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Abstract: This paper proposes a new approach to solve robust H∞ control problems for 
uncertain continuous-time descriptor systems. Necessary and sufficient conditions for robust 
H∞ control analysis and design are derived and expressed in terms of a set of LMIs. In the 
proposed approach, the uncertainties are allowed to appear in all system matrices. Furthermore, 
a couple of assumptions that are required in earlier design methods are not needed anymore in 
the present one. The derived conditions also include several interesting results existing in the 
literature as special cases. 
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1. INTRODUCTION 
 
It is well known that the descriptor system (also 

referred to singular systems, or generalized state-
space systems, or implicit systems, or semistate 
systems in the literature) described by the following 
model 

( ) ( ) ( )
( ) ( ) ( )

Ex t Ax t Bu t
y t Cx t Du t

= +
= +

                    (1) 

has higher capability in describing a physical system. 
In (1), the matrix n nE ×∈  may be singular. Assume 
rank(E)=r and denote by p the degree of the 
characteristic polynomial .sE A−  For descriptor 
systems, it is interesting to note that 0 p r n≤ ≤ ≤ . 
The system (1) is termed to be regular and impulse-
free if p r=  and termed to be admissible if it is 
p r= and all roots of 0sE A− =

 
are Hurwitz stable. 

Descriptor-system models are often more 
convenient and natural than standard state-space 
models in the description of interconnected large-
scalar systems [3], economic systems [12], electrical 
network [14], power systems [1], chemical processes 
[9], and so on [10]. This is the reason why descriptor 
systems have attracted much interest in recent years 
[4-13]. 

The H∞ control problem of descriptor systems has 
been addressed by several researchers. For instance, to 
solve H∞ control problem, the concept of J-spectral 
factorization and(J,J’)-spectral factorization had been 
extended to descriptor systems in [7] and [15]. Based 
on the generalized algebraic Riccati equation, 
necessary and sufficient conditions for H∞ control of 
continuous-time and discrete-time descriptor systems 
were given in [8] and [18], respectively. Recently, 
because of the numerical efficiency of LMI, the H∞ 
control problem of descriptor systems was resolved by 
using LMI approaches [13,5-20]. When descriptor 
systems contain uncertainties, the robust H∞ control 
result currently available in the literature is very 
limited. Reference [6] proposed a necessary and 
sufficient LMI-based condition for robust H∞ control 
of uncertain descriptor systems. Based on it and under 
some assumptions including the admissibility of 
nominal system, necessary and sufficient GARI-based 
conditions are developed to solve the state feedback 
and the dynamic output feedback synthesis problems. 
However, as indicated in [16], all results of [6] are 
only sufficient due to an incorrect proof of the 
necessary statement. Differently, an LMI-based 
approach is proposed in [16] to tackle exactly the 
same problem as [6]. However, all results obtained in 
[16] are still sufficient only. 

In this paper, a new LMI approach is proposed for 
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solving the same problem mentioned above. There are 
four major contributions in this paper. (I) Necessary 
and sufficient conditions for robust H∞ control are 
derived. Before this presentation, only sufficient 
conditions for the same problem were obtained. (II) 
No assumption as needed in [6] is required. (III) The 
system model considered in this paper is more general 
since all system matrices are allowed to have 
uncertainties. In [6,16], only the state matrix contains 
uncertainties. (IV) The present result includes the 
major result of [13,18] as special cases. 

 
2. PROBLEM FOMULATION 

 
Consider an uncertain continuous-time descriptor 

system  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

w u

z zw zu

y yw yu

Ex t A x t B w t B u t
z t C x t D w t D u t
y t C x t D w t D u t

Δ Δ Δ

Δ Δ Δ

Δ Δ Δ

= + +

= + +

= + +

      (2) 

where ( ) nx t ∈  is the state vector, ( ) wmw t ∈  the 
exogenous input, ( ) umu t ∈  the control input, 

( ) zqz t ∈  the controlled output, and ( ) yqy t ∈  the 
measured output. Assume the system matrices ,AΔ  

,wB Δ ,uB Δ ,zC Δ ,zwD Δ ,zuD Δ ,yC Δ ,ywD Δ and yuD Δ  
are described as 

1

2 1 2 3

3

                                     ,

w u w u

z zw zu z zw zu

y yw yu y yw yu

A B B A B B
C D D C D D
C D D C D D

H
H J J J
H

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥+ Δ ⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

(3) 

where ,n nA ×∈ ,wn m
wB ×∈ ,un m

uB ×∈ zC ∈

,zq n× ,z wq m
zwD ×∈ ,z uq m

zuD ×∈ ,yq n
yC ×∈

y wq m
ywD ×∈ and y uq m

yuD ×∈ are constant matrices 

representing the nominal system. 1 ,n sH ×∈  2H ∈ 

,zq s×
3 ,yq sH ×∈ 1 ,s nJ ×∈ 2 ,ws mJ ×∈ and 

3
us mJ ×∈ provide structure information of uncer-

tainties. s s×Δ∈ is a norm-bounded uncertain matrix 
satisfying 

.T
sIΔ Δ ≤                               (4) 

References [6,16] considered the robust H∞ control 
problem of the following special system 

( )1 1( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

w u

z zu

y yw

Ex t A H J x t B w t B u t
z t C x t D u t
y t C x t D w t

= + Δ + +

= +
= +

  (5) 

in which uncertainties appear only on the state matrix. 
Next definition and lemma are directly quoted from 
[6]. 

