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ABSTRACT McMillan has recently proposed a new technique to avoid 
the state explosion problem in the verification of systems modelled with 
finite-state Petri nets. The technique requires to construct a finite initial 
part of the unfolding of the net. McMillan's algorithm for this task may 
yield initial parts that are larger than necessary (exponentially larger in 
the worst case). We present a refinement of the algorithm which overcomes 
this problem. 

1 Introduction 

In a seminal paper  [10], McMillan has proposed a new technique to avoid 
the state explosion problem in the verification of systems modelled with 
finite-state Petri  nets. The technique is based on the concept of net un- 
folding, a well known partial  order semantics of Petri nets introduced in 
[12], and later described in more detail in [4] under the name of branching 
processes. The unfolding of a net is another net, usually infinite but with a 
simpler structure. McMillan proposes an algorithm for the construction of 
a finite initial part  of the unfolding which contains full information about  
the reachable states. We call an initial part  satisfying this property (in fact 
slightly stronger one) a finite complete prefix, tie then shows how to use 
these prefixes for deadlock detection. 

The unfolding technique has been later applied to other verification prob- 
lems. In [7, 8, 11] it is used to check relevant properties of speed independent 
circuits. In [5], an unfolding-based model checking algorithm for a simple 
branching t ime logic is proposed. 

Although McMillan's algorithm is simple and elegant, it sometimes gen- 
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crates prefixes much larger than necessary. In some cases a minimal com- 
plete prefix has O(n) in the size of the Petri net, while the algorithm gen- 
erates a prefix of size O(2n). In this paper we provide an algorithm which 
generates a minimal complete prefix (in a certain sense to be defined). The 
prefix is always smaller than or as large as the prefix generated with the 
old algorithm. 

The paper is organised as follows. Section 2 contains basic definitions 
about Petri nets and branching processes. In Section 3 we show that  McMil- 
lan's algorithm is just an element of a whole family of algorithms for the 
construction of finite complete prefixes. In Section 4 we select an element of 
this family, and show that  it generates minimal prefixes in a certain sense. 
Finally, in Section 5 we present experimental results. 

2 Basic Definitions 

2.1 Pe t r i  Ne ts  

A triple ( S , T , F )  is a net if S n T  = 0 and F C (S x T)  kJ(T x S). 
The elements of S are called places, and the elements of T transitions. 
Places and transitions are generically called nodes. We identify F with its 
characteristic function on the set (S • T) U (T • S). The preset of a node 
x, denoted by *x, is the set {y E S k) T I F(y, x) = 1}. The postset of x, 
denoted by x*, is the set {y e S U T I F(x ,  y) -- 1). 

A marking of a net (S, T, F )  is a mapping S --* ~W. We identify a marking 
M with the multiset containing M(s) copies of s for every s E S. A 4-tuple 

-- (S, T, F, M0) is a net system if (S, T, F )  is a net and M0 is a marking of 
(S, T, F )  (called the initial marking of ~). A marking M enables a transition 
t if Vs E S: F(s, t) <_ M(s). If t is enabled at M, then it can occur, and its 

occurrence leads to a new marking M ~ (denoted M ~ M~), defined by 
M'(s) = M ( s ) - f ( s ,  t)+ F(t, s) for every place s. A sequence of transitions 
~r = t i t s . . . t n  is an occurrence sequence if there exist markings M1, M2, 
. . . ,  M ,  such that  

M0 ~ M1 ~2 . . . M n - 1  ~"~ M,  

Mn is the marking reached by the occurrence of a, also denoted by M0 ~, 
~ln. ~I is a reachable marking if there exists an occurrence sequence ~ such 
that  M0 ~ M .  

The teachability graph of a net system ~ is a labelled graph having the 

set of reachable markings of ~ as nodes and the relations ~ , between 
markings as edges. 

A marking M of a net is n-safe if M (s) < n for every place s. We identify 
1-safe markings with the set of places s such that  M(s) = 1. A net system 
]C is n-safe if all its reachable markings are n-safe. 
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In this paper  we consider only net systems satisfying the following two 
additional properties: 

�9 The number  of places and transitions is finite. 

�9 Every transit ion of T has a nonempty  preset and a nonempty postset.  

2.2  Occurrence  N e t s  

Let (S, T, F )  be a net and let xl ,  z2 E S U T. The nodes xl and z2 are in 
conflict, denoted by x l # z 2 ,  if there exist distinct transitions t l ,  t2 E T such 
tha t  *tl n*t~ ~ O, and (t~, z~), (t2, x2) belong to the reflexive and transitive 
closure of F.  In other words, zl  and z2 are in conflict if there exist two 
paths leading to z l  and x2 which start  at the same place and immediately  
diverge (although later on they can converge again). For z E S U T, x is in 
self-conflict if x # x .  

An occurrence net is a net N = (B, E,  F )  such that:  

�9 for every b E B, [~ < 1, 

�9 F is acyclic, i.e. the (irreflexive) transitive closure of F is a part ial  
o r d e r ,  

�9 N is finitely preceded, i.e., for every z E B U E, the set of elements 
y E B U E such that  (y, z) belongs to the transitive closure of F is 
finite, and 

�9 no event e E E is in self-conflict. 

