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Abstract For integer k ≥ 2, a graph G is called k-leaf-connected if |V(G)| ≥ k + 1
and given any subset S ⊆ V(G) with |S | = k, G always has a spanning tree T such that
S is precisely the set of leaves of T. Thus a graph is 2-leaf-connected if and only if it
is Hamilton-connected. In this paper, we present a best possible condition based upon
the size to guarantee a graph to be k-leaf-connected, which not only improves the results
of Gurgel and Wakabayashi [On k-leaf-connected graphs, J. Combin. Theory Ser. B
41 (1986) 1-16] and Ao, Liu, Yuan and Li [Improved sufficient conditions for k-leaf-
connected graphs, Discrete Appl. Math. 314 (2022) 17-30], but also extends the result
of Xu, Zhai and Wang [An improvement of spectral conditions for Hamilton-connected
graphs, Linear Multilinear Algebra, 2021]. Our key approach is showing that an (n+k−1)-
closed non-k-leaf-connected graph must contain a large clique if its size is large enough.
As applications, sufficient conditions for a graph to be k-leaf-connected in terms of the
(signless Laplacian) spectral radius of G or its complement are also presented.
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1 Introduction
In this paper, we consider simple, undirected and connected graphs. Let G be a graph

with vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G). The order and size of G are
denoted by |V(G)| = n and |E(G)| = e(G), respectively. For any vertex u ∈ V(G), we
denote by dG(u) the degree of vertex u in G and by (d1, d2, . . . , dn) the degree sequence
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of G with d1 ≤ d2 ≤ · · · ≤ dn. Let G1 and G2 be two vertex-disjoint graphs. We denote
by G1 + G2 the disjoint union of G1 and G2. The join G1 ∨G2 is the graph obtained from
G1 + G2 by adding all possible edges between V(G1) and V(G2). We denote by δ, G,
ω(G) the minimum degree, the complement and the clique number of G, respectively. For
undefined terms and notions one can refer to [3] and [4].

Let A(G) be the adjacency matrix and D(G) be the diagonal degree matrix of G. Let
Q(G) = D(G) + A(G) be the signless Laplacian matrix of G. The largest eigenvalues of
A(G) and Q(G), denoted by ρ(G) and q(G), are called the spectral radius and the signless
Laplacian spectral radius of G, respectively.

The concept of closure of a graph was used implicitly by Ore [13], and formally
introduced by Bondy and Chvatal [2]. Fix an integer l ≥ 0, the l-closure of a graph G
is the graph obtained from G by successively joining pairs of nonadjacent vertices whose
degree sum is at least l until no such pair exists. Denote by Cl(G) the l-closure of G. Then
we have

dCl(G)(u) + dCl(G)(v) ≤ l − 1

for every pair of nonadjacent vertices u and v of Cl(G).
For integer k ≥ 2, a graph G is called k-leaf-connected if |V(G)| ≥ k + 1 and given any

subset S ⊆ V(G) with |S | = k, G always has a spanning tree T such that S is precisely
the set of leaves of T. Thus a graph is 2-leaf-connected if and only if it is Hamilton-
connected. Hence k-leaf-connectedness of a graph is a natural generalization of Hamilton-
connectedness. Gurgel and Wakabayashi [9] proved that if G is a k-leaf-connected graph
of order n, where 2 ≤ k ≤ n − 2, then G is (k + 1)-connected. Hence δ ≥ k + 1 is a trivial
necessary condition for a graph to be k-leaf-connected.

Determining whether a given graph is k-leaf-connected is NP-complete. Gurgel and
Wakabayashi [9] initially proved the following sufficient condition in terms of e(G) to
guarantee a graph G to be k-leaf-connected.

Theorem 1.1 (Gurgel and Wakabayashi [9]). Let G be a connected graph of order n with
minimum degree δ ≥ k + 1, where 2 ≤ k ≤ n − 4. If

e(G) ≥
(
n − 1

2

)
+ k + 1,

then G is k-leaf-connected.

Ao, Liu, Yuan and Li [1] presented the following sufficient condition for a graph to be
k-leaf-connected and improved the result of Theorem 1.1.

Theorem 1.2 (Ao, Liu, Yuan and Li [1]). Let G be a connected graph of order n and
minimum degree δ ≥ k + 1, where 2 ≤ k ≤ n − 4. If

e(G) ≥
(
n − 2

2

)
+ 2k + 2,

then G is k-leaf-connected unless G ∈ {K3∨ (Kn−5 + 2K1),K4∨ (K2 + 3K1),K6∨6K1,K5∨

5K1,K4 ∨ (K1,4 + K1),K3 ∨ K2,5,K4 ∨ 4K1,K3 ∨ (K1,3 + K1),K2 ∨ K2,4}.
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As a special case of k-leaf-connectedness, there are many sufficient conditions to
assure a graph to be 2-leaf-connected (see for example [14, 16–18]). By introducing
the minimum degree δ as a new parameter, Chen and Zhang [5] presented a sufficient
condition for a graph with δ ≥ t ≥ 2 to be Hamilton-connected: e(G) ≥

(
n−t+1

2

)
− t2−3t−2

2 .
Zhou and Wang [19] proved a better condition for a graph to be Hamilton-connected:
e(G) ≥

(
n−t
2

)
+t2+t. Recently, Xu, Zhai and Wang [15] improved the results of [5] and [19].

