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Abstract: Recently, laryngeal cancer cases have increased drastically across the globe. Accurate
treatment for laryngeal cancer is intricate, especially in the later stages. This type of cancer is an
intricate malignancy inside the head and neck area of patients. In recent years, diverse diagnosis
approaches and tools have been developed by researchers for helping clinical experts to identify
laryngeal cancer effectively. However, these existing tools and approaches have diverse issues related
to performance constraints such as lower accuracy in the identification of laryngeal cancer in the
initial stage, more computational complexity, and large time consumption in patient screening. In
this paper, the authors present a novel and enhanced deep-learning-based Mask R-CNN model for
the identification of laryngeal cancer and its related symptoms by utilizing diverse image datasets
and CT images in real time. Furthermore, our suggested model is capable of capturing and detecting
minor malignancies of the larynx portion in a significant and faster manner in the real-time screening
of patients, and it saves time for the clinicians, allowing for more patient screening every day. The
outcome of the suggested model is enhanced and pragmatic and obtained an accuracy of 98.99%,
precision of 98.99%, F1 score of 97.99%, and recall of 96.79% on the ImageNet dataset. Several studies
have been performed in recent years on laryngeal cancer detection by using diverse approaches from
researchers. For the future, there are vigorous opportunities for further research to investigate new
approaches for laryngeal cancer detection by utilizing diverse and large dataset images.

Keywords: clinicians; deep learning; ImageNet; laryngeal cancer; patients

1. Introduction

Laryngeal cancer is becoming a serious threat in people’s lives in the modern era across
the globe. Laryngeal cancer has been found to be one of the critical malignancies within the
neck and head regions in people [1]. Cases of laryngeal cancer are increasing rapidly among
people every year all around the world. The clinical cure prognosis and alternatives rely on
the stage of cancer at the instance of identification of laryngeal cancer [2]. The initial phase
of laryngeal cancer and pre-cancer is linked with higher degrees of laryngeal preservation
along with a positive diagnosis in real time [3], while advanced levels of laryngeal cancer
demand a multi-modal diagnosis plan, which results in vital toxicities and poor life quality.
Regarding an optimized diagnosis plan, existing research demonstrates a higher rate of
recurrence with approximately a six-year total survival of 34–62% [4].

In recent years, modalities of endoscopic pictures have been considered as the stan-
dard processes for effective screening of people for proposer diagnosis of laryngeal cancer
in the initial phase throughout the entire clinical setting [5]. Such kinds of screening are
extensively applicable before performing clinical surgery for histological tissue evaluation
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in the setting of optical surgery. A few of the approaches such as grouping of CE (contact
endoscopy) along with NBI (narrow-band imaging) may demonstrate an improvised and
magnified visualization of alterations within the morphology, including 3D alignment of
the vocal folds in real time for subepithelial blood vessels [6]. Such kinds of vascular archi-
tecture of visualized assessment in CE–NBI pictures may offer complementary datasets for
effective clinical treatment of patients suffering from laryngeal cancer across the world [7].

Furthermore, effective utilization of CE–NBI pictures in early prognosis majorly de-
pends upon the otolaryngologist’s practice that demands long years of training in a signifi-
cant manner [8,9]. Moreover, this may produce outcomes in the crucially subjective choice
procedure following under-treatment processes or even over-treatment plans. Currently,
advanced-level feature engineering expansion, DL (deep learning), and ML (machine
learning) techniques in the field of healthcare application offer multifarious pathways
for assisting medical experts and overcoming these kinds of hurdles within clinical trial
settings in real time [10,11]. In this context, multiple computer-rooted schemes have been
utilized over larynx endoscopic pictures. Such approaches may aid otolaryngologists by
offering complementary datasets about the cancer stage along with the vascular tree’s
main characteristics and the larynx portion of the entire epithelial tissue [12,13]. Figure 1
illustrates a few of the most common current tests preferred by clinicians for laryngeal
cancer identification.
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Laryngeal cancer is a severe disease that is currently and rapidly spreading around
the world. Therefore, effective and early diagnosis is becoming essential. According to
one report, laryngeal cancer, which is related to head and neck cancers, demonstrates the
fifth most common disease across the globe, with approximately 120,000 recent cases and
520,000 deaths in the year 2020. In the present era, laryngeal cancer growth is based on
multifarious factors [14]. A few of the most general risk elements involve alcohol intake
and smoking, particularly in developed nations around the world. Laryngeal cancer is a
huge heterogeneous illness with remarkably diverse diagnoses and therapeutic alternatives
that depend on the exact position and extension of the tumor. For the aforementioned
intention, preoperative enactment plays a critical role in diagnosis scheduling, which is
constantly becoming one of the greatest sufferer-tailored diagnosis methods [15].
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Currently, PET (positron emission tomography), MRI (magnetic resonance imaging),
and contrast-improved CT (computed tomography) pictures are routinely obtained in the
entire staging and prognosis procedure of neck and head cancer individuals [16,17]. This
immense dataset collected via a plurality of the picture’s modalities within the existing
medical data could sizably facilitate investigative radiomic evaluation. This heterogeneous
structure of neck and head cancers could be seized through non-invasive procedures,
which may assist as a crucial adjunct for medicinal choice making in real time. The major
contributions of our work for laryngeal cancer detection are as follows.

