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Abstract: The support vector machine (SVM) has an excellent ability to solve binary classification problems, and how 
to process multi-class problems with it is one of the present focuses. Among the existing multi-class SVM methods, 
there are one-against-one method, one-against-all method, and some other methods. Generally speaking, each of them 
has their advantages and disadvantages. This paper presents an improved technique of the one-against-all method for 
multi-class Support Vector Machine. It has the faster learning speed than the traditional methods. The experimental 
results show that the number of the hyper-planes has been reduced and the accuracy of identification are improved 
significantly compared to that of the traditional methods. 
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1. Introduction 
The support vector machine (SVM) [1], [2] is 

originally introduced for binary classification 
problems, and it has an excellent ability to solve these 
problems. And how to process multi-class problems 
with it is one of the present focuses. Many methods 
have been proposed to solve multi-class problems. 
There are three important ones: one-against-one [3], 
[4], one-against-all [3], [4], and directed acyclic graph 
SVM (DAGSVM) [3]. The most important index for 
evaluating the classifier is the accuracy of the method. 
In this aspect, the one-against-one method is better 
than the others. In applications, only one index is not 
enough, the complexity of computation should be 
considered. For an n-class problem, both one-against-
one and DAGSVM [3] methods construct n*(n-1)/2 
hyper-planes. The one-against-all method constructs n 
hyper-planes where each one is constructed by using 
all data from the training set. Although the one-
against-one and the DAGSVM methods construct 
n*(n-1)/2 hyper-planes, the training time is less than 
the one-against-all method because they use a small 
number of training data for learning. So, it seems that 
the one-against-one and the DAGSVM methods are 
more suitable than one-against-all method. But in [5], 
it disagrees with a large body of some published work 
on multi-class classification and believes that the one-

against-all method is as accurate as any other 
approach. 

In this paper, we consider an improved technique 
of one-against-all method. It uses a new classification 
method. In some cases, the traditional one-against-all 
method will not classify all the classes accurately. The 
proposed method firstly classifies one class from the 
other n-1 classes, and then it processes the 
classification in the rest n-1 classes, and so on. This 
method will not increase the number of hyper-planes 
and can improve the accuracy of one-against-all 
method. Furthermore, the proposed method can 
resolve the unclassifiable regions in a much better way 
than the traditional methods. 

In Section2, we briefly describe the binary SVM 
and the one-against-all method of multi-class 
problems. In Section3, we introduce our algorithms. In 
Section4, experimental results are reported to illustrate 
the superiority of the proposed method. Finally, 
concluding remarks are discussed in Section5. 

2. Review of SVM for classification 

2.1. Support vector machine 
Consider a set of training examples 

1 1 2 2{( , ), ( , ), ..., ( , )}N ND x y x y x y= ,  
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where the ith sample n
ix R∈  (n is the dimension of 

the input space) belongs to two separate classes 
labeled by { 1,1}iy ∈ − .The classification problem is 
to find a hyper-plane in a high dimensional feature 
space Z , which divides the set of examples in the 
feature space such that all the points with the same 
label are on the same side of the hyper-plane [6], [7]. 
SVM is to construct a map ( )z xφ=  from the input 

space nR  to a high-dimensional feature space Z  and 
to find an “optimal” hyper-plane 0Tw z b+ =  in Z  
such that the separation margin between the positive 
and negative examples is maximized. A decision 
function of the classifier is then given by 

, sgn[ ]T
w bf w z b= + , 

where w  is a weight vector and b  is a threshold. 
Without loss of generality, we consider the case when 
the training set is not linearly separable. The SVM 
classification amounts to finding w  and b  satisfying  
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Where c > 0 is a regularization parameter for the 
tradeoff between model complexity and training error, 
and iε  measures the (absolute) difference between 

Tw z b+  and iy . Solving (1) directly is more 
complex because of a number of variables and 
unknown ( )xφ . Thus, solving (1) is converted into 
solving a dual problem  

1 1 1

1

1max ( ( ) ( ))
2

0
. .