Definition 1 [6, Definition 2.5]: Given 0γ > , the 
unforced system (5) (i.e. u(t) = 0) is stated to be 
quadratically admissible with disturbance attenuation 
γ  for all uncertainties Δ  if there exists a nonsin- 
gular matrix X such that for all Δ  

   ( ) ( )1 1 1 1

2

0,

1  0.

T T

T T

T T T
w w z z

E X X E

A H J X X A H J

X B B X C C
γ

= ≥

+ Δ + + Δ

+ + <

 (6) 

Lemma 1 [6, Lemma 2.6]: Consider the system in 
(5) and a prescribed scalar 0γ > . Assume TΔ Δ ≤  

2
sIρ where ρ  is a given real number. Then (6) 

holds for all Δ  if and only if there exists a 
nonsingular matrix Y, independent of Δ , such that 

[ ]12
1

1
1

0,

1

                           0.

T T

T
wT T T

w T

zT T
z

E Y Y E

B
A Y Y A Y B H Y

H

C
C J

J

γ
γ γ

ρ
ρ

= ≥

⎡ ⎤
+ + ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤+ <⎢ ⎥⎣ ⎦ ⎣ ⎦

   

(7) 

As mentioned in [16] that, actually, Lemma 1 is only 
sufficient because an obvious argument error appears 
in the proof of necessity. More precisely, the 
inequality (20) of [6] can’t be as claimed to be derived 
from substituting (19) into (17a) in [6]. The following 
simple example shows a contradiction between 
Definition 1 and Lemma 1. Let 1,  1γ ρ= =  and E =

 
[ ]1 0 1.2 0 1

, , , 1 0 ,
0 0 0 1 0w zA B C

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
1H =

 

[ ] [ ]1
0

, 1 0 , 1 1 .
1

J
⎡ ⎤

= ∈ −⎢ ⎥
⎣ ⎦

 

Note that
1.2 0
0 0.2

X
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

satisfies (6) for all [ ]1,  1Δ∈ − . Hence, by Definition 1, 
the corresponding system is quadratically admissible 
with disturbance attenuation 1. However, to check 

feasibility of (7), by letting 1 2

3 4

y yY y y
⎡ ⎤= ⎢ ⎥⎣ ⎦

 in (7). 

The first condition of (7) implies 1 0y ≥  and 

2 0y =  and the second condition of (7) gives 

, 
, 
, 

,
, 
, 
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2 2
1 1 3 3 4

2
3 4 4 4

2.4 2 (1 ) 0
(1 ) 2

y y y y y
y y y y

⎡ ⎤− + + +
<⎢ ⎥+ +⎣ ⎦

,  

which, by Schur complement and some simple 
algebra, is equivalent to

 
2
4 42 0y y+ <  and 

2
2 3
1 1 2

4 4

2.4 2
2

yy y
y y

− + <
+

 

or 
2
4 42 0y y+ < and ( )

2
2 3

1 2
4 4

1.2 0.56
2

yy
y y

− + <
+

. 

Since it is impossible to find three real numbers y1, y3, 
and y4 to satisfy the above two inequalities simul- 
taneously, the inequality (7) has no solution at all. 
This obviously indicates the result of [6] is incorrect. 
Since all the other results in [6] are based on Lemma 1, 
they are only sufficient, too. 

The goal of this paper is to derive necessary and 
sufficient LMI-based conditions for robust H∞ control 
of (2), which is more general than (5). The new 
conditions are applied to design two types of 
controllers so that the closed-loop system is 
quadratically admissible with disturbance attenuation 
γ . For solving the robust H∞ control problem of (2), 
Definition 1 is extended to a more general case as 
follows. 

Definition 2: Given 0γ > , the unforced uncertain 
descriptor system (2) (i.e. u(t) = 0) is said to be 
quadratically admissible with disturbance attenuation 
γ  for all uncertainties Δ  satisfying (4) if there 
exists a nonsingular matrix P such that for all Δ  

0T TE P P E= ≥ ,                           (8) 

( )T T T T
w z zwA P P A P B C DΔ Δ+ + +             (9) 

( ) ( )12 0.
w

T T T T
m zw zw w zw z z zI D D B P D C C Cγ

−
− + + <  

Next Lemma plays a key role in the development of 
next section. 

Lemma 2 [19]: Given appropriate dimensional 
matrices X, Y, and a symmetric matrix Z, then 

0T T TZ X Y Y X+ Δ + Δ <  

for all Δ  satisfying T IΔ Δ ≤  if and only if there 
exists a scalar 0ε >  such that 

1 0T TZ XX Y Yε ε −+ + < . 
 

