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Abstract. In this article we improve a lower bound for
∑k

j=1 βj (a Berezin-

Li-Yau type inequality) that appeared in an earlier paper of Harrell and Yolcu.
Here βj denotes the jth eigenvalue of the Klein Gordon HamiltonianH0,Ω = |p|
when restricted to a bounded set Ω ⊂ R

n. H0,Ω can also be described as the
generator of the Cauchy stochastic process with a killing condition on ∂Ω. To
do this, we adapt the proof of Melas, who improved the estimate for the bound

of
∑k

j=1 λj , where λj denotes the jth eigenvalue of the Dirichlet Laplacian on

a bounded domain in R
d.

1. Introduction

In this article, we consider the pseudodifferential operator H0,Ω :=
√
−Δ re-

stricted to an open bounded set Ω in R
d. This operator is sometimes called the

fractional Laplacian with power 1
2 (cf. [2] and [3]). We note that H0,Ω is the gen-

erator of the Cauchy stochastic process with a killing condition on ∂Ω (cf. [2],
[3]). Let βk denote the kth eigenvalue of H0,Ω and uk denote the corresponding
normalized eigenfunction. Then the eigenvalues βj satisfy

0 < β1 < β2 ≤ β3 ≤ · · · ≤ βj ≤ · · · → ∞,

where each eigenvalue is repeated according to its multiplicity. Throughout this
article, |Ω| denotes the volume of the set Ω. Consider the quadratic form

Q(ϕ) =

∫

Ω

ϕ
√
−Δ ϕ, ϕ ∈ C∞

c (Ω),

where
√
−Δ is calculated for R

d. Note that the quadratic form Q is defined on
a dense subset C∞

c (Ω) of L2(Ω). By using the Fubini theorem and the definition
of the Fourier transform and its inverse, it is easy to see that Q is positive and
symmetric. Since Ω ⊂ R

d is non-empty, bounded and open, the operator H0,Ω is
defined as the Friedrichs extension ([1]) of the quadratic form Q on L2(Ω). Notice
that H0,Ω is the unique minimal positive operator extending Q.
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To show the analogy between the Dirichlet Laplacian and H0,Ω, we first mention
similar results for the Dirichlet Laplacian. Let λj be the eigenvalues of the Dirichlet
Laplacian on Ω. One such result is the so-called Li-Yau inequality proved by P. Li
and S.-T. Yau. In [12], they proved that

(1.1)

k∑

j=1

λj ≥
dCd

d+ 2
|Ω|−2/dk1+2/d,

where Cd = 4πΓ(1 + d/2)2/d.
As mentioned in [11], (1.1) can be obtained by a Legendre transform of an earlier

result by Berezin [5]. Hence, instead of calling it the Li-Yau inequality, we prefer
the Berezin-Li-Yau inequality.

A.D. Melas improved the bound in the Berezin-Li-Yau inequality (1.1) in [14]
and proved that

(1.2)

k∑

j=1

λj ≥
dCd

d+ 2
|Ω|−2/dk1+2/d +Mdk

|Ω|
I(Ω)

,

where the constant Md depends only on the dimension. Here I(Ω) is the moment

of inertia, which is defined as I(Ω) = min
u∈Rd

∫

Ω

|x− u|2dx.
An improvement to the last inequality (1.2) has recently been studied by many

authors (cf. [10], [15], [9]). More precisely, in [10], H. Kovař́ık, S. Vugalter and
T. Weidl improved (1.2) when d = 2 and assuming geometric properties of the
boundary of Ω. Their proof is ingenious but somewhat intricate, and they first
state and prove their result in the case of polygons, then in the case of general
domains. Moreover, their result has a second term that has the order of k as in the
asymptotic behavior of the sum on the left hand side of (1.1):

(1.3)
k∑

j=1

λj =
dCd

d+ 2
|Ω|−2/dk1+2/d + C̃d

|∂Ω|
|Ω|1+1/d

k1+1/d + o(k1+1/d) as k → ∞.

As stated in [10], the correction term in (1.2) is of larger order than k, which
appears in the asymptotics of (1.1).

The Riesz mean of order σ is defined as

Rσ(z) =
∑

j

(z − λj)
σ
+.

Another analogous result is given in [15], where T. Weidl found a Berezin type
bound for the Riesz mean Rσ(z) when σ > 3/2. The second term in this bound
is similar to the second term in the asymptotics of Rσ(z), up to a constant. His
method utilizes sharp Lieb-Thirring inequalities for operator-valued potentials.