The elements of B and E are called conditions and events, respectively. 
Min(N)  denotes the set of minimal  elements of B tJ E with respect to the 
transitive closure of F.  

The (irreflexive) transitive closure of F is called the causal relation, and 
denoted by <. The symbol < denotes the reflexive and transitive closure of 
F .  Given two nodes x, y E B t3 E, we say z co y if neither z < y nor y < x 
nor z # y .  

2.3 Branching Processes 

Branching processes are "unfoldings" of net systems containing information 
about  bo th  concurrency and conflicts. They were introduced by Engelfriet 
in [4]. We quickly review the main definitions and results of [4]. 

Let N1 ---- (S1,7"1, F1) and N2 = ($2,7"2, F2) be two nets. A homomor- 
phism from N1 to N21 is a mapping  h: $1 U T1 --* $2 t.J T~ such that:  

1In [4], h o m o m o r p h i s m s  are  def ined be tween  ne t  sy s t ems ,  i n s t e a d  of be tween  ne t s ,  
b u t  th i s  is on ly  a sma l l  t echn ica l  difference wi thou t  any  severe consequence .  
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(a) 

(b) s 3 ~ 4  

�9 3 U ( . 2 '  

slt2(~2 
(c) s3~4 
s1~2 
s3~4 

FIGURE 1. A net system and two of its branching processes 

�9 h(Sx) C & and h(T1) C_ T2, and 

�9 for every t E T1, the restriction of h to *t is a bijection between *t 
(in N1} and *h(t} (in N2), and similarly for t* and h(t)*. 

In other words, a homomorphism is a mapping that  preserves the nature 
of nodes and the environment of transitions. 

A branching process of a net system ~ = (N, M0) is a pair fl = (N',p) 
where N' = (B, E,  F )  is an occurrence net, and p is a homomorphism from 
N '  to N such that  

(i) The restriction of p to Min(g')  is a bijection between Min(g ' )  and 
M0, 

(ii) for every el, e2 �9 E, if ' e l  = *e2 and p(el) "- p(e2) then el = e2. 

Figure 1 shows a 1-safe net system (part (a)), and two of its branching 
proc ses (parts (b) (c)). 

Two branching processes j31 = (NI,pl)  and f12 -- (N2,p2) of a net system 
are isomorphic if there is a bijective homomorphism h from N1 to N2 such 
that  P2 o h = Pl- Intuitively, two isomorphic branching processes differ only 
in the names of conditions and events. 

It is shown in [4] that  a net system has a unique maximal branching 
process up to isomorphism. We call it the unfolding of the system. The 
unfolding of the 1-safe system of Figure 1 is infinite. 

Let /Y' = (N' ,  p') and fl = (N, p) be two branching processes of a net 
system, f f  is a prefix of fl if N '  is a subnet of N satisfying 

�9 if a condition belongs to N' ,  then its input event in N also belongs 
to N' ,  and 
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�9 if an event belongs to N ' ,  then its input and output  conditions in N 
also belong to N ~. 

and p '  is the restriction of p to N ~. 

2.4 Conf igurat ions  and Cuts 

A configuration C of an occurrence net is a set of events satisfying the 
following two conditions: 

* e � 9  =:~ Ve I < e : e ' � 9  ( C is causally closed). 

�9 Ve, e' �9 C : - - ( e # e ' )  (C is conflict-free). 

A set B '  of conditions of an occurrence net is a co-set if its elements are 
pairwise in co relation. A maximal  co-set B '  with respect to set inclusion 
is called a cut. 

Finite configurations and cuts are tightly related. Let C be a finite config- 
uration of a branching process 13 = ( g ,  p). Then the co-set Cut(C), defined 
below, is a cut: 

Cut(C) = (Min(g)  U C*) \ *C. 

In particular,  given a finite configuration C the set of places p(Cut(C)) is 
a reachable marking, which we denote by Mark(C). 

A marking M of a system ~ is represented in a branching process/3 of 
if/3 contains a finite configuration C such that  Mark(C) = M. I t  is easy to 
prove using results of [1, 4] that  every marking represented in a branching 
process is reachable, and that  every reachable marking is represented in 
the unfolding of the net system. 

For 1-safe systems, we have the following result, which will be later used 
in Section 4: 

P r o p o s i t i o n  2.1 

Let xl and x2 be two nodes of a branching process of a 1-safe net 
system. I f  xl co x2, then p(Zl) • p(Z2). �9 2.1 

Given a cut c of a branching process /3 = (N,p), we define ~ c as the 
pair (N',p') ,  where N '  is the unique subnet of N whose set of nodes is 
{x I (?Y e c : x _> y) AVy �9 c :  - , (x#y)}  and p'  is the restriction o f p  to the 
nodes of N ' .  Further, we define p(c) as the multiset containing an instance 
of the place p(b) for every b �9 c. The following result will also be used later: 

P r o p o s i t i o n  2.2 

If~3 is a branching process of (N, Mo) and e is a cut of~3, then ~c is 
a branching process of (N,p(c)). �9 2.2 
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3 An Algorithm for the Construction of a 
Complete Finite Prefix 

3.1 Constructing the Unfolding 

We give an algorithm for the construction of the unfolding of a net system. 
First of all, let us describe a suitable data  structure for the representation 
of branching processes. 