3. MAIN RESULTS 
 
In this section, two necessary and sufficient LMI-

based conditions for robust H∞ analysis and design of 
system (2) are derived, respectively. 

3.1. Robust H∞ analysis 
First, the result of robust H∞ control analysis of (2) 

is presented. 
Theorem 1: The unforced uncertain continuous-

time descriptor system (2) is quadratically admissible 
with disturbance attenuation γ  for allΔif and only 
if there exists a nonsingular matrix P and a scalar 

0ε >  satisfying  

0T TX E EX= ≥ ,                        (10) 

1 1
2

2 1

1 2

1 2 1

2

2 2

            0
0

0

w

z

T T T
w

T
w m

T
z zw

T T T T T
z

T T
zw

T
q

s

X A AX H H B

B I

C X H H D
J X J

X C H H X J

D J

I H H

I

ε

γ

ε

ε

ε

ε

⎡ + +
⎢
⎢ −
⎢
⎢ +
⎢
⎢⎣

⎤+
⎥
⎥
<⎥

− + ⎥
⎥

− ⎥⎦

.

(11) 

Proof: By congruence and setting 1 :X P− = , (10) 
becomes (8) and (11) is equivalent to 

1 1
2

2 1

1 2

1 2 1

2

2 2

                  0
0

0

w

z

T T T T T
w

T
w m

T
z zw

T T T T
z

T T
zw

T
q

s

A P P A P H H P P B

B P I

C H H P D
J J

C P H H J

D J

I H H

I

ε

γ

ε

ε

ε

ε

⎡ + +
⎢
⎢ −
⎢
⎢ +
⎢
⎢⎣

⎤+
⎥
⎥
<⎥

− + ⎥
⎥

− ⎥⎦

,

 

which can be represented further into TA HHε+  
1 0TJ Jε −+ < , where 

2 ,
w

z

T T T T
w z

T T
w m zw

z zw q

A P P A P B C
A B P I D

C D I

γ

⎡ ⎤+
⎢ ⎥

= −⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

 

[ ]
1

1 2

2

0 ,    0

TP H
H J J J

H

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

. 

By Lemma 2, we obtain  

0T T TA H J J H+ Δ + Δ < , 

which can be equivalently represented as 
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( ) ( ) ( )
( )
( ) ( )

( )
( )

1 1 1 1 1 2
2

1 2

2 1 2 2

2 1

2 2                                       0

w

z

T T T
w

T
w m

z zw

T
z

T
zw

q

A H J P P A H J P B H J

B H J P I

C H J D H J

C H J

D H J
I

γ

⎡ + Δ + + Δ + Δ
⎢
⎢ + Δ −
⎢
⎢ + Δ + Δ⎢⎣

⎤+ Δ
⎥
⎥+ Δ <
⎥

− ⎥
⎥⎦
(12) 

for all Δ  satisfying (4). Applying Schur comple-
ment to (12), then (9) is obtained.                

Remark 1: If the system (2) is uncertainty-free, the 
result of Theorem 1 reduces to the major results of 
[13,18]. Thus they can be viewed as special cases of 
ours. 

 
3.2. Robust H∞ control design-state feedback cases 

In this subsection, the result of Theorem 1 is 
applied to design state feedback robust H∞ controllers. 
Suppose all descriptor variables are measurable. 
Herein, we are concerned with designing a constant 
gain matrix K, u(t) = Kx(t), such that the closed-loop 
system 

( ) ( )( )
( )

( ) ( )( )
( )

1 1 3

1 2

2 1 3

2 2

( ) ( )

            ( ),

( ) ( )

         ( )

u

w

z zu

zw

Ex t A B K H J J K x t

B H J w t

z t C D K H J J K x t

D H J w t

= + + Δ +

+ + Δ

= + + Δ +

+ + Δ

   (13) 

is quadratically admissible with disturbance attenu- 
ation γ  for all Δ  satisfying (4). 

Theorem 2: Let 0γ >  be given. Then there exists 
a state feedback controller, u(t) = Kx(t), such that (13) 
is quadratically admissible with disturbance attenuation 
γ  for all Δ  if and only if there exist a matrix F, a 
nonsingular matrix P, and a scalar 0ε >  such that 

0T TQ E EQ= ≥ ,
                        (14) 

1 1
2

2 1

1 3 2

w

T T T T T
u u w

T
w m

T
z zu zw

Q A F B AQ B F H H B

B I

C Q D F H H D
J Q J F J

ε

γ

ε

⎡ + + + +
⎢
⎢ −
⎢
⎢ + +
⎢

+⎢⎣ (15) 

1 2 1 3

2

2 2

    0
0

0
z

T T T T T T T T T
z zu

T T
zw

T
q

s

Q C F D H H Q J F J

D J

I H H

I

ε

ε

ε

⎤+ + +
⎥
⎥
<⎥

− + ⎥
⎥

− ⎥⎦

. 

Moreover, the controller can be chosen as 

1( ) ( ) ( )u t Kx t FQ x t−= = . 

Proof: Let 1K FQ −=  and by Theorem 1, the 
result is straightforward.                       