A natural question is how this approach can be adapted to the case of Klein-
Gordon operators. This article answers this question and improves the Berezin-Li-
Yau type bound in [8]. We follow the basic strategy of [14], with some important
differences of detail.

We first state the analogue of the Weyl asymptotic formula and the Berezin-Li-
Yau type inequality in the case of Klein-Gordon operators H0,Ω. In [8], E. Harrell
and the author provided a different proof for the following asymptotic formula in
[6]:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN IMPROVEMENT TO A BEREZIN-LI-YAU TYPE INEQUALITY 4061

Theorem 1.1 (Analogue of the Weyl asymptotic formula). As k → ∞,

(1.4) βk ∼ C̃d|Ω|−1/dk1/d,

where C̃d =
√
4π Γ(1 + d/2)1/d.

This theorem can be proved by adapting a proof of the Weyl asymptotic formula
for the Laplacian.

The analogue of the Berezin-Lie-Yau inequality shown in [8] reads:

Theorem 1.2 (Analogue of the Berezin-Lie-Yau inequality). The eigenvalues βk

of H0,Ω satisfy

(1.5)
k∑

j=1

βk ≥ dC̃d

d+ 1
|Ω|−1/dk1+1/d.

As in the original Li-Yau paper [12], the main tool used in the proof of this
theorem is a generalization of the lemma which is attributed to Hörmander in [12].
This result is also sharp in the sense of the Weyl asymptotic formula as in the case
of the Laplacian.

2. Statement and proof of the theorem

The main result of this paper is given below.

Theorem 2.1. For k ≥ 1 and the bounded set Ω,

(2.1)

k∑

j=1

βj ≥
dC̃d

d+ 1
|Ω|−1/dk1+1/d + M̃d

|Ω|1+1/d

I(Ω)
k1−1/d,

where C̃d =
√
4π Γ(1+d/2)1/d and the constant M̃d depends only on the dimension

d.

Observe that, in (1.2), the power of k in the first term is 1 + 2/d while in (2.1)
the corresponding power is 1 + 1/d. This is not surprising because the Klein-
Gordon operator can be viewed as the square root of the Laplacian in R

d. Also,
the improvement in (1.2) consists of |Ω|/I(Ω) and in (2.1) we have |Ω|1+1/d/I(Ω).
Moreover, the difference between the powers of the k terms on the right hand side
of (2.1) is 2/d as in (1.2).

It would be useful to compare the result with an expected two-term asymptotic
expansion for the sum of the eigenvalues of H0,Ω such as the formula (1.3). To the
knowledge of the author, this has not been done before in the literature. However,
R. Bañuelos, T. Kulczyski and B. Siudeja explored a similar result for the partition

function ZΩ(t) =

∞∑

j=1

e−βjt. See [4] for more details.

First, we will state and prove the following lemma, which is the crucial step in
proving the theorem.

Lemma 2.2. Let d ≥ 2 and ϕ : [0,∞) → [0,∞) be a decreasing, absolutely contin-
uous function. Assume that

(2.2) 0 ≤ −ϕ′(x) ≤ m, x > 0.
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Then,
∫ ∞

0

xdϕ(x)dx ≥ 1

d+ 1

(

d

∫ ∞

0

xd−1ϕ(x)dx

)1+1/d

ϕ(0)−1/d

+
ϕ(0)2+1/d

6m2(d2 − 1)

(

d

∫ ∞

0

xd−1ϕ(x)dx

)1−1/d

.(2.3)

Proof. Let us first define

(2.4) η(x) =
1

ϕ(0)
ϕ

(
ϕ(0)

m
x

)

.

Then η(0) = 1 and 0 ≤ −η′(x) ≤ 1. To ease the notation, define f(x) := −η′(x)

for x ≥ 0. Hence, 0 ≤ f(x) ≤ 1 for x > 0 and

∫ ∞

0

f(x)dx = η(0) = 1. Now, define

(2.5) A :=

∫ ∞

0

xd−1η(x)dx and B :=

∫ ∞

0

xdη(x)dx.

Assume that B < +∞, as otherwise the result is immediate. Thus, we can find
a sequence {Rj} such that Rj → ∞ and Rd+1

j η(Rj) → 0 as j → ∞. Then, using
integration by parts we get

∫ ∞

0

xdf(x)dx = Ad and

∫ ∞

0

xd+1f(x)dx ≤ (d+ 1)B.