• In this work, the authors designed a novel and improvised model for laryngeal cancer
detection in the real-time prognosis of patients in an effective manner.

• Another objective of this study is to utilize diverse datasets for testing and cross-
validation of the proposed model for laryngeal cancer early identification with a
higher accuracy level for quick treatment of patients as per the requirements.

• Our proposed deep-learning-based model was designed by utilizing the enhanced
Mask R-CNN technique for improved segmentation of the images for identification of
laryngeal cancer with pragmatic accuracy and precision level in real time.

• Furthermore, this improvised model is capable of functioning on ImageNet dataset
images along with live CT imaging captured during patient screening, thus accurately
identifying patients who have laryngeal cancer or its associated symptoms, or no
laryngeal cancer.

• Moreover, this proposed model can be applied to daily healthcare practice and can
assist clinicians in effectively reducing the patient screening burden.

2. Related Work

In [17], K. Yamaguchi et al. proposed a novel model for laryngeal cancer detection
based on a CNN (convolutional neural network). These days, identification of laryngeal
cancer and its associated symptoms is becoming more challenging in the early stages.
Laryngeal cancer is generally identified at the progressive phase, patient diagnosis in
such a situation is complicated, and possibilities of recovery are low in comparison to
identification in the initial stage. In this work, the authors propose a CNN-rooted diagnosis
model that is further rooted in a single-shot multi-box detection structure. This model
has been trained to utilize the 5164 endoscopic pictures of laryngeal cancer in real time.
One of the major limitations of this model is that it is more time-consuming in the case
of large picture datasets processed in real time. In [11], J. Unger et al. discussed a new
non-invasive scheme for initial-stage discrimination of pre-cancerous vocal fold lesions
and malignant laryngeal cancer dynamic assessment in real time. Many laryngeal cancers
and their associated symptoms are produced within the vocal cords of people. At present,
the early-phase identification of changes in malignant vocal folds of people, along with pre-
malignant lesion discrimination, depicts a huge issue within laryngology. Furthermore, tiny
carcinomas and lesions of pre-cancerous vocal folds create challenging tasks to differentiate
via normal endoscopy procedures in real-time diagnoses. However, this scheme has a few
limitations in the modern era, which are related to model accuracy and time consumption
in picture pre-processing.

In [18], N. M. Abd Raboh et al. proposed another scheme for determining an effective
amount of tumors budding within the present laryngeal carcinoma in real-time assessment.
Tumor budding has become an auspicious diagnostic indicator within numerous types
of cancer, such as laryngeal and particularly colorectal cancer. In this work, the authors
conducted a retrospective investigation of 118 diverse laryngeal cancer-affected people. The
datasets of the patients were acquired via the pathological laboratory records of Ain Shams
University’s medical department. However, this study was performed on small datasets
and does not provide a pragmatic and detailed evaluation for further investigation in this
area. In [19], H. Xiao et al. discussed another study for the recognition of diverse immune
genes within laryngeal pre-cancerous cells. The major aim of this study is the recognition
of the prognostic immune-type genes and the development of a novel prognostic prototype
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for the identification of the laryngeal class of cancer that is rooted upon such genes. The
authors opted for the medicinal dataset of diverse patients from the Atlas database for the
analysis of laryngeal cancer. However, the proposed approach is incapable of processing
large datasets for laryngeal cancer identification, and the error rate is higher for larger
datasets, which require further investigation for novel methods.