We implement  a branching process of a net system ~ as a list n l , .  �9 �9 nk 
of nodes. A node is either a condition or an event. A condition is a pair 
(s, e), where s is a place of ~ and e the input event. An event is a pair (t, B), 
where t is a transition of ~, and B is the set of input conditions. Notice 
tha t  the flow relation and the labelling function of a branching process are 
already encoded in its list of nodes. How to express the notions of causal 
relation, configuration or cut in terms of this data  structure is left to the 
reader. 

The algori thm for the construction of the unfolding starts  with the 
branching process having the conditions corresponding to the initial mark-  
ing of ~ and no events. Events are added one at a t ime together with their 
output  conditions. 

We need the notion of "events tha t  can be added to a given branching 
process". 

D e f i n i t i o n  3.1 

Let /3 = n l , . . . , n k  be a branching process of a net system Z. The 
possible extensions of/3  are the pairs (t, B), where B is a co-set of 
conditions of/3 and t is a transition of ~ such that  

�9 p(B) = ' t ,  and 

�9 /3 contains no event e satisfying p(e) = t and ' e  -- B 
PE(/3) denotes the set of possible extensions of/3. �9 3.1 

P r o c e d u r e  3.2 The unfolding algorithm 

i n p u t :  A net system ~ = (N, M0), where M0 = { S l , . . . ,  s,,}. 
o u t p u t :  The unfolding Unf of ~. 
b e g i n  
Unf :-- (sl ,  $ ) , . . . ,  ( s , ,  O); 
pe :---- PE( Unf); 
w h i l e  p e #  0 do  

append to Unfan event e = ( t ,B)  ofpe and a 
condition (s, e) for every output  place s of t; 
pe := PE(Unf) 

e n d w h i l e  
e nd  

�9 3.2 
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sl sl sl 
t 1 ~ 2  t 1 ~ 2  tl~~ ~) 

s2 s2 s2 s2 
(a) {b) {c) 

FIGURE 2. A 1-safe net system, its unfolding, and a prefix 

The  procedure does not necessarily terminate.  In fact, it terminates if and 
only if the input system E does not have any infinite occurrence sequence. 
It  will eventually produce any reachable marking only under the fairness 
assumption that  every event added to pe is eventuMly chosen to extend 
Unf (the correctness proof follows easily from the definitions and from the 
results of [4]). 

Construct ing a Finite Complete Prefix 

We say tha t  a branching process fl of a net system E is complete if for every 
reachable marking M there exists a configuration C in fl such that:  

�9 Mark(C) = M (i.e., M is represented in fl), and 

�9 for every transition t enabled by M there exists a configuration CU{e} 
such that  e it C and e is labelled by t. 

The  unfolding of a net system is always complete. A complete prefix 
contains as much information as the unfolding, in the sense that  we can 
construct the unfolding from it as the least fixpoint of a suitable operation. 
This property does not hold if we only require every reachable marking 
to be represented. For instance, the net system of Figure 2(a) has Figure 
2(b) as unfolding. Figure 2(c) shows a prefix of the unfolding in which 
every reachable marking is represented. The prefix has lost the information 
indicating that  t2 can occur from the initial marking. Observe tha t  the 
prefix is not complete. 

Since an n-safe net system has only finitely many  reachable markings,  
its unfolding contains at least one complete finite prefix. We t ransform the 
algori thm above into a new one whose output  is such a prefix. 

We need some prel iminary notations and definitions: 
Given a configuration C, we denote by C @ E the fact that  C t2 E is a 

configuration such tha t  C N E = 0. We say that  C ~ E is an extension of 
C, and tha t  E is a su~x to C. Obviously, if C C C ~ then there is a suffix 
E of C such tha t  C@ E = C ~. 
Let C1 and C2 be two finite configurations such that  Mark(C1) = Mark(C2). 
I t  follows easily from the definitions that  ~ Cut(Ci) is isomorphic to the 
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unfolding of ~' = (N, Mark(Ci)), ," = 1, 2; hence,. ~f Cut(C1)~2 and ~ tCut(C2) 
are isomorphic. Moreover, there is an isomorphism I~l from ~ Cu (C1) to 

Cut(C~). This isomorphism induces a mapping from the finite extensions 
of C1 onto the extensions of C2: it maps C1 �9 E onto C2 @ IC:(E). 

We can now introduce the three basic notions of the algorithm: 

Defini t ion 3.3 

A partial order -< on the finite configurations of a branching process 
is an adequate order if: 

�9 -~ is well-founded, 

�9 -~ refines C, i.e. Cx C C2 implies CI -< C2, and 

�9 -~ is preserved by finite extensions, meaning that  if C1 -< C2 and 
Mark(C1) = Mark(C2), then C1 ~ E -< C2 �9 I~(E) .  

Defini t ion  3.4 Local configuration 

113.3 

Defini t ion  3.5 Cut-off event 

Let 3 be a branching process and let -< be an adequate partial order 
on the configurations of ft. An event e is a cut-off event (with respect 
to -<) if 3 contains a local configuration [d] such that  

(a) Mark([e]) = Mark([eq), and 

(b) [e'] -< It]. 