Define Lt
n = K2 ∨ (Kn−t−1 + Kt−1) (2 ≤ t ≤ n

2 ),N t
n = Kt ∨ (Kn−2t+1 + (t − 1)K1) (2 ≤ t ≤ n

2 ),
and Mt

n = Kt+1 ∨ (Kn−2t−1 + tK1) (2 ≤ t ≤ n−1
2 ).

Theorem 1.3 (Xu, Zhai and Wang [15]). Let G be a connected graph of order n ≥ 6t + 3
with δ ≥ t ≥ 2. If

e(G) ≥
(
n − t

2

)
+ t2 + 2,

then G is Hamilton-connected unless Cn+1(G) ∈ {Lt
n,N

t
n,M

t
n}.

Inspired by the ideas from the conjecture by Erdős and Hajnal [6] and the result on
Hamilton-connected graphs by Xu, Zhai and Wang [15], we first show that an (n + k− 1)-
closed non-k-leaf-connected graph G must contain a large clique if its number of edges
is large enough. Using the key approach and typical spectral techniques, we present a
best possible condition based upon the size to guarantee a graph to be k-leaf-connected
as follows. Our main result not only improves the result of Theorem 1.2, but also extends
the result on Hamilton-connected graphs in Theorem 1.3.

Theorem 1.4. Let G be a connected graph of order n ≥ k + 17 and minimum degree
δ ≥ k + 1, where k ≥ 2. If

e(G) ≥
(
n − 3

2

)
+ 3k + 5,

then G is k-leaf-connected unless Cn+k−1(G) ∈ {Kk∨ (Kn−k−2 + K2),K3∨ (Kn−5 + 2K1),K4∨

(Kn−7 + 3K1)}.

2 Preliminaries
We will present in this section some important results that will be used in our

subsequent arguments. Gurgel and Wakabayashi [9] proved a sufficient condition in terms
of the degree sequence for a graph to be k-leaf-connected.

Lemma 2.1 (Gurgel and Wakabayashi [9]). Let k and n be such that 2 ≤ k ≤ n − 3. Let
G be a graph with degree sequence d1 ≤ d2 ≤ · · · ≤ dn. Suppose that there is no integer i
with k ≤ i ≤ n+k−2

2 such that di−k+1 ≤ i and dn−i ≤ n− i + k− 2. Then G is k-leaf-connected.

Lemma 2.2 (Gurgel and Wakabayashi [9]). Let G be a graph and k be an integer with
2 ≤ k ≤ n − 1. Then G is k-leaf-connected if and only if the (n + k − 1)-closure Cn+k−1(G)
of G is k-leaf-connected.

An important upper bound on the spectral radius ρ(G) is as follows.
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Lemma 2.3 (Hong, Shu and Fang [11], Nikiforov [12]). Let G be a graph with minimum
degree δ. Then

ρ(G) ≤
δ − 1

2
+

√
2e(G) − δn +

(δ + 1)2

4
.

The following observation is very useful when we use the above upper bound on ρ(G).

Proposition 2.1 (Hong, Shu and Fang [11], Nikiforov [12]). For graph G with 2e(G) ≤
n(n − 1), the function

f (x) =
x − 1

2
+

√
2e(G) − nx +

(x + 1)2

4

is decreasing with respect to x for 0 ≤ x ≤ n − 1.

Feng and Yu [7] proved an upper bound on q(G), which has been widely used in the
literature.

Lemma 2.4 (Feng and Yu [7]). Let G be a connected graph on n vertices and e(G) edges.
Then

q(G) ≤
2e(G)
n − 1

+ n − 2.

Let M be the following n × n matrix

M =


M1,1 M1,2 · · · M1,m

M2,1 M2,2 · · · M2,m
...

...
. . .

...
Mm,1 Mm,2 · · · Mm,m

 ,
whose rows and columns are partitioned into subsets X1, X2, . . . , Xm of {1, 2, . . . , n}. The
quotient matrix R(M) of the matrix M (with respect to the given partition) is the m ×
m matrix whose entries are the average row sums of the blocks Mi, j of M. The above
partition is called equitable if each block Mi, j of M has constant row (and column) sum.