In [20], S. Kavya et al. discussed another approach for the identification of chances of
laryngeal cancer and its related symptoms by utilizing the MFCC (mel-frequency cepstrum
coefficients) evaluation. The evaluation was performed through a patient voice coefficient
comparison. The accuracy of the model was evaluated based on only 60 samples. One
of the major restrictions of this model is the huge pre-processing time of large images
for laryngeal cancer detection. In [21], P. Huang et al. discussed another approach to
recognize laryngeal cancer in the initial phase. In this work, the researchers chose the
CNN method for model development to accurately analyze laryngeal cancer. Further, the
authors carried out multiple trials for the testing and validation of the suggested model
in real time and compared the performance parameters with the existing approach. In
this method, the accuracy was enhanced by 25% when compared to the previous model.
However, in the modern technological era, where a large number of datasets are produced
on a daily basis for medicinal diagnoses, this suggested model is inefficient for accurate
image pre-processing to efficiently organize the datasets.

In [22], H. Yamazaki et al. presented another article on radiotherapy treatment for an
effective cure for laryngeal cancer. In this article, the authors described major technical
and certain alternate fractionations. Moreover, the researchers provided an overview of
radiotherapy antiquity via 60 cobalt toward recent linear accelerators and placed major
emphasis on the function of the alternate fractionation. In [23], the authors proposed a new
scheme for the removal of laryngeal cancer utilizing narrow-band endoscopic videos in
the real-time screening of patients. In this article, the authors designed and implemented a
novel model that determines laryngeal cancer and its associated symptoms from real-time
endoscopic videos to save time. However, this procedure is time-consuming, as the videos
consume more storage space and take time in information retrieval in the case of large
datasets. In [24], F. Wu et al. discussed another method for the picture categorization of
laryngeal cancer by using a neural network. In this work, a hybrid model was developed
utilizing the ResNet and an inception model for classifying the laryngeal cancer pictures.
However, the performance of the model was found to be minimal in the case of fast picture
pre-processing and analysis. Table 1 demonstrates the existing work conducted on laryngeal
cancer detection techniques.
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Table 1. Existing work conducted on laryngeal cancer detection techniques.

S. No. Name of Author Reference Publication Year Technique Used Accuracy Level (%) Limitation

1 M. Bengs et al. [25] 2020 CNN 81% Large computation time in classification

2 G. B. Gour et al. [26] 2020 SVM and RF 76% Higher computation complexity in implementation

3 E. Hadjaidji et al. [14] 2021 SVM along with KNN 83% Lower classification accuracy on large datasets

4 X. Zhou et al. [27] 2021 VGG16, and ResNet50 classifier 85% Model prediction speed is lower in real time

5 T. M. Inbamalar et al. [28] 2021 CNN 86% Incapable of processing and training large images
datasets in the modern era

6 M. H. Laves et al. [29] 2019 DCNN 84% Low accuracy level

7 M. Żurek et al. [30] 2022 AI-based multimodal prediction model 91% Large power consumption and lower throughput

8 Q. Cen et al. [31] 2019 CNN 88% More computational complexity in
multiple datasets

CNN: convolutional neural network, AI: artificial intelligence, DCNN: deep convolutional neural network, KNN: K-nearest neighbors, RF: random forest, SVM: support vector machine,
ResNet: residual network.
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3. Proposed Methodology

Effective diagnosis of laryngeal cancer is a critical task, particularly in the initial phase
of the development of malignancies in the head and neck region of patients. Earlier diagno-
sis tools are becoming ineffective in the modern era due to the screening of many people on
a daily basis, which is time-consuming for clinicians. For resolving these aforementioned
problems, the authors of this work present a novel and more effective approach for patient
screening using diverse images. In this work, an improvised approach is proposed for the
identification of laryngeal cancer and its related symptoms in real time. This approach
is based on a deep learning technique and consumes minimal time in comparison to the
previous models.

3.1. Dataset Used

Laryngeal cancer is constantly becoming one of the major threats in people’s lives
all around the world. The early detection of laryngeal cancer is important for effective
diagnosis and saving the life of the individual, as it is a dangerous kind of cancer among
other types of cancers. In this study, the researchers present a new deep-learning-based
Mask R-CNN model for the early detection of laryngeal cancer with a greater accuracy
level. For the performance analysis of the proposed model, the authors utilized two diverse
datasets, namely the ImageNet and multiple CT scan imaging data, in a real-time screening
of patients for laryngeal cancer identification [32].