�9 3.5 

The new algorithm has as parameter an adequate order -<, i.e. every 
different adequate order leads to a different algorithm. 

A l g o r i t h m  3.6 The complete finite prefiz algorithm 

input:  An n-safe net system ~ = (N, Mo), where M0 = { S l , . . . , s k ) .  
output :  A complete finite prefix Fin of Unf. 
begin 
Fin := (s~, 0 ) , . . . ,  (sk, 0); 
pe := PE(Fin); 
cut-off := O; 

2It is immediate to prove that [e] is a configuration. 

The local configuration [e] of an event of a branching process is the set 
of events e' such that  e' < e. 2 �9 3.4 
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w h i l e  pe # 0 do  
choose an event e = (t, B) in pe such tha t  [e] is minimal  

with respect to -~; 
i f  [e]N cut-off = 0 t h e n  

append to Fin the event e and a condition 
(s, e) for every output  place s of t; 
pe := PE(Fin); 
i f  e is a cut-off event of Fin t h e n  

cut-off := cut-off u{e} 
e n d i f  

e l se  pe := pe \ {e} 
e n d i f  

e n d w h i l e  
e n d  

McMillan's algorithm in [10] corresponds to the order 

C1 -<m C2:r [Cll < [C2I. 

�9 3.6 

It  is easy to see that  -<,~ is adequate. 
The reason of condition (a) in the definition of cut-off event is intuitively 

clear in the light of this algorithm. Since Mark([e']) = Mark(H), the con- 
t inuations of g n f f r o m  Cut([e]) and Cut([e']) are isomorphic. Then, loosely 
speaking, all the reachable markings that  we find in the continuation of 
Unffrom Cut([e]) are already present in the continuation from Cut([e']), 
and so there is no need to have the former in Fin. The r61e of condition 
(b) is more technical. In fact, when McMillan's algorithm is applied to 
"ordinary" small examples, condition (b) seems to be superfluous, and the 
following strategy seems to work: if an event e is added and Fin already 
contains a local configuration [e'] such that  Mark(H ) = Mark([e']), then 
mark  e as cut-off event. The following example (also independently found 
by K. McMillan) shows that  this s trategy is incorrect. Consider the 1-safe 
net system of Figure 3. 

The marking {s12} is reachable. Without  condition (b) we can generate 
the prefix of Figure 4. 

The names of the events are numbers which indicate the order in which 
they are added to the prefix. The events 8 and 10 are cut-off events, be- 
cause their corresponding markings {87,89,810 } and {s6, ss, s11} are also 
the markings corresponding to the events 7 and 9, respectively. This prefix 
is not complete, because {sx2} is not represented in it. 

Observe tha t  Fin contains all the events of the set cut-off We could 
modify the algorithm to remove all these events, and the prefix so obtained 
would still enjoy the property that  every reachable marking is represented 
in it. However, the prefix would not be necessarily complete. Consider for 
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s6 
s7 

17 8 

110 ell 

tg 

FIGURE 3. A 1-safe net system 

example the net system of Figure 2(a). Algorithm 3.6 generates the branch- 
ing process of Figure 2(b), and one of the two events of the process (the 
maximal  one with respect to ~)  is a cut-off event. If  this event is removed, 
we obtain an incomplete prefix. 

We now prove the correctness of Algori thm 3.6. 

Proposition 3.7 

Fin is finite. 

Proof: Given an event e of Fin, define the depth of e as the length of a 
longest chain of events 
el < ez < . . .  < e; the depth of e is denoted by d(e). We prove the 
following results: 

(1) For every event e of Fin, d(e) ___ n + 1, where n is the number  
of reachable markings of E. 

Since cuts correspond to reachable markings, every chain of 
events ez < e2 < . . .  < e,~ < en+z of Unfcontains two events ei, 
ej, i < j,  such that  Mark([ei]) = Mark([ej]). Since [e,] C [ej] 
and -< refines C, we have [ei] -< [ej], and therefore [ej] is a cut- 
off event of Unf. Should the finite prefix algorithm generate ej, 
then it has generated el before and ej is recognized as a cut-off 
event of Fin, too. 

(2) For every event e of Fin, the sets ' e  and e* are finite. 

By the definition of homomorphism, there is a bijection be- 
tween p(e)* and p(e*), where p denotes the homomorphism of 
Fin, and similarly for "p(e) and p(*e). The result follows from 
the finiteness of N.  
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s2 2 5 

s6 9 s6 t 7 ~ 8  s9 

~1o U U ~  ,~o U U , ~  

FIGURE 4. A prefix of the net system of Figure 3 

(3) For every k _> 0, Fin contains only finitely many events e such 
that  d(e) _< k. 

By complete induction on k. The base case, k = 0, is trivial. 
Let Ek he the set of events of depth at most k. We prove that  if 
Ek is finite then Ek+l is finite. Define E~ = {ble E Ek, b E e '} .  

By (2) and the induction hypothesis, E~ is finite. Since 'E~+I  C 
E~ U Min(Fin) ,  we get by property (ii) in the definition of a 
branching process that  E/:+I is finite. 