Lemma 2.5 (Brouwer and Haemers [4], Godsil and Royle [8], Haemers [10]). Let M be a
real symmetric matrix and let R(M) be its equitable quotient matrix. Then the eigenvalues
of the quotient matrix R(M) are eigenvalues of M. Furthermore, if M is nonnegative and
irreducible, then the spectral radius of the quotient matrix R(M) equals to the spectral
radius of M.

3 Proof of Theorem 1.4
Before presenting our main result, we first show that an (n + k − 1)-closed non-k-leaf-

connected graph G must contain a large clique if its number of edges is large enough. We
denote by ω(G) the clique number of G. Let (d1, d2, . . . , dn) be the degree sequence of G,
where d1 ≤ d2 ≤ · · · ≤ dn.
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Lemma 3.1. Let G be an (n+k−1)-closed non-k-leaf-connected graph of order n ≥ k+17
with δ ≥ k + 1 and k ≥ 2. If

e(G) ≥
(
n − 3

2

)
+ 3k + 5,

then ω(G) = n − 2 unless G � K4 ∨ (Kn−7 + 3K1).

Proof. Note that δ ≥ k + 1. First we claim that ω(G) ≤ n − 2. Otherwise, suppose that
ω(G) ≥ n−1, then G contains an (n−1)-clique, and hence for any two vertices u, v ∈ V(G),
we always have dG(u) + dG(v) ≥ n + k − 1. If there exists two vertices uv < E(G), then
dG(u) + dG(v) ≤ n + k − 2 since G is an (n + k − 1)-closed graph, a contradiction. Hence
any two vertices of G are adjacent. That is, G � Kn, and obviously G is k-leaf-connected,
a contradiction.

Let (d1, d2, . . . , dn) be the degree sequence of G with d1 ≤ d2 ≤ · · · ≤ dn. Note that G
is not k-leaf-connected. By Lemma 2.1, there exists an integer i with k ≤ i ≤ n+k−2

2 such
that di−k+1 ≤ i and dn−i ≤ n − i + k − 2. Then we have

e(G) =
1
2

n∑
j=1

d j

=
1
2

(
i−k+1∑

j=1

d j +

n−i∑
j=i−k+2

d j +

n∑
j=n−i+1

d j)

≤
1
2

[(i − k + 1)i + (n − 2i + k − 1)(n − i + k − 2) + i(n − 1)]

=

(
n − 3

2

)
+ 3k + 5 +

f1(i)
2
,

where
f1(i) = 3i2 − (2n + 4k − 5)i + (2k + 4)n + k2 − 9k − 20.

By the assumption e(G) ≥
(

n−3
2

)
+ 3k + 5, then we have f1(i) ≥ 0. Note that k + 1 ≤ δ ≤

di−k+1 ≤ i ≤ n+k−2
2 . We shall divide the proof into the following three cases.

Case 1. k + 3 ≤ i ≤ n+k−2
2 .

Since f ′′1 (i) = 6 > 0, then f1(i) is a concave function on i. For n ≥ k + 17, we have

f1(k + 3) = −2n + 2k + 22 < 0,

and f1(
n + k − 2

2
) = −

n2

4
+

k + 11
2

n −
k2

4
−

11k
2
− 22 < 0.

This implies that f1(i) < 0, a contradiction.

Case 2. i = k + 2.
Then the corresponding degree sequence of G is

d1 ≤ d2 ≤ d3 ≤ k + 2︸                    ︷︷                    ︸
V1

, d4 ≤ d5 ≤ · · · ≤ dn−k−2 ≤ n − 4︸                                 ︷︷                                 ︸
V2

, dn−k−1 ≤ dn−k ≤ · · · ≤ dn ≤ n − 1︸                                    ︷︷                                    ︸
V3

.

According to the above degree sequence, we divide V(G) into three parts: V1, V2 and V3.
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Fig. 1: Graph Kk+2 ∨ (Kn−k−5 + 3K1).

Claim 1. There is no vertex of degree less than n+k−1
2 in V2.

Proof. Suppose that there exists a vertex of degree less than n+k−1
2 in V2. Then

e(G) =
1
2

n∑
j=1

d j

<
1
2
[
3(k + 2) + (n − k − 6)(n − 4) + (k + 2)(n − 1) +

n + k − 1
2

]
=

(
n − 3

2

)
+ 3k + 5 −

n − k − 11
4

≤

(
n − 3

2

)
+ 3k + 5 −

3
2

< e(G),

a contradiction, since n ≥ k + 17. �

By Claim 1, it follows that dG(u) + dG(v) ≥ n + k − 1 for any two different vertices
u, v ∈ V2 ∪ V3. Note that G is (n + k − 1)-closed. Then V2 ∪ V3 is a clique of G, and hence

ω(G) ≥ |V2 ∪ V3| ≥ (n − k − 5) + (k + 2) = n − 3.