 
3.3. Robust H∞ control design-output feedback cases 

When the states are not fully accessible, output 
feedback control becomes important. For designing a 
dynamic output feedback controller in descriptor form, 
without loss of generality, we may convert system (2) 
into an SVD coordinate 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

w u

z zw zu

y yw yu

Ex t A x t B w t B u t

z t C x t D w t D u t

y t C x t D w t D u t

Δ Δ Δ

Δ Δ Δ

Δ Δ Δ

= + +

= + +

= + +

      (16) 

where  

1 0
( ) ( ), , ,

0 0
rI

x t V x t E UEV A UA V−
Δ Δ

⎡ ⎤
= = = =⎢ ⎥

⎣ ⎦
 , , , ,w w u u z z y yB UB B UB C C V C C VΔ Δ Δ Δ Δ Δ Δ Δ= = = =

, ,

, .
zw zw zu zu

yw yw yu yu

D D D D

D D D D
Δ Δ Δ Δ

Δ Δ Δ Δ

= =

= =
                

(17)
 

Assume the controller is also in descriptor form 

( ) ( ) ( ),
( ) ( ).

o o o o

o o

Ex t A x t B y t
u t C x t

= +

=
                (18) 

Then the closed-loop system is 

( ) ( ) ( ),

( ) ( ) ( ),
w

z zw

Ex t A x t B w t

z t C x t D w t
Δ Δ

Δ Δ

= +

= +
               (19) 

where 

( ) 0
( ) , ,

( ) 0o

x t E
x t E

x t E
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 , ,wu o
w

o ywo y o o yu o

BA B C
A B

B DB C A B D C
ΔΔ Δ

Δ Δ
ΔΔ Δ

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

+ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
 

,z z zu o zw zwC C D C D DΔ Δ Δ Δ Δ⎡ ⎤= =⎣ ⎦ .        (20) 

According to Definition 2, the closed-loop system 
(19) is quadratically admissible with disturbance 
attenuation γ  for all Δ  if there exists a nonsingular 
matrix X  satisfying 

0TEX X E= ≥ ,                       (21) 

2 0
w

z

T T T T
w z

T T
w m zw

z zw q

A X X A X B C
B X I D

C D I

γ
Δ Δ Δ Δ

Δ Δ

Δ Δ

⎡ ⎤+
⎢ ⎥

− <⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

,     (22) 

for all possible uncertainties. The main result of the 

,

, 

, 
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subsection is presented as follows. 
Theorem 3: Let 0γ >  be given. The following 

two statements are equivalent. 
(I) There exists a controller (18) such that the closed-

loop system (19) is quadratically admissible with 
disturbance attenuation γ  for all Δ . 

(II) (a) There exist Ak, Bk, Ck, a scalar 0ε > , and two 
nonsingular matrices X1 and Y1 satisfying 

1 1

1 1

0
T

T

EX E X E E
E Y E E EY

⎡ ⎤ ⎡ ⎤
= ≥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦        
(23) 

1

1
1

1

1

2
1

1

1 1 3 1

1 1 1 3 2

0

w

T

k y T T T T
k w k ywT T T

T T T
y k

u kT
k wT T T T

T T T
k u

T T T T T T
w yw k w m

z z zu k zw
T T T T T T

k

k

X UAV
B C V

V A U A X UB B D
V A U X

V C B

UAVY
UB C

UAV A UB
Y V A U

C B U

B U X D B B U I

C V C VY D C D

H U X H B H U
J V J VY J C J

γ

⎡⎛ ⎞
⎜ ⎟
+⎜ ⎟

+ +⎜ ⎟
+⎜ ⎟
⎜ ⎟⎜ ⎟+⎝ ⎠

⎛ ⎞
⎜ ⎟+⎜ ⎟

+ ⎜ ⎟+⎜ ⎟
⎜ ⎟+⎝ ⎠

+ −

+

+
+

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢⎣

1 1
1

3

1 1 1
1

3

2

2

1
2

0.
0

0

0
0 0

z

T
T T T T

z
k

T T T T T T
z

T T T T
k zu k

T T
zw

q

T
s

s

X UHV C V J
B H

Y V C Y V J
UH

C D C J

D J
I H

H I
I

ε
ε

−

⎤⎛ ⎞
⎥⎜ ⎟⎜ ⎟+ ⎥⎝ ⎠
⎥

⎛ ⎞ ⎛ ⎞⎥
⎜ ⎟ ⎜ ⎟⎥⎜ ⎟ ⎜ ⎟+ + ⎥⎝ ⎠ ⎝ ⎠ <⎥

⎥
⎥− ⎥
⎥− ⎥
⎥− ⎦

(24) 

(b) There exist X2 and two nonsingular matrices X3 
and Y3 satisfying 

1 1 2 3I X Y X Y− = ,                      (25) 

3 2
TEX X E= ,                         (26) 

where X1 and Y1 are obtained from part (a).  
Moreover, the controller (18) can be chosen as 

(

1
3

3

3 1 1 1

o k
T

o k

T T
o k k y

C C Y

B X B

A X A X UAVY B C VY

−

−

−

=

=

= − −

 
) 1

1 3
T

u k k yu kX UB C B D C Y−− −
 

Proof: (I)⇒ (II) Assume X  satisfies (21) and 
(22) for all possible uncertainties. Partition X in 
accordance with the block structure of E  as 

1 2

3 4

X X
X

X X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,                        (28) 

where , 1, 2,3, 4.n n
iX i×∈ =

 
Since X is nonsingular. 