It follows from (1) and (3) that  Fin only contains finitely many 
events. By (2) it contains only finitely many conditions. [] 3.7 

P r o p o s i t i o n  3.8 

Fin is complete. 

Proof." We first prove that  every reachable marking of E is represented in 
Fin. 

Let M be an arbitrary reachable marking of E. There exists a 
configuration C of Unf such that  Mark(C) = M.  If C is not a 
configuration of Fin, then it contains some cut-off event e, and so 
C = [el @ E for some set of events E. By the definition of a cut-off 
event, there exists a local configuration [e'] such that  [e'] -< [e] and 
Mark([e']) = Mark([e]). 

configuration C ~ = [e ~] (3 I~]](E). Since -4 is preserved Consider the 
by finite extensions, we have C I -< C. Morever, Mark(C I) - M.  If 
C ~ is not a configuration of Fin, then we can iterate the procedure 
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and find a configuration C"  such that  C"  -~ C'  and Mark(C") = M. 
The procedure cannot be iterated infinitely often because -~ is well- 
founded. Therefore, it terminates in a configuration of Fin. 

Now we show that Fin is complete. We have to prove that  for every 
reachable marking M there exists a configuration C in ]~ such that: 

�9 Mark(C) = M, and 

�9 for every transition t enabled by M there exists a configuration 
C U {e} such that  e ~ C and e is labelled by t. 

Let M be an arbitrary reachable marking of ~. Since M is repre- 
sented in Fin, the set of configurations C of Fin satisfying Mark(C) 
= M is nonempty. By well-foundedness, this set has at least a mini- 
mal element Cm with respect to -~. If Cm would contain some cut-off 
event, then we would find as above another configuration C'  satisfy- 
ing C ~ -~ Cm and Mark(C ~) = M, which contradicts the minimality 
of Cm. So Cm contains no cut-off event. 

Let t be an arbitrary transition enabled by M. Then there exists a 
configuration Cm (9 {e} of Unf such that  e ~ Cm and e is labelled 
by t. Assume that  Cm tJ {e} is not a configuration of Fin. Since 
Fin contains all the events of the set cut-off in Algorithm 3.6, it 
also contains a cut-off event e ' < e. This implies e ~ E C m ,  which 
contradicts that  Cm contains no cut-off event. So Cm U {e} is a 
configuration of Fin. �9 3.8 

4 An Adequate Order for the 1-Safe Case 

As we mentioned in the introduction, McMillan's algorithm may be ineffi- 
cient in some cases. An extreme example, due to Kishinevsky and Taubin, 
is the family of systems on the left of Figure 5. 

While a minimal complete prefix has size O(n) in the size of the sys- 
tem (see the dotted line in Figure 5), the branching process generated by 
McMillan's algorithm has size O(2n). The reason is that,  for every marking 
M, all the local configurations [e] satisfying Mark([e]) = M have the same 
size, and therefore there exist no cut-off events with respect to McMillan's 
order "~m- 

Our parametric presentation of Algorithm 3.6 suggests how to improve 
this: it suffices to find a new adequate order d r  that  refines McMillan's 
order "<m. Such an order induces a weaker notion of cut-off event; more 
precisely, every cut-off event with respect to "~m is also a cut-off event 
with respect to "~r, but maybe not the other way round. Therefore, the 
instance of Algorithm 3.6 which uses the new order generates at least as 
many cut-off events as McMillan's instance, and maybe more. In the latter 
case, Algorithm 3.6 generates a smaller prefix. 
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t1 2 
t 3 ~ 4  

: d  " " s 
% / 

v 

2 k co~os of M~ 
FIGURE 5. A Petri net and its unfolding 

The order -<r is particularly $ood if in addition it is total. In this case, 
whenever an event e is generated after some other event e t such that  
Mark(H ) = Mark([e']), we have [e'] -<r [el (because events are gener- 
ated in accordance with the total order -<~), and so e is marked as a cut-off 
event. So we have the following two properties: 

�9 the guard "e is a cut-off event of Fin" in the inner i f  instruction of 
Algorithm 3.6 can be replaced by "Fin contains a local configuration 
[e'] such that Mark([el) = Mark([e'])", and 

�9 the number of events of the complete prefix which are not cut-off 
events cannot exceed the number of reachable markings. 

In the sequel, let ~ -- (N, M0) be a fixed net system, and let ( (  be an 
arbitrary total order on the transitions of ~. We extend (< to a partial order 
on sets of events of a branching process as follows: for a set E of events, let 
~(E)  be that  sequence of transitions which is ordered according to << and 
contains each transition t as often as there are events in E with label t. Now 
we say that  E1 <~ E2 ifla(E1) is shorter than ~(E2), or if they have the same 
length but ~(E1) is lexicographically smaller than ~(E2). Note that E1 and 
E2 are incomparable with respect to (~ iff ~(E1) = ia(E2). In particular, if 
E1 and E~ are incomparable with respect to <<, then [El] -- IE2[. 

We now define "~r more generally on suffixes of configurations of a 
branching process (recall that  a set of events E is a suffix of a configu- 
ration if there exists a configuration C such that C r E). 