Recall that ω(G) ≤ n − 2. Then we have

n − 3 ≤ ω(G) ≤ n − 2.

If ω(G) = n − 2, then d3 ≥ n − 3. Note that d3 ≤ k + 2. Then n ≤ k + 5, which contradicts
n ≥ k + 17. Thus, we have ω(G) = n − 3. Let C = V2 ∪ V3. Note that |C| = n − 3. Then C
is a maximum clique of G, and V(G) = V1 ∪ C. Notice that k + 1 ≤ δ ≤ dG(v) ≤ k + 2 for
each v ∈ V1. Let V1 = {v1, v2, v3} and V∗1 = {vi ∈ V1 | dG(vi) = k + 2}.

Claim 2. |V∗1 | ≥ 2.

Proof. Suppose, to the contrary, that |V∗1 | ≤ 1. Note that k + 1 ≤ dG(vi) ≤ k + 2 for any
vi ∈ V1. Then

e(G) ≤ e(C) +

3∑
i=1

dG(vi) ≤
(
n − 3

2

)
+ 2(k + 1) + (k + 2) =

(
n − 3

2

)
+ 3k + 4 < e(G),

a contradiction. �
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Define C∗ = {v ∈ C | NG(v) ∩ V1 , ∅}.

Claim 3. |C∗| = k + 2.

Proof. By the definition of C∗, we know that dG(v) ≥ n − 3 for each v ∈ C∗. Then
dG(v) + dG(vi) ≥ (n − 3) + (k + 2) = n + k − 1 for any v ∈ C∗ and vi ∈ V∗1 . Note that G
is (n + k − 1)-closed. It follows that each vertex of C∗ is adjacent to each vertex of V∗1 .
Combining Claim 2, we have dG(v) ≥ dC(v) + |V∗1 | ≥ (n − 4) + 2 = n − 2 for each v ∈ C∗.
Therefore, dG(v) + dG(vi) ≥ (n − 2) + (k + 1) = n + k − 1 for any v ∈ C∗ and vi ∈ V1. Then
each vertex of V1 is adjacent to each vertex of C∗, which implies that |C∗| ≤ dG(vi) ≤ k+2,
where vi ∈ V1.

On the other hand, let e(V1,C) denote the number of edges between V1 and C. Notice
that e(V1,C) = e(V1,C∗) = |V1||C∗| = 3|C∗| and e(V1) = 1

2 (
∑

vi∈V1
dG(vi)−3|C∗|) ≤ 3(k+2−|C∗ |)

2 .
Then

e(G) = e(C) + e(V1,C∗) + e(V1) ≤
(
n − 3

2

)
+

3(k + 2 + |C∗|)
2

.

Combining the assumption e(G) ≥
(

n−3
2

)
+ 3k + 5, we have |C∗| ≥ k + 2. Therefore,

|C∗| = k + 2. �

Recall that dG(vi) ≤ k +2 for each vi ∈ V1. According to Claim 3, V1 is an independent
set. This implies that G � Kk+2 ∨ (Kn−k−5 + 3K1) (see Fig. 1). Define

L = V(Kk+2), M = V(Kn−k−5) and N = V(3K1).

Notice that the vertices of N are only adjacent to those of L.When k ≥ 3, for any S ⊆ V(G)
with |S | = k, we always find a spanning tree T (see Fig. 2) such that S is precisely the set
of leaves (labeled by red vertices) of T . Hence Kk+2 ∨ (Kn−k−5 + 3K1) is k-leaf-connected,
which contradicts the assumption. However, K4 ∨ (Kn−7 + 3K1) is not 2-leaf-connected.
Therefore, G � K4 ∨ (Kn−7 + 3K1).

Case 3. i = k + 1.
Then the degree sequence of G is given by

d1 = d2 = k + 1︸             ︷︷             ︸
V1

, d3 ≤ d4 ≤ · · · ≤ dn−k−1 ≤ n − 3︸                                 ︷︷                                 ︸
V2

, dn−k ≤ dn−k+1 ≤ · · · ≤ dn ≤ n − 1︸                                    ︷︷                                    ︸
V3

.

Claim 4. There are at most three vertices of degree less than n+k−1
2 in V2.

Proof. Assume that there exist four vertices of degree less than n+k−1
2 in V2. Then we have

e(G) =
1
2

n∑
j=1

d j

<
1
2

[2(k + 1) + (n − k − 7)(n − 3) + (k + 1)(n − 1) + 4 ·
n + k − 1

2
]

=

(
n − 3

2

)
+ 3k + 4,

< e(G),

a contradiction. �



8

Fig. 2: (a). k vertices are chosen from M; (b). One of k vertices belongs to L, and the rest
belong to M; (c). At least two vertices come from L, and the rest come from M; (d). One
vertex is from N, and the remaining vertices come from L ∪ M; (e). Two vertices belong
to N, and the remaining vertices come from L ∪ M. ( f ). Three vertices belong to N, and
the remaining vertices come from L ∪ M.