Define 

1 2 1

3 4

.
Y Y

Y X
Y Y

−⎡ ⎤
=⎢ ⎥

⎣ ⎦
                    (29) 

According to Propositions 1 and 2 (see Appendix), we 
know that all Xi’s and Yi’s are invertible. In the 
following, we will show that the above Xi and Yi, i = 
1,2,3,4, satisfy (23)-(26). From the (1,1) and (2,1) 
blocks of XY I= , it gives 

1 1 2 3X Y X Y I+ = ,                       (30) 

3 1 4 3 0X Y X Y+ = .                       (31) 

(30) implies (25). Using (30) and (31), rewrite X  as 

1 1 1
1 3 1 1 3 1 1 3

1 133 3 1 3 3
1

1 1 1
1 2

3 3

0 0

,
0 0

X Y X Y Y X I I Y Y
X

XX X Y Y Y

X I I Y
X Y

− − −

− −

−
−

⎡ ⎤ ⎡ ⎤− −⎡ ⎤
= =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= Ψ Ψ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

(32) 

where  

1 1
1 2

3 3
, .

0 0
X I I Y
X Y
⎡ ⎤ ⎡ ⎤

Ψ Ψ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

           (33) 

By (32), we have  
(21) ( ) ( )1

2 1 2 2 2 2 1 2 0T T T TE E− −⇔ Ψ Ψ Ψ Ψ =Ψ Ψ Ψ Ψ ≥   (34) 

2 1 1 2 0T TE E⇔Ψ Ψ = Ψ Ψ ≥  

1 11 3

1 3 3 3

0 0 0
0

0 000 0

T T

T T

I X I I YX XE E
Y Y X YIE E

⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⇔ = ≥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

 

1 1 1 1 3 3

1 1 3 3 1 1

0
T T T

T T T

EX E X E X EY X EY
Y EX Y EX Y E E EY
⎡ ⎤ ⎡ ⎤+

⇔ = ≥⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦
 (35) 

⇒  (23). 

By (35) and (30), we have 

1 1 3 3
T TE X EY X EY= +  

1 1 3 3
TEX Y X EY= +  

( )1 1 3 3
TE I X Y X EY⇒ − =  

2 3 3 3
TEX Y X EY⇒ =  

⇒ (26).  
Substituting 1

1 2X −= Ψ Ψ  into (22) yields 

(27)

, 

, 
, 

. 
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1 - -
1 2 2 1 2 1

1 2
1 2

ψ ψ ψ ψ ψ ψ

ψ ψ 0  
w

z

T T T T T T
w z

T T
w m zw

z zw q

A A B C

B I D

C D I

γ

−
Δ Δ Δ Δ

−
Δ Δ

Δ Δ

⎡ ⎤+
⎢ ⎥
⎢ ⎥− < ∀Δ
⎢ ⎥

−⎢ ⎥⎣ ⎦

,(36) 

or equivalently, 

2 1 1 2 1 2
2

1

2

ψ ψ ψ ψ ψ ψ

ψ 0   

ψ
w

z

T T T T T T
w z

T T
w m zw

z zw q

A A B C

B I D

C D I

γ
Δ Δ Δ Δ

Δ Δ

Δ Δ

⎡ ⎤+
⎢ ⎥
⎢ ⎥− < ∀Δ
⎢ ⎥

−⎢ ⎥⎣ ⎦

.(37) 

Using (20) and (33), (37) is equivalent to 

1 1
1 3

3 1 1 3
1 3

3 3 3 3

1 1 1 3 1

3 1 3 3

3 3

T T
T T

o y T T
o y u oT T T

y o T T
o o yu o

T T T T T
y o u o

T T T T T
o u o

T T T T
o yu o

A X A Y
X A X B C

X B C Y X B C Y
A X C B X

X A Y X B D C Y

A Y A X Y C B X A Y B C

Y C B X Y A X

Y C D B X

Δ Δ
Δ

Δ Δ
Δ Δ

Δ

Δ Δ Δ Δ Δ

Δ

Δ

⎛ ⎞+
⎜ ⎟+
⎜ ⎟+ +
⎜ ⎟+ +
⎜ ⎟+ +⎝ ⎠

⎛ ⎞+ + +⎜ ⎟
⎜ ⎟+ +
⎜ ⎟
⎜ ⎟+⎜ ⎟
⎝ ⎠

3

1 1

3

1 3

1 3

T T T T

T T T
o u

T T T T
w yw o w

z z zu o

Y

Y A Y A

Y C B

B X D B X B

C C Y D C Y

Δ Δ

Δ

Δ Δ Δ

Δ Δ Δ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢ + +⎢
⎢ +⎢
⎢

+⎢
⎢

+⎢⎣

1 3

1 3
2

0
w

z

T T T
w o yw z

T T T T T
w z o zu

T
m zw

zw q

X B X B D C

B Y C Y C D

I D

D I

γ

Δ Δ Δ

Δ Δ Δ

Δ

Δ

⎤+
⎥
⎥+
⎥ <
⎥−
⎥

− ⎥⎦

.(38) 