0 , 1,...,

N N N
T

i j i j i j i
i j i

N

i i
i

i

y y x x

y
s t

c i N

φ φ αα α

α

α

= = =

=

− +

⎧ =⎪
⎨
⎪ ≤ ≤ =⎩

∑∑ ∑

∑
 (2)

Let a kernel function ( , )K x y  satisfying 
( , ) ( ) ( )T

i j i jK x x x xφ φ= . The above dual problem 
becomes  
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Moreover, the decision function of the classifier can 
be represented as  

1
( ) sgn[ ( , ) ]

N

i i i
i

f x y K x x bα
=

= +∑  (4)

For convenient computation here, let i i ia yα= . Then 
(3) can be equivalently written as  

1 1 1

1

1 2

1min ( , )
2

0
. .

, 1,...,

N N N

i j i j i i
i i i

N

i
i

i i i

a a K x x a y

a
s t

c a c i N

= = =

=

−

⎧
=⎪

⎨
⎪− ≤ ≤ =⎩

∑∑ ∑

∑
 (5)

Where for 1, ...,i l= , 1 (sgn(1 ))i ic c y= − −  and 
2 (sgn(1 ))i ic c y= + . Therefore, the learning problem in 

SVM is equivalent to the quadratic programming 
problem in (5) with N bounded variables. 

2.2. One-against-all method 
For a k-class problem, the one-against-all method 

constructs k SVM models [2], [3], [4]. The ith SVM is 
trained with all of the training examples in the ith 
class with positive labels and the others with negative 
labels. The final output of the one-against-all method 
is the class that corresponds to the SVM with the 
highest output value.  Given a set of training examples 

1 1 2 2{( , ), ( , ), ..., ( , )}N ND x y x y x y= , where the ith 

sample n
ix R∈  and {1, ..., }jy k∈  is the class of jx , 

the ith SVM solves the following optimization 
problem: 
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The decision function of the ith SVM is  
( ) ( ) ( )i T i

if x w x bφ= +  (7)

A point x  is in the class that corresponds to the 
largest value of the decision functions: 
the class of  

1,...,arg max (( ) ( ) )i T i
i kx w x bφ== +  (8)

3. The proposed method 
The one-against-all method is dividing each class 

from the others. Although it only constructs k hyper-
planes, because of its error rate, it is not the best 
method of multi-class problems. We can consider 
some improvement of the original method. First, 
because we want to improve this method, the number 
of the hyper-planes should not be increased. But on 
the other hand, resolving the k-classes problem need at 
least k hyper-planes. So the number of the hyper-
planes will not change. After fixed the number of the 
hyper-planes, we should use these hyper-planes to 
gain higher classification accurate. Now, all steps will 
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be stated below: 

First we find one class that can be divided from 
the other k-1 classes correctly, and if it can not be 
divided correctly, find one class which minimizes the 
classification error probability. This class is denoted 
by class1, and then we find the corresponsive hyper-
plane. 

In the residual k-1 classes, finding one class which 
can be divided from the other k-2 classes correctly, if 
it can not be divided correctly, find one class which 
minimizes the classification error probability. This 
class is denoted by class2, and then finding the 
corresponsive hyper-plane. Using the 2 hyper-planes 
found in step1 and step2, we can divided class2 from 
the k-1 other classes. 

Ignoring the first 2 classes, repeat the above 
process to divide the rest of the classes, and continue 
the steps until the classification is complete. 

At the end of the process, we surprisingly find that 
the improved method only needs k-1 hyper-planes. 
Because the last class does not need another hyper-
plane, it can be separated from the others by using the 
existing k-1 hyper-planes. 

In this method, we only use k-1 hyper-planes to 
classify k classes, but we do not divide each class 
from the others by using only one corresponsive 
hyper-plane. From the proposed method, class2 is 
divided from the others by 2 hyper-planes, class3 is 
divided from the others by 3 hyper-planes, and at last, 
class k-I and class k is divided from the others by k-1 
hyper-planes. 