3.1.1. ImageNet

ImageNet is one of the most widely utilized picture datasets and is arranged as per
the hierarchy of WordNet. Within this hierarchy, all nodes are portrayed via thousands of
pictures. This image dataset has been widely utilized by researchers for computer vision
advancement and for deep-learning-based research projects. This dataset is accessible to the
entire research community for the non-commercial utilization and training and validation
of novel models based on multiple new techniques, such as deep learning and many more.

3.1.2. CT Scan Imaging Datasets

We tested and validated the proposed model using multiple CT scan images captured
in the real-time diagnosis of patients by clinicians. The performance computations and
results analysis of the proposed model are performed with a greater accuracy level and
precision level in real time. CT scan imaging datasets were chosen for cross-validation and
testing of the suggested model in a more effective manner. The CT scan used herein is
called contrasting CT or may be referred to as contrast-enhanced CT. It is mainly helpful
for highlighting structures, namely blood vessels, that are intricate enough for delineating
against their surrounding.

3.2. Sample

For training and validation of our suggested model, we selected both a control group,
i.e., health, and a case group, i.e., laryngeal cancer image datasets, for measuring diverse
performance parameters such as model accuracy and many more in real time. Further,
for accurate training, testing, and model validation, the researchers selected both males
and females. For control group images, we selected 119 males and 107 females and an
aggregate of 226 image datasets overall in the control group cases. For case group images,
we selected 150 male images and 165 case group images and an aggregate of 315 case group
pictures overall. Figure 2 illustrates the selected male and female image datasets used for
the training and validation of the proposed model.

Figure 3 illustrates the selected male and female images of the live CT scan imaging
datasets used for training and validation of the proposed model. For cross-verification
of the proposed model, we selected 95 male and 98 female control group pictures, and
an aggregate of all control group pictures was 193 in training and validation. Further, we
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selected 120 male and 122 female case group images and an aggregate of 242 pictures used
for the training and validation of the proposed model in real time.
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Figure 3. Illustrates the selected male and female images of live CT scan imaging datasets used for
training and validation of the proposed model.

3.3. System Configuration

The authors performed this experiment with the help of a computer system inscribed
with the subsequent system arrangements: 12th generation Intel Core i7 processor, NVIDIA
RTX 3050 Ti Graphic card: 4 GB, 16 GB: DDR5 RAM (random access memory), 1 TB SSD
(Solid State Drive), Operating System: 64 GB along with Windows 11. For the training of
the datasets, we opted for the V3 network of GoogLeNet Inception, which was considered
as the backbone network. Furthermore, we utilized StandardScaler (function), which is
the globally acknowledged scikit-learn library. This suggested model was designed and
validated by utilizing the widely acknowledged framework TensorFlow Keras.

3.4. System Design

In this proposed work, the authors designed a novel model for laryngeal cancer
identification using the image datasets for twice the screening of patients in an effective
manner. Figure 4 illustrates the proposed IML-CNN model for the assessment of laryngeal
cancer using the image datasets. The entire working procedure of this suggested model
is described as follows. In this testing procedure, initially, the screening of the patient is
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performed by using computed tomography (CT) scan imaging for the collection of multiple
images of the patient in an effective manner for the diagnosis procedure. At the same
time, for testing and verification of the model, the authors utilized the model specification
pre-trained through the ImageNet database. We utilized a 10-fold cross-validation approach
for the performance computation of the proposed IML-CNN model. The 10-fold cross-
validation procedure is a resampling approach that is utilized for the evaluation of the
proposed IML-CNN model on a finite dataset sample. The 10-fold cross-validation general
procedure is as follows. Initially, the entire collected data were arbitrarily shuffled, followed
by division of these data into 10 groups. For every selected distinctive group (a) the group
was selected as the testing dataset or hold out; (b) the remaining groups were selected as
the training dataset. In the subsequent step, the entire collected dataset was translated
for the data pre-processing phase. For effective dataset pre-processing, multiple elements
were incorporated by the researchers, including the Median and Wiener Filter for noise
removal, from the obtained datasets images. Once the noise was eliminated from the
received datasets, after the pectoral removal, unsharp masking and an image normalization
process were performed for further image segmentation.
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In the image segmentation procedure, an enhanced Mask R-CNN was utilized. Mask
R-CNN is one of the most pragmatic picture segmentation procedures and is based on the
CNN technique. The present deep neural network (DNN) variant determines multiple
objects within the picture and originates the higher-quality segment masking for every
instance in real time. After an effective segmentation procedure, the training phase was
performed utilizing the segmented images. This incorporated DNN-based training model
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contained multifarious hidden layers, which included a convolution layer, ReLU layer,
pooling layer, and SoftMax layer for effective categorization of the received pictures. Once
the training phase was completed using the DNN-based training model for laryngeal
cancer identification, the output was applied to the testing-phase-trained model in real
time. Within the testing phase, we integrated three diverse kinds of models, namely the
pre-trained, trained and testing models. The pre-trained model was utilized for comparing
the acquired datasets in real time, and based upon that, the trained model predicts the
precise quality of the applied images. Once the testing procedure is completed, then the
model computes laryngeal cancer and no-laryngeal cancer most effectively and accurately.