Let V∗2 = {v ∈ V2 | dG(v) ≥ n+k−1
2 }. By Claim 4, we have |V∗2 | ≥ |V2| − 3 = n− k− 6 > 0.

It is clear that dG(u)+dG(v) ≥ n+k−1 for any u, v ∈ V∗2 ∪V3. Note that G is an (n+k−1)-
closed graph. This implies that V∗2 ∪ V3 is a clique of G, and hence ω(G) ≥ |V∗2 ∪ V3| ≥

(n − k − 6) + (k + 1) = n − 5. Note that ω(G) ≤ n − 2. Then we have

n − 5 ≤ ω(G) ≤ n − 2.

Define C = V∗2 ∪ V3.

Claim 5. C is a maximum clique of G.

Proof. By the definition of V∗2 , we know that dG(u) < n+k−1
2 ≤ n − 9 < n − 5 for any

u ∈ V1 ∪ (V2\V∗2), since n ≥ k + 17. Hence there exists at least one vertex v ∈ C such that
uv < E(G) for any u ∈ V1 ∪ (V2\V∗2), and thus u < C. This implies that C is a maximum
clique of G. �

Next let ω(G) = ω for short.

Claim 6. dG(u) ≤ n + k − ω − 1 for each u ∈ V2\V∗2 .

Proof. Suppose, to the contrary, that dG(u) ≥ n + k −ω for each u ∈ V2\V∗2 . Then dG(u) +

dG(v) ≥ (n + k − ω) + (ω − 1) = n + k − 1 for u ∈ V2\V∗2 and v ∈ C. Note that G is an
(n + k − 1)-closed graph. Then u is adjacent to every vertex of C, and hence C ∪ {u} is a
larger clique, which contradicts Claim 5. �

Notice that |V2\V∗2 | = n − |V1| − |V∗2 ∪ V3| = n − ω − 2. Hence by Claim 6, we obtain∑
u∈V2\V∗2

dG(u) ≤ (n − ω − 2)(n + k − ω − 1).
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Then we have

e(G) ≤
∑
u∈V1

dG(u) +
∑

u∈V2\V∗2

dG(u) + e(V∗2 ∪ V3)

≤ 2(k + 1) + (n − ω − 2)(n + k − ω − 1) +

(
ω

2

)
=

3
2
ω2 − (2n + k −

5
2

)ω + n2 + kn − 3n + 4

, f2(ω).

Note that f2(ω) is a concave function on ω. If n − 5 ≤ ω(G) ≤ n − 3, then

e(G) ≤ max{ f2(n − 5), f2(n − 3)} =

(
n − 3

2

)
+ 3k + 4 < e(G).

a contradiction. Therefore, ω(G) = n − 2. This completes the proof. �

Remark 3.1. The sufficient condition in terms of edge in Lemma 3.1 is best possible. Let
G � K3 ∨ (Kn−6 + K2 + K1). Note that Cn+1(G) = G. Then G is not 2-leaf-connected and
e(G) =

(
n−3

2

)
+ 10. However, ω(G) = n − 3.

Using the above technical Lemma 3.1, we will present the proof of Theorem 1.4.

Proof of Theorem 1.4. Suppose, to the contrary, that G is not k-leaf-connected, where
n ≥ k + 17, δ ≥ k + 1 and k ≥ 2. Let H = Cn+k−1(G). By Lemma 2.2, H is not
k-leaf-connected. Note that G ⊆ H. By the assumption e(G) ≥

(
n−3

2

)
+ 3k + 5, then

e(H) ≥
(

n−3
2

)
+ 3k + 5. By Lemma 3.1, either ω(H) = n − 2 or H � K4 ∨ (Kn−7 + 3K1).

Assume that ω(H) = n − 2. Next we will characterize the structure of H. Let C be an
(n− 2)-clique of H and F be a subgraph of H induced by V(H)\C, and let V(F) = {v1, v2}.

Claim 7. dH(vi) = k + 1 for each vi ∈ V(F).

Proof. Suppose there exists a vertex vi ∈ V(F) with dH(vi) ≥ k + 2. Then dH(vi) + dH(v) ≥
(k + 2) + (n − 3) = n + k − 1 for any v ∈ C. Recall that H = Cn+k−1(G). Then vi is adjacent
to vertex v. Note that v is an arbitrary vertex of C. Hence vi is adjacent to all vertices of
C. This implies that ω(H) ≥ n − 1, a contradiction. �

Claim 8. NH(v1) ∩C = NH(v2) ∩C.