De f in i t i on  4.1 Total order "<r 

Let E1 and E2 be two suffixes of configurations of a branching process 
and let Min(E1) and Min(E2) denote the sets of minimal elements 

of E1 and E2 with respect to the causal relation. We say E1 "<r E2 if: 
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�9 E1 << E~, or  

�9 ~(E1) -- ~(E2) and 

- Min(E1) << Min(E2), or 

- ~(Min(E1)) = ~(Min(E2)) and E1 \Min(E1) -<r E2\Min(E2). 

" 4 . 1  

Notice that  this definition would not be correct for configurations only, 
because E \ Min(E) need not be a configuration even if E is one. 

The second condition of this definition could be expressed as: the Foata- 
Normal-Form of E1 is smaller than that  of E2 with respect to <<, cf. e.g. 

[31. 
T h e o r e m  4.2 

Let ~3 be a branching process of a 1-safe net system. "<r is an adequate 
total order on the configurations of ft. 

Proof: a) -<r is a partial order. 

It is easy to see by induction on IEI that  -<, is irreflexive. Now 
assume E1 "<r E2 d r  Ea. Clearly, E1 "<r Ea unless ~(E1) = 
~(E2) -- ~(E3), which in particular implies [Eli = [E2[ = [E3[. 
For such triples with these equalities we apply induction on the 
size: if Min(E1) << Min(E2) or Min(E2) << Min(Ea), we con- 
elude E1 -~r Ea, and otherwise we apply induction to Ei \ Min(Ei), 
i = 1, 2, 3, which are also suffixes of configurations. 

b) "<r is total on configurations. 

Assume that  C1 and C2 are two incomparable configurations, i.e. 
ICll = IC2I, ~(C1) = ~(C2), and~(Uin(C1)) = ~(Min(C2)). We 
prove C1 = C2 by induction on 1Cl1 = 1C2[. 

The base case gives C1 = C2 = $, so assume 1Cl1 - [C2[ > 0. 

We first prove Min (C~) = Min (C2). Assume without loss of general- 
ity tha t  el e Min(C1) \ Min(C2). Since ~(Min(Cx)) = !o(Min(C2)), 
Min(C~) contains an event e2 such that  p(el) =p(e2).  Since *Min(C1) 
and *Min(C2) are subsets of Min(N), and all the conditions of 
Min(N) carry different labels by Proposition 2.1, we have *el = *e2. 
This contradicts condition (ii) of the definition of branching process. 

Since Uin(C1) = Min(C2), both C1 \ Min(C~) and C9. \ Min(C~) 
are configurations of the branching process fr Cut(Min(C1)) of 
(N, Mark(Min(C1))) (Proposition 2.2); by induction we conclude 
Cl = C~. 

c) "<r is well-founded. 

In a sequence C1 ~'r C2 >-r . . .  the size of the Ci cannot de- 
crease infinitely often; also, for configurations of the same size, 
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Ci cannot decrease infinitely often with respect to <<, since the 
sequences 9~(Ci) are drawn from a finite set; an analogous state- 
ment  holds for Min(Ci). Hence, we assume that  all ]Ci[, all ~o(Ci) 
and all ~(Min(Ci)) are equal and apply induction on the com- 
mon  size. For ICiI = 0, an infinite decreasing sequence is impos- 
sible. Otherwise, we conclude as in case b) that  we would have 
C~ \ Min(C1) >-, C2 \ Min(C2) >- . . . .  in ~ Cut(Min(C1)), which is 
impossible by induction. 

d) -% refines C. 

Obvious. 

e) -% is preserved by finite extensions. 

This is the most  intricate part  of the proof, and here all the com- 
plications in Definition 4.1 come into play. Take C1 -<~ C2 with 
Mark(C1) = Mark(C2). We have to show that  C1 (9 E -<r C2 (9 
IV: (E),  and we can assume tha t  E : {e} and apply induction af- 
terwards. The case Cl << C2 is easy, hence assume ~o(C~) : ~(C2), 
and in particular [C~[ : [C2[. We show first that  e is minimal  in 
C[ = C1 U {e} if and only if IC~ (e) is minimal  in C~ = C2 U {IV: (e)}. 

So let e be minimal  in C~, i.e. the transition p(e) is enabled under 
the initial marking. Let s 6 *p(e); then no condition in *C1 U C{ is 
labelled s, since these conditions would be in co relation with the 
s-labelled condition in *e, contradicting Proposition 2.1. Thus, C1 
contains no event e' with s E *p(e'), and the same holds for C2 since 
~(C1) = {(C2). Therefore, the conditions in Cut(C2) with label in 
*p(e) are minimal  conditions of/9, and IV: (e) = e is minimal  in C~. 
The reverse implication holds analogously, since about  C1 and C2 
we have only used the hypothesis ~(C1) : ~(C2). 