The typical architecture of the CNN is generally built through multiple input and
output layers that further include diverse essential layers, namely the convolution layer,
ReLU layer, pooling layer, SoftMax layer, and finally, the fully connected layers. All of the
aforementioned layers are vital for facilitating efficient learning of the higher abstract key
features through the applied input datasets, namely the picture in real time. Once the input
is applied within the CNN architecture, then the convolution layer obtains the applied
input picture for features extraction in an automated manner and sends the obtained
datasets to the ReLU layer. The ReLU layer aids in the prevention of exponential progress
within the computation needed for neural network operation. These extracted features
are to be translated within the pooling layer, and then, the next process is carried out. In
the subsequent step, every compact input picture is fed within a fully connected layer
for classifying the pictures in the equivalent labels. Finally, the entire obtained dataset is
translated into the SoftMax layer to obtain an outcome in a required manner according to
the model implementation in real time. The CNN approach has become one of the most
recognized and significant kinds of neural networks. The CNN technique overcomes the
drawbacks of conventional fully connected layers, which includes but is not limited to
computational overhead and more complexity in real-time implementation.

In our proposed model, for identification of laryngeal cancer and its symptoms in a
quick manner with a more accurate outcome, we opted for a hybrid deep-learning-based
approach. Here, the input is diverse, and there is no category label for the testing image
data, the class label depicts the group of diverse pictures, and lastly, FP represents the list of
testing picture datasets. The output here is the list of the trained and validated diverse class
picture datasets. The pseudo-code for the proposed enhanced Mask R-CNN segmentation
is described below.

Step 1: CT scan imaging datasets and ImageNet dataset are aggregated.
Step 2: Initialize from CT scan imaging datasets (‘FX’: testing datasets without the label of
category) and position this within the combined dataset list.
Step 3: Initialize from ImageNet datasets (‘FY’: testing datasets without the label of cate-
gory) and position this within the combined dataset list.
Step 4: Repeat the previous steps until input datasets are within the defined goals (GL1
and GL2).
Step 5: Terminate loop and regress ‘failed’ if dataset collection list is detected as unfilled.
Step 6: Translate ‘FX’ and ‘FY’ from the chosen dataset list and send to the Median and
Wiener Filter (here, entire noise removal and pectoral removal procedures are performed).
Step 7: Perform unsharp masking and image normalization of ‘FX’ and ‘FY’.
Step 8: Separate and categorize trained datasets with validated diverse classes datasets ‘FX’
and ‘FY’.
Step 9: Perform training of categorized datasets ‘FX’ and ‘FY’ in multiple layered DNN-
based training model.
Step 10: Perform testing of obtained datasets ‘FX’ and ‘FY’ using trained model (here,
obtained ‘FX’ and ‘FY’ are trained using a pre-trained model and testing model)
Step 11: Predict and evaluate the model outcomes, i.e., laryngeal cancer or no laryngeal cancer.