Proof. Without loss of generality, assume that a vertex v of C is adjacent to v1 of F, then
dH(v) ≥ n − 2. Therefore, dH(v) + dH(v2) ≥ (n − 2) + (k + 1) = n + k − 1. Note that
H = Cn+k−1(G). Then v is also adjacent to vertex v2. Hence NH(v1)∩C = NH(v2)∩C. �

Let |NH(vi) ∩ C| = t. Note that |V(F)| = 2. By Claim 7, we know that dH(vi) = k + 1.
Then t ≥ k. On the other hand, t ≤ dH(vi) = k + 1. Hence k ≤ t ≤ k + 1. Next, we will
discuss the following two cases.

Case 1. t = k.
Then H � Kk ∨ (Kn−k−2 + K2). Note that G − V(Kk) is not connected. Then G has

no spanning tree such that V(Kk) is precisely the set of leaves, and this implies that G
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is not k-leaf-connected. Note that e(H) =
(

n−2
2

)
+ 2k + 1 >

(
n−3

2

)
+ 3k + 5. Hence H �

Kk ∨ (Kn−k−2 + K2).

Case 2. t = k + 1.
Then H � Kk+1∨(Kn−k−3 +2K1). By Theorem 1.5 in [1], we know that Kk+1∨(Kn−k−3 +

2K1) is k-leaf-connected for k ≥ 3, a contradiction. However, K3 ∨ (Kn−5 + 2K1) is not 2-
leaf-connected. Notice that e(H) =

(
n−2

2

)
+6 >

(
n−3

2

)
+11. Therefore, H � K3∨(Kn−5+2K1).

By the above proof, we have H = Cn+k−1(G) ∈ {Kk ∨ (Kn−k−2 + K2),K3 ∨ (Kn−5 +

2K1),K4 ∨ (Kn−7 + 3K1)}, as desired. 2

4 Applications
As applications, we will provide sufficient spectral conditions to guarantee a graph to

be k-leaf-connected. The following lemmas are used in the sequel.

Lemma 4.1. Let H � Kk ∨ (Kn−k−2 + K2).

(i) If n ≥ 2k + 8, then ρ(H) > k
2 +

√
n2 − (k + 8)n + k2

4 + 7k + 23.
(ii) If n ≥ 3k + 10, then q(H) > 2n − 8 + 6k+16

n−1 .

(iii) If n ≥ 3k + 9, then ρ(H) <
√

(n−k)(3n−3k−11)
n .

Proof. (i) Note that Kn−2 is a proper subgraph of H. Then for n ≥ 2k + 8, we have

ρ(H) > ρ(Kn−2) = n − 3 >
k
2

+

√
n2 − (k + 8)n +

k2

4
+ 7k + 23.

(ii) For n ≥ 3k + 10, by a direct calculation, we obtain that

q(H) > q(Kn−2) = 2n − 6 > 2n − 8 +
6k + 16
n − 1

.

(iii) Obviously, H � kK1 ∪ [(n − k − 2)K1 ∨ 2K1]. For n ≥ 3k + 9, we have

ρ(H) = ρ(K2,n−k−2) =
√

2(n − k − 2) <

√
(n − k)(3n − 3k − 11)

n
,

as desired. �

Lemma 4.2. Let H � K3 ∨ (Kn−5 + 2K1).
(i) If n ≥ 9, then ρ(H) > 1 +

√
n2 − 10n + 38.

(ii) If n ≥ 10, then q(H) > 2n − 8 + 28
n−1 .

(iii) If n ≥ 17, then ρ(H) <
√

(n−2)(3n−17)
n .

Proof. (i) Let R(A) be an equitable quotient matrix of the adjacency matrix A(H) with
respect to the partition (V(K3),V(Kn−5),V(2K1)). In the proof of Theorem 4.2 [1], we
known that the characteristic polynomial of R(A) is PR(A)(x) = x3 − (n − 4)x2 − (n + 3)x +

6n − 36, and PR(A)(x) is a monotonically increasing function on [n−4+
√

n2−5n+25
3 ,+∞). Note

that ρ(H) = λ1(R(A)) > n−4+
√

n2−5n+25
3 and

1 +
√

n2 − 10n + 38 >
n − 4 +

√
n2 − 5n + 25
3

.
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By Maple, PR(A)(1 +
√

n2 − 10n + 38) < 0 = PR(A)(ρ(H)) for n ≥ 9. This implies that
ρ(H) > 1 +

√
n2 − 10n + 38.

(ii) Let R(Q) be an equitable quotient matrix of the signless Laplacian matrix Q(H)
with respect to the partition (V(K3),V(Kn−5),V(2K1)). In the proof of Theorem 4.7 [1],
the characteristic polynomial of R(Q) is PR(Q)(x) = x3− (3n−5)x2 + (2n2−n−24)x−6n2 +

42n − 72, and PR(Q)(x) is a monotonically increasing function on [ 3n−5+
√

3n2−27n+97
3 ,+∞).