With  this knowledge about  the positions of e in C[ and IC~ (e) in C~, 
we proceed as follows. If  Min(C1) << Min(C2), then we now see that  
Min(C[) << Min(C~), so we are done. If  ~(Min(C1)) : ~(Min(C2)) 
and e e Min(C~), then 

C[ \ Min(C[) = C1 \ Min(C1) -.% C2 \ Min(C2) = C~ \ Min(C~) 

hence C[ -% C~. Finally, if ~(Min(C1)) = ~(Min(C2)) and e 
Min(C[), we again argue that  Min(C1) = Min(C2) and that ,  hence, 
C1 \ Min(C1) and C2 \ Min(C2) are configurations of the branching 
process ~ Cut(Min(C1)) of (g, Mark(Min(C1))); with an inductive 
argument  we get C[ \ Min(C[) "<r C~ \ Min(C~) and are also done 
in this case. �9 4.2 

We close this section with a remark on the minimali ty of the prefixes 
generated by the new algorithm, i.e. by Algorithm 3.6 with -% as adequate 
order. Figure l (b)  and (c) are a minimal  complete prefix and the prefix 
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generated by the new algorithm for the 1-safe system of Figure l(a), re- 
spectively. It follows that  the new algorithm does not always compute a 
minimal complete prefix. 

However, the prefixes computed by the algorithm are minimal in another 
sense. The algorithm stores only the reachable markings corresponding to 
local configurations, which for the purpose of this discussion we call local 
markings. This is the feature which makes the algorithm interesting for 
concurrent systems: the local markings can be a very small subset of the 
reachable markings, and therefore the storage of the unfolding may require 
much less memory than the storage of the state space. In order to find out 
that the prefix of Figure l(b) is complete, we also need to know that the 
initial marking {sl, s2} appears again in the prefix as a non-local marking. 
If we only store information about local markings, then the prefix of Figure 
l(c) is minimal, as well as all the prefixes generated by the new algorithm. 
The reason is the observation made above: all the local configurations of 
Fin which are not induced by cut-off events correspond to different mark- 
ings; therefore, in a prefix smaller than Fin we lose information about the 
reachability of some marking. 

5 Implementation Issues and Experimental Results 

The implementation of the Algorithm 3.6 has been carried out in the con- 
text of the model checker described in [5], which allows to efficiently verify 
formulae expressed in a simple branching time temporal logic. 

For the storage of Petri nets and branching processes we have developed 
an efficient, universal data structure that  allows fast access to single nodes 
[14]. This data structure is based on the underlying incidence matrix of the 
net. Places, transitions and arcs are represented by nodes of doubly linked 
lists to support fast insertion and deletion of single nodes. 

The computation of new elements for the set PE involves the combina- 
torial problem of finding sets of conditions B such that  p(B)  = +t for some 
transition t. We have implemented several improvements in this combina- 
torial determination, which have significant influence on the performance 
of the algorithm. The interested reader is referred to [6]. 

Algorithm 3.6 is very simple, and can be easily proved correct, but is not 
efficient. In particular, it computes the set PE of possible extensions each 
time a new event is added to Fin, which is clearly redundant. Similarly to 
McMillan's original algorithm [10], in the implementation we use a queue to 
store the set PE of possible extensions. The new events of Fin are extracted 
from the head of this list, and, when an event is added, the new possible 
extensions it generates are appended to its tail. 

The simplest way to organize the list would be to sort its events according 
to the total order -~r- However, this is again inefficient, because it involves 
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FIGURE 6. n-buffer for n = 4. 

Omginalnet 
o II ,s, I 
20 40 21 ~ 421 
40 S0 41 1641 
60 120 61 ~ 3661 
80 160 81 6481 

100 200 101 w 10101 
120 240 121 212~ 14521 
140 280 141 ~140 19741 

1 6 0  160 320 161 ~lso 25761 
180 360 181 32581 

Unfolding ] time [s] 
I [El [[cutoffs[ ] McMillan [ New algorithm 

211 1 0.22 0.20 
821 1 2.40 2.50 

1831 1 17.45 18.08 
3241 1 66.70 67.85 
5051 1 191.58 197.34 
7261 1 444.60 437.30 
9871 1 871.93 869.50 

12881 1 1569.90 1563.74 
16291 1 2592.93 2597.86 

TABLE 1. Results of the n buffer example 3. 

pe r fo rming  unneccessary  compar isons .  The  so lu t ion  is to  sort  the  events 
accord ing  to  the  size of  the i r  local  configurat ion,  as in [10], and  compare  
events  wi th  respect  to  -<r only  when it  is rea l ly  needed.  

W i t h  th is  i m p l e m e n t a t i o n ,  the  new a lgo r i t hm only  computes  more  t h a n  
McMi l l an ' s  when two events e and  e' sa t isfy  Mark([e]) = Mark([e']) and 
I[e][ = I[e']l. But  th is  is precisely the  case in which the a lgo r i t hm behaves  
be t t e r ,  because  i t  a lways identif ies e i ther  e or e' as a cut-off  event.  In  
o ther  words:  when the  comple te  prefix c o m p u t e d  by  McMi l l an ' s  a l go r i t hm 
is m i n i m a l ,  our a l g o r i t h m  computes  the  same resul t  wi th  no t ime  overhead.  

T h e  runn ing  t i m e  of  the  new a lgo r i t hm is O((L~L)~), where B is the  set of  
condi t ions  of  the  unfolding,  and  ~ denotes  the  m a x i m a l  size of  the  presets  
of  the  t r ans i t i ons  in the  or ig ina l  net  (notice t ha t  th is  is not  a measu re  in  
the  size of  the  inpu t ) .  The  d o m i n a t i n g  fac tor  in the  t ime  complex i ty  is the  
c o m p u t a t i o n  of the  poss ible  extensions.  The  space required is l inear  in the  
size of  the  unfo ld ing  because  we s tore  a fixed amoun t  of  i n fo rma t ion  per  
event .  