By the intermediate value theorem, there exist an α ≥ 0 such that

(2.6)

∫ α+1

α

xd−1dx = (Ad)1−1/d

and

(2.7)

∫ α+1

α

xd+1dx ≤
∫ ∞

0

xd+1f(x)dx ≤ (d+ 1)B.

As we shall see later, the key point in the proof of the lemma is the inequality

(2.8) (d− 1)xd+1 − (d+ 1)y2xd−1 + 2yd+1 ≥ 2yd−1(x− y)2

for y > 0 and x ≥ 0. The proof of (2.8) is straightforward. Indeed, first divide both
sides by yd+1. Then, by setting τ = x/y we get the polynomial

g(τ ) := (d− 1)τd+1 − (d+ 1)τd−1 − 2τ2 + 4τ

=
(
(τ − 1)2τ

)
(

d−3∑

k=0

(2k + 4)τk + (d− 1)τd−2

)

.

An induction on d gives the second equality, which leads to g(τ ) ≥ 0. Now, inte-
grating (2.8) from α to α+ 1 and using (2.6) and (2.7) we get

(d+ 1)(d− 1)B − (d+ 1)y2(Ad)1−1/d + 2yd+1 ≥ 2yd−1

∫ α+1

α

(x− y)2dx

≥ 2yd−1

∫ 1/2

−1/2

s2ds

=
yd−1

6
.
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Choosing y = (Ad)1/d yields

B ≥ 1

d+ 1
(Ad)1+1/d +

1

6(d2 − 1)
(Ad)1−1/d,

or, equivalently,

∫ ∞

0

xdη(x)dx ≥ 1

d+ 1

(

d

∫ ∞

0

xd−1η(x)dx

)1+1/d

+
1

6(d2 − 1)

(

d

∫ ∞

0

xd−1η(x)dx

)1−1/d

,

which together with (2.4) gives

∫ ∞

0

xdϕ(x)dx ≥ 1

d+ 1

(

d

∫ ∞

0

xd−1ϕ(x)dx

)1+1/d

ϕ(0)−1/d

+
ϕ(0)2+1/d

6m2(d2 − 1)

(

d

∫ ∞

0

xd−1ϕ(x)dx

)1−1/d

,(2.9)

concluding the proof. �

Let us now prove Theorem 2.1 by using the lemma above.

Proof. Let the Fourier transform of each eigenfunction uj corresponding to the jth
eigenvalue βj be denoted by

ûj(ξ) =
1

(2π)d/2

∫

Ω

e−ix·ξuj(x)dx.

Since the set of eigenfunctions {uj}∞j=1 is an orthonormal set, the set of {ûj(ξ)}∞j=1

also forms an orthonormal set in R
d by using Plancherel’s theorem. Set

F (ξ) :=
k∑

j=1

|ûj(ξ)|2.

Now we will use the decreasing radial rearrangement of F (ξ) and the coarea formula
to get the condition in the lemma. Let F ∗(ξ) = ϕ(|ξ|) be the decreasing radial
rearrangement of F . We may assume that ϕ is absolutely continuous. Let μ(t) =
|{F ∗(ξ) > t}| = |{F (ξ) > t}|. Then, μ(ϕ(x)) = ωdx

d, where ωd denotes the volume
of the d-dimensional unit ball. By the coarea formula,

μ(t) =

∫ |Ω|/(2π)d

t

∫

{F=x}
|∇F |−1dσxdx.

Then,

(2.10) −μ′(ϕ(x)) =

∫

{F=ϕ(x)}
|∇F |−1dσϕ(x).

Next we will estimate |∇F |:
k∑

j=1

|∇ûj(ξ)|2 ≤ 1

(2π)d

∫

Ω

|ixe−ix·ξ|2dx =
I(Ω)

(2π)d
,
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where I(Ω), the moment of inertia, is defined as

I(Ω) = min
u∈Rd

∫

Ω

|x− u|2dx.

After translation, we may assume that

I(Ω) =

∫

Ω

|x|2dx.

Observe that for every ξ,

(2.11) |∇F (ξ)| ≤ 2

⎛

⎝
k∑

j=1

|ûj(ξ)|2
⎞

⎠

1/2 ⎛

⎝
k∑

j=1

|∇ûj(ξ)|2
⎞

⎠

1/2

≤ 2(2π)−d
√
|Ω|I(Ω).