Note that q(H) > 3n−5+
√

3n2−27n+97
3 and

2n − 8 +
28

n − 1
>

3n − 5 +
√

3n2 − 27n + 97
3

.

By a simple calculation, we have PR(Q)(2n−8+ 28
n−1 ) < 0 = PR(Q)(q(H)) for n ≥ 10. Hence,

q(H) > 2n − 8 + 28
n−1 .

(iii) We have H � 3K1 ∪ [(n − 5)K1 ∨ K2]. Let RC(A) be an equitable quotient matrix
of the adjacency matrix A(H) with respect to the partition (V(3K1),V((n − 5)K1),V(K2)).
One can see that

RC(A) =

 0 0 0
0 0 2
0 n − 5 1

 .
Then the characteristic polynomial of RC(A) is given by PRC(A)(x) = x(x2 − x − 2n + 10).

By a direct calculation, ρ(H) = 1+
√

8n−39
2 <

√
(n−2)(3n−17)

n for n ≥ 17. �

Lemma 4.3. Let H � K4 ∨ (Kn−7 + 3K1).
(i) If n ≥ 9, then ρ(H) < 1 +

√
n2 − 10n + 38.

(ii) If n ≥ 9, then q(H) < 2n − 8 + 28
n−1 .

(iii) If n ≥ 7, then ρ(H) >
√

(n−2)(3n−17)
n .

Proof. (i) Let R(A) be an equitable quotient matrix of the adjacency matrix A(H) with
respect to the partition (V(K4),V(Kn−7),V(3K1)). One can see that

R(A) =

 3 n − 7 3
4 n − 8 0
4 0 0

 .
Then the characteristic polynomial of R(A) is given by PR(A)(x) = x3 − (n − 5)x2 − (n +

8)x + 12n − 96. By Lemma 2.5, we know that ρ(H) = λ1(R(A)) is the largest root of the
equation PR(A)(x) = 0. Let P

′

R(A)(x) = 3x2 − 2(n − 5)x − n − 8 = 0. We can solve this
equation to obtain that

x1 =
n − 5 −

√
n2 − 7n + 49
3

and x2 =
n − 5 +

√
n2 − 7n + 49
3

.

Then PR(A)(x) is a monotonically increasing function on [x2,+∞). Note that ρ(H) =

λ1(R(A)) > x2 and 1 +
√

n2 − 10n + 38 > x2. By Maple, PR(A)(1 +
√

n2 − 10n + 38) >
0 = PR(A)(ρ(H)) for n ≥ 9. This implies that ρ(H) < 1 +

√
n2 − 10n + 38.
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(ii) Let R(Q) be an equitable quotient matrix of the signless Laplacian matrix Q(H)
with respect to the partition (V(K4),V(Kn−7),V(3K1)). Then

R(Q) =

 n + 2 n − 7 3
4 2n − 12 0
4 0 4

 .
Then the characteristic polynomial of R(Q) is given by PR(Q)(x) = x3 − 3(n− 2)x2 + (2n2 −

48)x − 8n2 + 72n − 160. By Lemma 2.5, we have q(H) = λ1(R(Q)) is the largest root of
the equation PR(Q)(x) = 0. Let P

′

R(Q)(x) = 3x2 − 6(n − 2)x + 2n2 − 48 = 0. The two roots
x1 and x2 of this equation are as follows:

x1 =
3n − 6 −

√
3n2 − 36n + 180

3
and x2 =

3n − 6 +
√

3n2 − 36n + 180
3

.

Then PR(Q)(x) is a monotonically increasing function on [x2,+∞).Note that q(H) > x2 and
2n− 8 + 28

n−1 > x2. By a simple calculation, we have PR(Q)(2n− 8 + 28
n−1 ) > 0 = PR(Q)(q(H))

for n ≥ 9. Hence q(H) < 2n − 8 + 28
n−1 .

(iii) It is easy to see that H � 4K1 ∪ [(n − 7)K1 ∨ K3]. Let RC(A) be an equitable
quotient matrix of the adjacency matrix A(H) with respect to the partition (V(4K1),V((n−
7)K1),V(K3)). One can see that

RC(A) =

 0 0 0
0 0 3
0 n − 7 2

 .
Then the characteristic polynomial of RC(A) is given by PRC(A)(x) = x(x2 − 2x− 3n + 21).

By a direct calculation, we have ρ(H) = 1 +
√

3n − 20 >
√

(n−2)(3n−17)
n for n ≥ 7. �

Ao, Liu, Yuan and Li [1] presented sufficient conditions to guarantee a graph to be k-
leaf-connected in terms of the (signless Laplacian) spectral radius of G or its complement.