 

In view of (17) and (3), the inequality (38) can be 
reformulated as, ∀ Δ , 
 

( )

( )
( )

( )
( )
( )

11 12

12 22

1 2 1
1 2

3 2 3

2 1 1
2 1

2 3 3

T

T T
w T T

wT T
yw o

z
z

zu o

B H J U X
B H J U

D H J B X

C H J VY
C H J V

D H J C Y

Ω Ω⎡
⎢

Ω Ω⎢
⎢⎛ ⎞+ Δ⎢⎜ ⎟ + Δ⎢⎜ ⎟⎜ ⎟⎢ + + Δ⎝ ⎠⎢
⎢ ⎛ + Δ ⎞
⎢ + Δ ⎜ ⎟⎜ ⎟⎢ + + Δ⎝ ⎠⎣

 

( )
( )

( )

( )
( )
( )

( )
( )

1 1 2
2 1

3 3 2

1 2 1
1 2

3 2 3

2
2 2

2 2

0,

w

z

T
w TT

zT
o yw

TT T
z

w TT T
o zu

T
m zw

zw q

X U B H J
V C H J

X B D H J

Y V C H J
U B H J

Y C D H J

I D H J

D H J I

γ

⎤⎛ ⎞+ Δ
⎥⎜ ⎟ + Δ
⎥⎜ ⎟+ + Δ⎝ ⎠ ⎥
⎥⎛ ⎞+ Δ ⎥⎜ ⎟ <+ Δ ⎥⎜ ⎟+ + Δ ⎥⎝ ⎠
⎥

− + Δ ⎥
⎥

+ Δ − ⎥⎦

where 

( ) ( )
( ) ( )
( ) ( )

( )
( )
( )

11 1 1 1 3 3 1

1 1 1 3 1 3

12 1 1 1 1 1 1

3 3 1 1

1 1 3 3 3 3

3 3 3 3

,

,

T T
o y

TTT T T T
y o

TT T

T
o y

T T
u o o

T
o yu o

X U A H J V X B C H J V

V A H J U X V C H J B X

V A H J X U A H J VY

X B C H J VY

X U B H J C Y X A Y

X B D H J C Y

Ω = + Δ + + Δ

+ + Δ + + Δ

Ω = + Δ + + Δ

+ + Δ

+ + Δ +

+ + Δ

( ) ( )
( ) ( )

22 1 1 1 1 3 3

1 1 1 3 1 3 .

u o
TTT T T T T T

o u

U A H J VY U B H J C Y

Y V A H J U Y C B H J U

Ω = + Δ + + Δ

+ + Δ + + Δ
 
(39) can be rewritten in a more compact expression 

0  ,T TA H J J H+ Δ + Δ < ∀Δ            (40) 

where 

1 3 1 3

1 1 1 3

3 1 3 3 3 3

1 3

T T T T T T T T
o y y o

T T T T T T T T
y o

T T T T T T T T T T
o u o o yu o

T T T T
w yw o

z

X UAV X B C V V A U X V C B X

UAV Y V A U X Y V C B X

A Y C B U X Y A X Y C D B X

B U X D B X

C V

⎡ + + +
⎢
⎢ ⎛ ⎞+ +
⎢ ⎜ ⎟
⎢ ⎜ ⎟= + + +⎝ ⎠⎢
⎢ +⎢
⎢⎣

  

1 1 3 1

1 3 3 3 3 3

1 3 1 3

1 3

T T T T T
o y

T T T
u o o o yu o

T T T T T T T T
u o o u

T T
w

z zu o

V A U X UAVY X B C VY

X UB C Y X A Y X B D C Y

UAVY UB C Y Y V A U Y C B U

B U
C VY D C Y

⎛ ⎞+ +
⎜ ⎟
⎜ ⎟+ + +⎝ ⎠

+ + +

+

 

1 3

1 3
2

,
w

z

T T T T
w o yw z

T T T T T T
w z o zu

T
m zw

zw q

X UB X B D V C

UB Y V C Y C D

I D

D I

γ

⎤+
⎥
⎥+
⎥
⎥−
⎥

− ⎥⎦

 

[ ]

1 1 3 3

1

2

1 1 1 3 3 2

,
0

0 .