Now, we use a 4-classes problem to illustrate the 
superiority of this improvement. Look at figure 1 and 
figure 2, the 4 classes are called class1 (squares), 
class2 (rotundities), class3 (rhombuses), class4 
(triangles), respectively. In figure 1, we use the 
traditional one-against-all method, and it is clear that 
both hyper-plane2 and hyper-plane4 make some 
mistakes. Using only one hyper-plane to divided one 
class from the others is not enough, because some 
classes are unclassifiable by one hyper-plane. 

 
Fig. 1: The traditional one-against-all method 

 

 
Fig. 2: The proposed method 

Figure 2 illustrates the hyper-planes of the 
proposed method. From the figure, it is explicit that 
only 3 hyper-planes can classify 4 classes accurately. 
Class2 is divided from class1 by hyper-plane1, and 
divided from class3, class4 by hyper-plane2. Class3 is 
divided from class1, 2, and 4, by hyper-plane1, 2, and 
3, respectively. Class4 is divided from class1, 2, and 3, 
by hyper-plane 1, 2, and 3, respectively. Compared 
with the traditional method, class k (k=2, 3) uses k-1 
more hyper-planes to finish the classification in this 
method, so the accuracy will be increased. On the 
other hand, class 3 and class 4 use the same hyper-
planes to finish the classification, so we only need 3 
hyper-planes. The number of the hyper-planes is 
reduced, so the time of the classification can be 
improved. 

Further more, in figure 1, there are 5 regions called 
region A, B, C, D, and E, respectively. If some testing 
examples in these regions, they are unclassifiable, this 
will increase the error rate. This is an inevitable 
problem in the traditional method. But in figure 2, 
there is no region that likes the regions A, B, C, D, and 
E, in figure 1. It means that the inevitable problem in 
the traditional method has been solved. 

4. Experimental results 
In this section, the performance evaluation of the 

proposed algorithm is given. Figure 3 shows the test 
image for the simulations.  

 
Fig. 3: The test image 

The purpose is to recognize the plane out of figure 
3. We sort the pixels in the image into 4 categories 
through the RGB value (The colorized images have 



SETIT2007  
 

 - 4 - 

been changed into monochrome images). The 
traditional method uses 4 linear discrimination 
equations to implement the classification. When a 
pixel locates at the uncertain zone, it will be put into 
some category randomly.  

   
(a)The traditional method            (b) The proposed method 

Fig. 4: The simulation results 

The traditional method (the left one) uses 4 linear 
discrimination equations to classify the pixels, and 
there is uncertain zone. The proposed algorithm (the 
right one) uses 3 linear discrimination equations, and 
there is no uncertain zone. As illustrated in the right 
image of figure 4, the proposed algorithm recognizes 
the outline of the plane more clearly and achieves 
better classification results than the traditional ones. 
Further more, by using the original method, the 
background noise is obvious, but the proposed method 
can eliminate the background noise effectively. 

5. Conclusions 
In this paper, we proposed an improved method 

based on the traditional one-against-all method. It has 
a faster speed than the traditional method because it 
only uses k-1 hyper-planes to classify k classes. 
Secondly, all classes use more than one hyper-plane in 
the classification except the class 1, so it can get 
higher classification accuracy than the traditional 
method. Further more, the proposed method can 
resolve the unclassifiable regions. In sum, the 
proposed method really improves the performance of 
the existing one-against-all method and has been of 
great value.  

Although the proposed method has its own 
advantages, it is not perfect. We also have some work 
to do in the future. The generalization of this training 
method is the first work which is worth to consider. To 
improve the generalization of the method, we can use 
some methods of optimization to adjust several 
unreasonable hyper-planes. Another valuable work is 
to improve the accuracy of the method. It is more 
accurate than the traditional one-against-all method, 
but it is not always better than the one-against-one 
method, we should use the advantages of the one-
against-one method to make some progress. The 
future work will mainly focus on these two important 
aspects. 
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