Theorem 4.1 (Ao, Liu, Yuan and Li [1]). Let G be a connected graph of order n and
minimum degree δ ≥ k + 1, where 2 ≤ k ≤ n − 4. Then

(i) If ρ(G) ≥ k
2 +

√
n2 − (k + 6)n + k2

4 + 5k + 11, then G is k-leaf-connected unless G ∈
{K3 ∨ 3K1,K4 ∨ 4K1}.
(ii) If q(G) ≥ 2n − 6 + 4k+6

n−1 , then G is k-leaf-connected unless G � K4 ∨ 4K1.

(iii) If ρ(G) ≤
√

(n−k)(2n−2k−5)
n , then G is k-leaf-connected.

In this paper, we improve the above result as follows.

Theorem 4.2. Let G be a connected graph of order n ≥ k + 17 and minimum degree
δ ≥ k + 1, where k ≥ 2. If one of the following holds,

(i) ρ(G) ≥ k
2 +

√
n2 − (k + 8)n + k2

4 + 7k + 23,
(ii) q(G) ≥ 2n − 8 + 6k+16

n−1 ,

(iii) ρ(G) ≤
√

(n−k)(3n−3k−11)
n ,

then G is k-leaf-connected unless Cn+k−1(G) ∈ {Kk ∨ (Kn−k−2 + K2),K3 ∨ (Kn−5 + 2K1)}.
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Proof. Suppose, to the contrary, that G is not k-leaf-connected.
(i) By Lemma 2.3 and Proposition 2.1, we have

ρ(G) ≤
δ − 1

2
+

√
2e(G) − δn +

(δ + 1)2

4
≤

k
2

+

√
2e(G) − (k + 1)n +

k2

4
+ k + 1.

Since ρ(G) ≥ k
2 +

√
n2 − (k + 8)n + k2

4 + 7k + 23, we have e(G) ≥
(

n−3
2

)
+ 3k + 5. Let

H = Cn+k−1(G). By Theorem 1.4, we have H ∈ {Kk∨ (Kn−k−2 + K2),K3∨ (Kn−5 +2K1),K4∨

(Kn−7 +3K1)}.Assume that H � K4∨(Kn−7 +3K1). According to (i) of Lemma 4.3, ρ(G) ≤
ρ(H) < 1+

√
n2 − 10n + 38, a contradiction. For H ∈ {Kk∨(Kn−k−2+K2),K3∨(Kn−5+2K1)

and n ≥ k + 17, by (i) of Lemmas 4.1 and 4.2, we can not compare completely ρ(G) with
k
2 +

√
n2 − (k + 8)n + k2

4 + 7k + 23. For the brevity of discussion, we have Cn+k−1(G) =

H ∈ {Kk ∨ (Kn−k−2 + K2),K3 ∨ (Kn−5 + 2K1)}.
(ii) By Lemma 2.4, we have q(G) ≤ 2e(G)

n−1 +n−2. Note that q(G) ≥ 2n−8+ 6k+16
n−1 . Then

e(G) ≥
(

n−3
2

)
+ 3k + 5. Let H = Cn+k−1(G). By Theorem 1.4, we have H ∈ {Kk ∨ (Kn−k−2 +

K2),K3 ∨ (Kn−5 + 2K1),K4 ∨ (Kn−7 + 3K1)}. Suppose that H � K4 ∨ (Kn−7 + 3K1). By (ii)
of Lemma 4.3, q(G) ≤ q(H) < 2n − 8 + 28

n−1 , a contradiction. Therefore, Cn+k−1(G) = H ∈
{Kk ∨ (Kn−k−2 + K2),K3 ∨ (Kn−5 + 2K1)}.

(iii) Let H = Cn+k−1(G). Similar to the proof of Theorem 4.4 in [1], we can obtain that

ρ(H) ≥

√
(n − k)e(H)

n
.

Note that H ⊆ G. Then we have

ρ(H) ≤ ρ(G) ≤

√
(n − k)(3n − 3k − 11)

n
,

and therefore, √
(n − k)e(H)

n
≤ ρ(H) ≤ ρ(G) ≤

√
(n − k)(3n − 3k − 11)

n
.

It is easy to check that e(H) ≤ 3n − 3k − 11 and

e(H) =

(
n
2

)
− e(H) ≥

(
n − 3

2

)
+ 3k + 5.

Applying Theorem 1.4 on H, we have Cn+k−1(H) = H ∈ {Kk ∨ (Kn−k−2 + K2),K3 ∨ (Kn−5 +

2K1),K4 ∨ (Kn−7 + 3K1)}. Assume that H � K4 ∨ (Kn−7 + 3K1). By (iii) of Lemma 4.3,

ρ(G) ≥ ρ(H) >
√

(n−2)(3n−17)
n , a contradiction. Hence Cn+k−1(G) = H ∈ {Kk ∨ (Kn−k−2 +

K2),K3 ∨ (Kn−5 + 2K1)}. This completes the proof of Theorem 4.2. 2
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