T T
o

o

X UH X B H
UHH

H

J J V J VY J C Y J

⎡ ⎤+
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= +

          (41) 

 
According to Lemma 2, the inequality (40) holds for 
all Δ  of (4) if and only if there exists a scalar 

0ε >  such that 
1 0.T TA HH J Jε ε −+ + <                 (42) 

In (42), denote (39)
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1 1 3 1

1 3 3 3 3 3

3

3

       ,

,
,

T T
k o y

T T T
u o o o yu o

T
k o

k o

A X UAVY X B C VY

X UB C Y X A Y X B D C Y

B X B
C C Y

= +

+ + +

=

=

(43) 

and use Schur complement, we have (24). 
(II)⇒ (I) If X1, Y1, X3, and Y3 are solved from (23)-
(26), construct X  by 

1 1
1 3 1 1 3

1
3 3 1 3

X Y X Y Y
X

X X Y Y

− −

−

⎡ ⎤−
⎢ ⎥
⎢ ⎥−⎣ ⎦

, 

we will show that such X  is nonsingular and satisfy 
(21) and (22) for all Δ  of (4). Note that X  can be 
factorized as 

1
1 1 -1

1 2
3 3

ψ ψ
0 0

X I I Y
X

X Y

−
⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

. 

The nonsingularity of X3 and Y3 implies that of X . 
From (23), (25), and (26) 

( )1 1 2 3 1 1 2 3

1 1 3 3                               .T T

E E X Y X Y EX Y EX Y

X EY X EY

= + = +

= +
    (44) 

Using (44) and (23), with the help of derivative 
between (34) and (35), we have 0TEX X E= ≥ . 
Furthermore, denote Co, Bo, and Ao by (27) if (23)-
(26) is feasible. In view of the derivatives between 
(36) and (42), it is easy to verify that such X  also 
satisfies (22) ∀Δ .                            □ 

Remark 2: Based on the result of Theorem 3, the 
H∞ minimization design via dynamic output feedback 
for uncertain descriptor system (2) can be formulated 
as the following constrained optimization problem  

minimize γ  
subject to (23-26). 

This problem can be solved efficiently by using LMI 
software, e.g. Scilab 2.6. 

Remark 3: Using the proposed LMI-based approach 
to design dynamic output feedback controllers, the 
assumptions (A1)-(A4) needed in [6] are no more 
required. Thus our approach relaxes the design 
constraints. 

 
4. A NUMERICAL EXAMPLE 

 
Consider an uncertain continuous-time descriptor 

system 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

w u

z zw zu

Ex t A x t B w t B u t
z t C x t D w t D u t

Δ Δ Δ

Δ Δ Δ

= + +
= + +

 

( ) ( ) ( ) ( )y yw yuy t C x t D w t D u tΔ Δ Δ= + +

 

where
1 0.1 0
0 1 0
0 0 0

E
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, and uncertain system 

matrices ,AΔ ,wB Δ ,uB Δ ,zC Δ ,zwD Δ ,zuD Δ ,yC Δ

,ywD Δ  and yuD Δ  are described as in (3) with 

3 1 4
1 0 1 ,
2 0 0

A
−⎡ ⎤
⎢ ⎥= −
⎢ ⎥−⎣ ⎦

0.3
0.45 ,
0.3

wB
−⎡ ⎤

⎢ ⎥= −
⎢ ⎥−⎣ ⎦

3 2
2 1 ,
0 2

uB
⎡ ⎤
⎢ ⎥= −
⎢ ⎥−⎣ ⎦

 

1 1 0 ,3 0.1 2zC −⎡ ⎤= ⎢ ⎥−⎣ ⎦
0.3 ,0.45zwD −⎡ ⎤= ⎢ ⎥⎣ ⎦

0 0 ,0 0.3zuD ⎡ ⎤= ⎢ ⎥⎣ ⎦
 

[ ]1 1 2 ,yC = − 0.54,ywD = − [ ]2 1 ,yuD =  

1

0.1
0.18 ,
0.1

H
−⎡ ⎤

⎢ ⎥= −
⎢ ⎥⎣ ⎦

2 3
0.2 , 0.4,0.1H H−⎡ ⎤= =⎢ ⎥⎣ ⎦

 

[ ]1 20.1 0.1 0.9 , 0.6,J J= − = [ ]3 0.8 0J = − .  

In this example, the uncertainty is formulated as 

 

[ ]
1

2 1 2 3

3

H
H J J J
H

⎡ ⎤
⎢ ⎥ Δ⎢ ⎥
⎢ ⎥⎣ ⎦

,  

where Δ  is a time-invariant uncertain scalar lying in 
[-1,1]. By Theorem 1, the given uncertain descriptor 
system is not admissible for all [ 1, 1]Δ∈ − . In the 
following, we want to find a dynamic output feedback 
controller (18) such that the closed-loop uncertain 
descriptor system is quadratically admissible with 
disturbance attenuation γ  for all Δ . From Remark 
2, we obtain γ  = 0.7070,ε= 2.34, 
 

1

1

0.3148 0.3969 0
0.3969 1.2851 0 ,

37.6385 3.2018 14.9701

3081.3348 3167.0251 0
3167.0251 3258.5813 0 ,
2520965.8528 690755.9541 2713279.7539

55.9425 68.1142 5.7252
150.7793 160.3615 0.2k

X

Y

A

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦
− − −

= − − − 578 ,
54.4256 68.2844 8.0605

25.3884
3.7543 ,

11.0222

2835359.8185 777840.9875 3052431.7746
,

16776555.7025 4635752.9509 18088522.9763

k

k

B

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦

, 
, 

, 
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2 3

3

1 0 0 1 0 0
0 1 0 , 0 1 0 ,
0 0 1 0 0 1

287.7668 296.1238 0
2847.0837 2929.7354 0 .

