triangulation is congruent. To compute the content of a simplex
of this triangulation, T" is mapped orthogonally into R" by the n X (n + 1) matrix
F defined by Todd [16].

Then the content of a simplex of T" is equal to the content of the FTK
triangulation on R". Since FT is an upper triangular matrix with ith diagonal
element equal to (n+ D{(n—i+ D/(n—i+2)}* |det FT|=(n+ 1)"""2. Clearly
the numerator of SC(T) 1s equal to

n

> (n+1=—kdk(n+1=kP+(n+1-k)k*={n(n+1)(n+2)/12}'2

k=1

Hence SC(T)=r,(n + 1)"*",

Obviously the T triangulation has the same nice properties as the (n +
V'n + 1, —1) triangulation of R". note that the simplices of the T triangulation
meeting S" do not all lie in S". Therefore, in a fixed point algorithm on S" it 1s
necessary to extend the function (or mapping) to T". Furthermore the F'A*K
triangulation of T" (see Todd [16]) has the same SC measure as the T trian-
gulation. However, the F'A*K triangulation is less appropriate for computing
fixed points on T".

Finally we calculate the SC measure of the standard triangulation QK to
compare it with SC(T) for various n.
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Lemma 6.2. For the standard triangulation of T" holds

r.\V3(n+ 1)1 if n is even,

B )= ! r.V3{(n*+3n*—n+5)/(n’+3n*+2n)}*(n + 1)~

if n1s odd.

Proof. Following the proof of Theorem 6.1 the content of any simplex 1s equal to
/det FQ|/n!=(n + 1)"?/n!. However, the triangulation is not congruent. It can be
rather easily seen that the maximal sum of the squared length of the one-faces is
attained for any simplex o(y', 7) with

(2.4.6,....n. 135 .. .80=1) if n1s even,

" (2k = 1; 2k+1, 2k—=3. 2k +3, ... ; 1, 0, 2K, 206—2, 242,510 525 1= 1)
if n=4k=1: ki=1.2. -

QRk—1,2k+1,2k—3,2k+3,...,n, 1,2k, 2k—-2,2k+2,...,n—1, 2)
If n=4k-3,k=1,2,....

For these simplices the sum of the squared length of the one-faces 1s equal to
Yn*+3n*+2n)if n is even and equal to i(n*+3n —n+5) if n is odd.
Consequently,

SC(QK) = {in(n + )(n +2)}"*/{(n + 1)"?/n}'"

=r.V3(n+1)n if n 1s even
and
SC(QK) = {i(n*+3n>— n + S/{(n + 1)'"?[n 1}'"

= r,\/3[n*+3n —n+5/{n(n+ 1)(n+2)]"*(n+1)""2
if n 1s odd.

From the Lemmas 6.1 and 6.2 it follows that for large n SC(T) 1s of the order
r, and SC(QK) is of the order r,\/3 which corresponds to the SC measures of
respectively the A*K and the H triangulations of R". Note however, that for
n=2SC(T)= SC(QK) which is clear since both triangulations yield equilateral
triangles. But we may expect even for n = 2 that the T triangulation will perform
better than the standard triangulation because the first one 1s more natural for

use in a fixed point algorithm.
Finally, in Table 3 SC(G)/r, is given for various values of n for both the QK

and the T triangulation.

7. Computational experience

We apply the algorithm of Van der Laan and Talman [7], for the K trian-
gulation as well as for the triangulation proposed in this paper, to a ten-
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Table 3
The SC measure of the QK and T triangulations for various n
n 1 2 3 4 10 20 50 100 n
G
QK 1.41 1.32 1.33 1.42 .50 1.60 .67 1.70 ~1.73

T 1.41 1:32 1.26 1.22 1.14 1.08 1.04 1.02 sl

dimensional variant of the problem considered by Kellogg et al. [3]. In Table 4
the number of iterations 1s given for various starting points. For both trian-
gulations the mesh was (21/10)7' for all applications. The accuracy, max;|f;(x*) —
x*|, where x* is the approximate fixed point, was of the order of 107

As will be noted, the version with the new triangulation does considerably
better than the normal application with the K triangulation. By Table 4 the ratio
between the number of iterations 1s 1.306 which agrees very well with the
theoretical ratio 1.254 (for n =10). Note that the K triangulation 1s very
appropriate for the first two starting points, because the path from the starting
point to the approximation 1s in the direction e respectively —e, where e =
(1,1, ...,1). However, for some other starting points the algorithm needs many
iterations for the K triangulation because the path to the fixed point i1s along an
inappropriate direction. Since the new triangulation has as ‘“‘round’ cells as
possible, the number of iterations does not vary so much and the average will be
lower.

Table 4
The number of iterations for various starting
points

Trnangulation K A*K
Starting point
0000000000 62 99
LEF TR L1 ] 76 83
1010101010 161 132
1110000000 255 153
0000000001 280 148
1001001111 170 144
0110011010 212 153
1001011011 196 153
I 107 11 011 119 117
1001001001 229 155
01001011601 270 171
1011110111 119 115
0011001100 165 127
0001111111 149 136
Total number of iterations 2463 1886

Average number of iterations 176 135