The source code for the proposed model is also available in the GitHub repository at
https://github.com/pravatmca/RCNN/ (accessed on 6 November 2022) for public reference.

https://github.com/pravatmca/RCNN/
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3.5. Model Development and Features Extraction

The features of the pictures were extracted from the volume of interest (VOI) regions
described throughout the segmentation. Each feature demonstrates a particular segment
from the entire radiomic notion. The obtained picture intensity was quantified through the
histogram intensity, which demonstrates three-dimensional (3D) fractional volume datasets.
This received dataset comprises amounts such as overall volume, area of surface, and level
of compactness, including the real form of laryngeal cancer in real-time evaluation. The
texture-rooted features were compiled through a numerical algorithm, which provides
second-order statistical matric characteristics. Diverse features contained in the datasets
related to the surplus quality of pictures, such as brightness level, grey shades, and diverse
settings, and many more. One of the major encounters in radiosondes is to describe the
multiple non-redundant groups of the picture biomarkers through a large number of
removed features for improving overall radiometric performance in real time.

The overall network weights were fixed in both the training and the testing phases
using the enhanced Mask R-CNN-based model, and overall loss was evaluated utilizing
Equation (1).

Overall Loss = w1 × rpm_class_losses + w2 × rpm_class_losses (1)

Evaluating the effective segmentation procedure in the initial phase would assist in
determining whether there is a need for additional cropping steps of the selected image
datasets in real time. There is another performance evaluation metric, namely a disc score,
for the medicinal picture segmentation, and it is associated with the Jaccard score by
utilizing Equation (2).

DS =
2J

1 + J
(2)

There is a stringent localization description within the prior part that is utilized as an
intersection in comparison with the union, which is also recognized as the Jaccard score.
This IOU is given in the Equation (3).

IOU =
|A| ∩ |B|
|A| ∪ |B| (3)

In the case of an estimated boundary box, moved or altered in the dimension, the
need for bigger padding would not create a similar IOU. For evaluation of the minimal IoU
needed for any given padding dimension, Equations (4) and (5) may be used to calculate
IOUOutside and IOUInside.

IOUOutside =
Dim− X
Dim + X

(4)

IOUInside =
Dim2 − 2Dimx + X

Dim2 (5)

where Dim represents the selected dimension of the picture, and X represents the
padding dimension.

3.6. Performance Metrics

The performance evaluation of our proposed deep-learning-based model was con-
ducted by utilizing accuracy, recall, precision, and F1 score as the main performance
metrics. Each of the aforementioned performance metrics along with the corresponding
mathematical formula is described as follows.



Sensors 2022, 22, 8834 11 of 18

The accuracy metric is simply the ratio of accurately categorized image samples to the
overall amount of the samples as depicted in Equation (6).

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

The accurate value of precision is a measurement of the ratio of accurately evaluated
diverse images to the overall amount of positive categorization forecasts as depicted in
Equation (7).

Precision =
TP

TP + FP
(7)

The recall metrics are simply a ratio of the real positive, accurately predicted image
classes as described in Equation (8).

Recall =
TP

TP + FN
(8)

The F1 score metrics are an average of both the recall and precision as depicted in
Equation (9).

F1score =
2× Recall × Precision

Recall + Precision
(9)

4. Results and Discussion

Laryngeal cancer is becoming one of the biggest threats to people’s lives all around the
world. This category of cancer characterizes one of the greatest recurrent cancers within the
neck and head regions of people. Laryngeal cancer identification in the early stage is still a
challenging problem for clinicians, as traditional detection methods are time-consuming
and are incapable of identifying laryngeal cancer and its symptoms in the early phases.
The larynx demonstrates distinctive diagnostic and therapeutic issues for medical experts
during patient screening. Laryngeal cancer’s intricate area and diverse structure make
this essential for improving clinical screening diagnosis instruments to enhance the choice-
making protocols for higher survival rates and functional outcomes. Therefore, there is a
massive need for a novel and cost-effective model that can be implemented more easily
and conveniently in comparison to the previous scheme in real time. In this work, the
researchers proposed a novel and enhanced model for the identification of laryngeal cancer
and its associated symptoms in the early stage in a short amount of time and in a more
accurate manner in comparison to the existing models. For these reasons, this suggested
model is a pragmatic choice to monitor and evaluate laryngeal cancer and its symptoms,
particularly in surgical and non-surgical tissue-safeguarding treatments.