By letting m := 2(2π)−d
√
|Ω|I(Ω) and using (2.11) in (2.10), we obtain

−μ′(ϕ(x)) ≥ m−1 Voln−1({F = ϕ(x)})
≥ m−1dωdx

d−1.

On the other hand, differentiating μ(ϕ(x)) yields μ′(ϕ(x))ϕ′(x) = dωdx
d−1. Thus,

(2.12) 0 ≤ −ϕ′(x) ≤ m,

which is the required condition in the lemma. Thus, it remains to prove the theorem
by using the lemma. Observe that

(2.13)

∫

Rd

F (ξ)dξ = k.

Observe that because the uj ’s form an orthonormal set in L2(Ω), by Bessel’s in-
equality,

(2.14) 0 ≤ F (ξ) ≤ |Ω|
(2π)d

.

Since

βj = 〈uj , H0,Ωuj〉 =
∫

Rd

|ξ||ûj(ξ)|2dξ,

with the definition of F , we have

(2.15)

∫

Rd

|ξ|F (ξ)dξ =
k∑

j=1

βj .

Hence,

(2.16) k =

∫

Rd

F (ξ)dξ =

∫

Rd

F ∗(ξ)dξ = dωd

∫ ∞

0

xd−1ϕ(x)dx

and

(2.17)
k∑

j=1

βj =

∫

Rd

|ξ|F (ξ)dξ =

∫

Rd

|ξ|F ∗(ξ)dξ = dωd

∫ ∞

0

xdϕ(x)dx.

Equations (2.16), (2.17), when combined with Lemma 2.2, yield

(2.18)
k∑

j=1

βj ≥
d

d+ 1
ωd

−1/dϕ(0)−1/dk1+1/d +
d

6m2(d2 − 1)
ω
1/d
d ϕ(0)2+1/dk1−1/d.
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Define

h(t) =
d

d+ 1
ωd

−1/dk1+1/dt−1/d +
Cd

m2(d2 − 1)
ω
1/d
d k1−1/dt2+1/d,

where C is a constant to be chosen later. Observe that the function h is decreasing
on the interval

0 < t ≤
(
m2(d− 1)k2/d

C(2d+ 1)ω
2/d
d

)d/(d+2)

.

Let R be the number such that |Ω| = ωdR
d. Then,

I(Ω) ≥
∫

B(R)

|x|2dx =
dωdR

d+2

d+ 2
,

where B(R) is the ball of radius R. Then,

m = 2(2π)−d
√
|Ω|I(Ω)

≥ 2(2π)−d

√
d

d+ 2
ω
−2/d
d |Ω|(2d+2)/d

≥ (2π)−dω
−1/d
d |Ω|(d+1)/d.

Choosing C = min

{
1

6
,
m2(d− 1)k2/d(2π)d+2

(2d+ 1)ω
2/d
d |Ω|1+2/d

}

will guarantee that

(
m2(d− 1)k2/d

C(2d+ 1)ω
2/d
d

)d/(d+2)

≥ (2π)−d|Ω|.

Hence, the function h is decreasing on
(
0, (2π)−d|Ω|

]
. Since 0 < ϕ(0) ≤ (2π)−d|Ω|,

and h is decreasing, we can replace ϕ(0) in (2.18) with (2π)−d|Ω|. Therefore, (2.18)

and the fact that ωd =
πd/2

Γ (1 + d/2)
result in the following inequality:

(2.19)
k∑

j=1

βj ≥
√
4πdk1+1/d

d+ 1

(
Γ (1 + d/2)

|Ω|

)1/d

+
Cdk1−1/d

8
√
π(d2 − 1)(Γ(1 + d/2))1/d

|Ω|1+1/d

I(Ω)
.

Let M̃d :=
Cd

8
√
π(d2 − 1)(Γ(1 + d/2))1/d

. Then (2.19) can be written as

(2.20)

k∑

j=1

βj ≥
dC̃d

d+ 1
|Ω|−1/dk1+1/d + M̃d

|Ω|1+1/d

I(Ω)
k1−1/d,

where C̃d =
√
4πΓ(1 + d/2)1/d. Recall that the first term on the right of (2.20) is

the same bound as in [8]. �
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