F ina l ly ,  we present  some expe r imen t a l  resul ts  on three  scalable  exam-  
ples. We  compare  McMi l l an ' s  a l go r i t hm and the  new a lgor i thm,  b o t h  im-  
p l e m e n t e d  using the  universa l  d a t a  s t ruc ture  and the  i m p r o v e m e n t s  in the  
c o m b i n a t o r i a l  d e t e r m i n a t i o n  men t ioned  above.  

The  first  e x a m p l e  is a m o d e l  of  a concurrent  n -buf fe r  (see F igure  5). The  
ne t  has  2n places  and  n + 1 t r ans i t ions ,  where n is the  buffer 's  capaci ty .  
W h i l e  the  n u m b e r  of  reachable  m a r k i n g s  is 2",  Fin has size O(n 2) and con- 
t a ins  one single cu t -o f f  event  (see Table  1). In  th is  example ,  t he  comple t e  
prefix c o m p u t e d  by  McMi l l an ' s  a l go r i t hm is min ima l .  The  new a l g o r i t h m  
compu te s  the  s ame  prefix w i thou t  t ime  overhead,  as expected .  

Our  second example ,  F igure  5, is a m o d e l  of a s lo t t ed  r ing p ro toco l  t aken  
f rom [13]. Here the  size of  the  prefix p roduced  by the  new a l g o r i t h m  grows 

3All the times have been measured on a SPARCstation 20 with 48 MB main memory. 
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. . . .  ~ 0 ~ ,  1 Y -  
~ C  

FIGURE 7. Slotted ring protocol for n = 2. 

i , o . ~ o . , o . ,  MoM,,,~n'. ~',o.,hm N~ ~',o.,hm 
i n I] IS] ] ITI I ][Mo>l IB] ] IEI ] c I time[s] iB] } IEI ] c ] time[s] 

1 10 1 .2 .10 '  10 18 12 18 12 3 0.00 2 . 1 - 1 0 .  2 100 68 13 0.00 2 2O 2O 0.00 90 62 14 0.00 
~! 8.2.10: 1812 12~8 296 1:+, +~  628136 i ~  8::~ .+ +~ 4 . 0 . 1 0 .  414 26s 60 0 3  

+ ++ 1.7. i0 ~ 8925 6240 1630 45.31 1805 1280 300 1.58 
60 60 3.7. I0~ 45846 31104 8508 1829.4~ 4470 3216 792 11.08 
70 70 8 0 �9 10 ~ -- 10143 7224 1708 79.08 
80 80 1.7." i0,,10 __4 23880 17216 4256 563.69 

8 90 90 3.8. i0"" __4 52209 87224 8820 2850.89 
10 100 100 8+1. i012 4 119450 86160 21320 15547.67 

TABLE 2. Results of the slotted ring protocol example; c = Icutolfsl. 

more slowly than  in the case of McMillan's algorithm. For n = 6 the output  
is already one order of magnitude smaller. The slow growth in size can cause 
an even more dramat ic  reduction in the running time. 

Original  net  McMi l l an ' s  a lgor i thm New a lgo r i t hm 
I ~  II,+, I ,~1 i ,~,o, ,  II ,~, , ,~, I ~ I~,~+I+ II i~, I , ~ , ,  o i t i m e t + ~ l  

I+11+1 +1 +[L +'1 "1 I ~ +1 +1 I ~176176 47 35 6a9 734 361 6~ 0.48 112 50 47 0.02 
71 53 7423 5686 2834 512 22.90 172 77 10 0.05 

12 95 71 74264 45134 22555 4096 1471.16 232 104 13 0.1-3 

TABLE 3. Results of Milner's cyclic scheduler; c = IcutoJ]s]. 

In Table 3, we give the t imes for an example taken from [2] tha t  models 
Milner's cyclic scheduler for n tasks. While the size of the unfolding pro- 
duced by the McMillan's algori thm grows exponentially with the number  
of tasks, we get linear size using our new one. 

4 T h e s e  t i m e s  c o u l d  n o t  b e  c a l c u l a t e d ;  for  n = 7 we i n t e r r u p t e d  t h e  c o m p u t a t i o n  a f t e r  
m o r e  t h a n  12 h o u r s .  
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6 Conclusions 

We have presented an algorithm for the computation of a complete finite 
prefix of an unfolding. We have used a refinement of McMillan's basic notion 
of cut-off event. The prefixes constructed by the algorithm contain at most 
n non-cut-off events, where n is the number of reachable markings of the 
net. Therefore, we can guarantee that the prefix is never larger than the 
reachability graph, which does not hold for the algorithm of [10]. 

Recently, Kondratyev et al. have independently found another partial 
order between events which permits to obtain reduced unfoldings [9]. Their 
technique works for bounded nets. However, the partial order is not total, 
and so the upper bound on the size of the unfolding cannot be derived. 
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