In our work, a fully automated deep-learning-based model was proposed for more
accurate laryngeal cancer identification and classification. In this improvised model, we
utilized the enhanced Mask R-CNN approach for a more practical categorization of malig-
nant and benign laryngeal cancer. To the best of our knowledge, there has been no work
performed on the identification of early-stage laryngeal cancer using the enhanced Mask
R-CNN approach, which provides more accurate classification results of laryngeal cancer
and its associated symptoms in the early stage, which could save the lives of more patients
through accurate diagnosis. The outcome of the proposed model demonstrates that the
suggested deep-learning-based model is capable of distinguishing benign lesions from
diverse shapes and sizes of malignant lesions from both the ImageNet datasets and the live
CT scan imaging datasets. Furthermore, the suggested model offers greater performance
constraints and more consistent clarification along with an objective choice-making proce-
dure for medical experts during the screening and diagnosis of patients. The application
of our proposed deep-learning-based model has brought more efficient results in the field
of picture evaluation for a better understanding of diverse medical picture contents. Fur-
thermore, the proposed model is capable of reutilizing the pre-trained model, namely for
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picture categorization in real-time analyses. This experiment was performed by utilizing
the widely recognized framework TensorFlow Keras on a computing machine with the
following system arrangements: 12th generation Intel Core i7 processor, NVIDIA RTX
3050 Ti Graphic card: 4 GB, 16 GB: DDR5 RAM, 1 TB SSD, Operating System: 64 GB and
Windows 11. For the training of both datasets, the researchers utilized the V3 network of
GoogLeNet Inception, which was considered as the backbone network.

Figure 5 illustrates the selected training and testing pictures: (a) shows the original
training picture, (b) shows the tested image with clearer white spots depicting laryngeal
cancer, (c) demonstrates the original training picture, and (d) shows another tested picture
with more clear white spots depicting laryngeal cancer. This attention map is portrayed as a
heat mapping overlain on real pictures. The warmer colors indicate greater saliency, which
shows a huge contribution to the categorization choices. The outcome of the proposed
model is pragmatic and offers clearer imaging for the identification of laryngeal cancer in
comparison with the existing approaches, and it can help clinicians in the early diagnosis
of patients. Thus, this work offers a more accurate and visible screening of patients in
real time and does not leave the minimal or maximal condition of laryngeal cancer and its
associated symptoms in the medical screening procedure.
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Figure 6 illustrates the accuracy of the proposed model both in the training and testing
phases, taking into account live CT scan imaging datasets. The measured training and
testing accuracy of the proposed model on epochs 0, 10, 20, 30, 40, 50, and 60 are 0.75,
0.78, 0.79, 0.8, 0.85, 0.89, 0.89 and 0.77, 0.79, 0.81, 0.82, 0.87, 0.93, 0.94, respectively. Our
proposed model accuracy on the CT scan imaging datasets is improved and more practical
in comparison to the existing models.
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Figure 6. Accuracy of the proposed model both in the training and testing phases, taking into account
live CT scan imaging datasets.

Figure 7 illustrates the comparison of accuracy between the proposed model and the
existing models, taking into account the ImageNet datasets. For the existing models by
N. Esmaeili et al. [33], G. H. Kim et al. [34], and M. A. Azam et al. [35], the measurement
accuracy was 79%, 92%, and 91%, respectively. Our proposed model measured training
and validation accuracy on the ImageNet datasets to be 98.99%, which is more practical
and pragmatic in comparison to the existing approaches. Furthermore, our model works
efficiently on large image datasets regarding diverse gender in a more accurate manner
and assists clinicians in effective screenings of patients in real time.
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Figure 7. Comparison of accuracy between the proposed model and existing models, taking into
account the ImageNet datasets [33–35].

Figure 8 illustrates the recall comparison of the proposed model with existing models,
taking into account the ImageNet datasets. In the existing models, N. Esmaeili et al. [33],
G. H. Kim et al. [34], and M. A. Azam et al. [35] showed measured recall values of 88%, 84%,
and 86%, respectively. Our proposed model measured the training and validation recall
values on the ImageNet datasets to be 96.79%, which is more realistic and considerable in
comparison to the existing models.
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Figure 8. Recall comparison of the proposed model with existing models, taking into account the
ImageNet datasets [33–35].