37612908.6785 10470297.6060 40617976.3845

X X

Y

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 
Therefore, from (27), the parameters of dynamic 
output feedback controller are 

-25.3884
4226.0084 430.2168 -0.0751

, -3.7543 ,
11768.0156 1198.6767 -0.4453

11.0222
o oC B

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

1418882.1907 144505.1089 -51.6867
172610.5842 17579.1161 -6.2106 .
-590777.8358 -60167.1167 21.3711

oA
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Let ( )c
zwT s  stand for the transfer matrix of the 

closed-loop system from w to z. Note that ( )c
zwT s  is 

also a function of Δ . Fig. 1 shows the curves of 
( )( )c

max zwT jσ ω , where maxσ  denotes the largest 

singular value of ( )c .zwT jω  Since the uncertaintyΔ lies 
between [-1,1] in the example, each curve in Fig. 1 
represents the function ( )( )c

max zwT jσ ω  correspond-

ing to a different Δ  in [-1,1]. From Fig. 1, one can 
see that the maximum of ( )( ){ }c

maxsup zw
s j

T s
ω
σ

∈

 for all 

allowable Δ  occurs at 0.707. That means the 
minimal value of γ  that all dynamic output 
feedback controllers can achieve is 0.707. 

5. CONCLUSION 
 
In this paper, a new LMI approach is proposed to 

solve the robust H∞ control problem for uncertain 
descriptor systems. The state feedback and dynamic 
output feedback controller design are investigated. 
Necessary and sufficient conditions for the existence 
of the robust H∞ controllers are derived and expressed 
in the LMI formulation. Although only continuous-
time cases are discussed, the presented technique can 
be applied to the discrete-time cases in a similar way. 
Four major contributions of the paper are summarized 
as follows: (I) This paper is the first one to present 
necessary and sufficient LMI-based conditions for 
robust H∞ control analysis and design of the uncertain 
descriptor systems (2). (II) The requirements of 
system property while designing output feedback 
controller have been removed. No assumption as 
needed in [6] is required by the proposed approach. 
(III) The uncertain system model considered in this 
paper is more general than the ones investigated in the 
previous literature. (IV) Some interesting results 
[13,18] for H∞ control of descriptor systems are 
included as special cases of ours. 

 
APPENDIX 

Material of the appendix is a direct adoption from 
[2]. 

Proposition 1: Let 2 2n nX R ×∈  be a nonsingular 
solution to (21) and (22). Suppose it can be 
partitioned as in (28). Then, without loss of generality, 
all '

iX s  may be assumed to be nonsingular as well.  
Proof: Suppose that '

iX s  are singular, then there 
always exists a small 0δ >  such that the matrix 
X  defined below 

1 21 2

3 43 4

n n

n n

X X I IX X
X

X X I IX X
δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
 

has its all submatrices '
iX s  being nonsingular. Note 

that δ  can be chosen small enough so that the LMI 
(22) won’t be violated when X  is replaced by X . 
Moreover, since 

0n n n n

n n n n

I I I I
E E

I I I I
⎡ ⎤ ⎡ ⎤

= ≥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

, 

it is straightforward to show that 

0.TEX X E= ≥  

Therefore, starting from any solution to (21) and (22), 
which does have some singular submatrices, we can 
always find a very close solution that will meet the 
nonsingularity requirement on its submatrices.     

 
 
 

 
Fig. 1. ( )( )c

max zwT jσ ω  of the closed-loop system. 

γ = 0.7070 

( )( )c
max zwT jσ ω

( )rad/sω
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Let 1Y X −  and partition Y  as in (29). By 
Proposition 1, we have the following results.  

Proposition 2: , 1, 2, 3, 4iY i =  are nonsingular. 
Proof: Since X  and 4X  are invertible, by the 

matrix inversion formulas, we have  

1 1 1 1
1 2 1 22 4

1 1 1 1 1
3 4 3 44 3 4 4 3 2 4

X X Y YX X
X X Y YX X X X X X X

− − − −

− − − − −

⎡ ⎤ϒ −ϒ⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥− ϒ + ϒ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

where 1
1 2 4 3X X X X−ϒ − . Since X2, X3, X4, and 

ϒ  are all nonsingular, the above equality implies that 
Y1, Y2, and Y3 are nonsingular. Finally, since X1 and X4 
are nonsingular, Y4 can be rewritten as 

( ) 11 1 1 1 1
4 4 4 3 2 4 4 3 1 2 .Y X X X X X X X X X

−− − − − −= + ϒ = −  

Therefore, 4Y  is nonsingular, too. 
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