Figure 9 illustrates the F1 score comparison of the proposed model with the existing
models, taking into account the ImageNet datasets. In the existing models, the measured
F1 score values were 87%, 81%, and 91%, respectively. Our proposed model measured
training and validation F1 score value on the ImageNet datasets to be 97.99%, which is
more realistic and considerable in comparison to the existing models.
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Figure 9. Comparison of F1 score between the proposed model and the existing models, taking into
account the ImageNet datasets [33–35].

Figure 10 illustrates the precision comparison of the proposed model with existing
models, taking into account the ImageNet datasets. In the existing models, the measured
precision values were 91%, 89%, and 93%, respectively. Our proposed model measured the
training and validation precision value on the ImageNet datasets to be 98.99%, which is
more realistic and considerable in comparison to the existing models.
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Figure 10. Comparison of precision between the proposed model and existing models, taking into
account the ImageNet datasets [33–35].

Figure 11 illustrates the training loss of the proposed model. The training loss of the
proposed model measured on the diverse chosen epochs 0, 20, 30, 60, 90, 110 and 140 are
0%, 2.5%, 0.9%, 0.3%, 0.2%, 0.2% and 0.2%, respectively. The outcome of the proposed
model using the deep learning approach offers minimal training losses in comparison to
the previous approaches.
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Figure 11. Training loss of the proposed model.

Figure 12 illustrates the validation loss of the proposed model. The validation loss of
the proposed model measured on the diverse chosen epochs 0, 20, 30, 60, 90, 110 and 140
are 0%, 2.8%, 0.9%, 0.3%, 0.2%, 0.2% and 0.1%, respectively. The results of the suggested
model utilizing the deep learning approach offer minimal validation losses in comparison
to the previous approaches.
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Table 2 depicts the comparative analysis of the time of execution between the pro-
posed model and the existing models. The time of execution of any model is a critical
parameter and requires much attention toward minimization of time consumption during
the training and validation of the proposed model in real-time analysis of the model. The
execution times for the existing models for laryngeal cancer identification were 7, 5, and
4 s, respectively. Our proposed model time of execution both in the training and validation
phases was 1 s, which is minimal in comparison to the previous models. Thus, our model’s
minimal execution time demonstrates that it is capable of handling and processing a huge
amount of datasets for laryngeal cancer identification in a more pragmatic manner.

Table 2. Comparative analysis of the proposed model and existing model time of execution.

S. No. Models Time of Execution (in Seconds)

1 N. Esmaeili et al. [33] 7 s

2 G. H. Kim et al. [34] 5 s

3 M. A. Azam et al. [35] 4 s

4 Proposed Model 1 s

5. Conclusions

The laryngeal cancer identification and categorization procedure is critical work for
clinicians, especially in the initial development phases of benign and malignant lesions
within the head and neck portion of patients [36]. The larynx of the individual is one of the
greatest multifaceted anatomical and essential organs inside the head and neck area. In
the last decade, cases of laryngeal cancer among people have been constantly increasing
across the globe, owing to diverse reasons such as more alcohol consumption, smoking
and an unhealthy diet in day-to-day life. An effective and accurate diagnosis in the initial
development phase is essential for saving the lives of people, as laryngeal cancer is a severe
disease. In this paper, the authors developed a novel and improvised deep-learning-based
model for laryngeal cancer detection and identification, especially in the initial phase. Our
proposed model is one of the novel and most suitable models in comparison to previous
models because it is capable of identifying laryngeal cancer and its associated symptoms
with more accuracy and in a minimal time duration using the diverse images datasets. In
summary, we developed an automated and well-suited model for clinical analysis and
for more accurate screening of patients for the identification of laryngeal cancer. This
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model was developed in such a manner by utilizing diverse components so that it could
use a variety of image datasets such as the ImageNet and live CT scan imaging datasets
for laryngeal cancer identification. The model also shows considerable medicinal impact,
along with enhanced diagnosis rates in the development of early laryngeal cancer. The
results of the suggested deep-learning-based model are improved and offer an accuracy
of 98.99%, precision of 98.99%, F1 score of 97.99%, and recall of 96.79% on the ImageNet
dataset. Moreover, the proposed model took only 1 s for clinical screening both in the
training and validation of the diverse image datasets, which is minimal and could help
endoscopists and other medical experts in the medical testing of patients in real time. In the
future, there is great potential and possibilities for more investigations to detect laryngeal
cancer by using diverse datasets for minimizing the time of screenings and improving the
accuracy of the model, especially on larger datasets.
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