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Abstract—We design a impulse radio ultra-wideband (IR  respiratory monitoring. Overtightening of the belts capéde
UWB) radar monitoring system to track the chest wall movemen  the patient’s respiratory efforts, and shifting of body iioa
of a human subject during respiration. Multiple sensors are g ing sleep often leads to loss of signals due to loosening

placed at different locations to ensure that the backscattred . .
signal could be detected by at least one sensor no matter whic of the belts. The belts also add to physical discomfort and

direction the human subject faces. We design a hidden Markov May result in sleep disruption for the patient. The lack of
model (HMM) to infer the subject facing direction and his or her adequate sleep time and loss of data signal may mean that the

chest movement. We compare the performance of our proposed patient is required to repeat the PSG. Recently there haame be
scheme onl5 human volunteers with the medical gold standard o\, developments such as fabricating capacitive sensors in

using respiratory inductive plethysmography (RIP) belts, and . . . "
show that on average, our estimation is overs1% correlated clothes, which can be worn by the patient in order to fatdita

with the measurements of a RIP belt system. Furthermore, in espiratory monitoring [8], [9]. However these methods may
order to automatically differentiate between periods of nemal produce inaccurate results due to patient movements during
and abnormal breathing patterns, we develop a change point sleep or other factors like ambient room conditions. Phatsic
detection algorithm based on perfect simulation technique 10 \year and tear of the capacitive sensors embedded in the
detect changes in the subjects breathing. The feasibilityof fabric is also a challenge. Other methods involve the use of
our proposed system is verified by both the simulation and ‘ : ] )
experiment results. unobtrusive sensors and on-body wearable devices in avder t
measure the respiratory effort [10], [11].

In this paper, we develop a wirelesx)ntactlessand non-
invasive respiratory monitoring system that can be used in
PSG studies, home respiratory monitoring applications or
|. INTRODUCTION other applications like physiotherapies. We use ultraelvahd

Obstructive sleep apnea is the most common form g¢WB) signals because its large bandwidth facilitates high
sleep breathing disorder, and occurs when there is partialn€ resolution, allowing precise ranging and locationi-est
complete cessation of airflow due to upper airway obstractignation. After the US Federal Communication Commission
while ventilatory effort by the patient persists. Sleepemaf- (FCC) approved the limited use of UWB technology, UWB
fects sleep duration and quality, leading to chronic pbsteep SYStems have drawn considerable attention for non-contact
deprivation with consequent well-recognized impairedroeu Medical applications [12]. One important application is in
cognitive function and daytime performance, increasedfds ~SI€€p monitoring, where measuring the respiratory antsitu
metabolic and cardiovascular diseases (e.g hypertereioor, and breathing rate is crucial for sleep apnea diagnosis [13]
nary heart disease, life-threatening arrhythmias andtejrand [14]. Various UWB technologies have been studied, inclgdin
motor vehicular accidents [1]-[4], and a diminished quatit fréquency modulated UWB [15], [16], and impulse radio (IR)
life. Large prospective cohort community-based studiesshaUWB [17]-[19]. o _ o
also added to the growing evidence that sleep apnea insreasdn [181-[21], the feasibility of using IR UWB for estimating
risk of death [5], [6]. the breathing rate is mvestlgated. The measurement system

In order to diagnose sleep apnea and other respiratéfpPosed by [18], [19] consists of two UWB antennas, one
and sleep disorders, an overnight polysomnography (PSGf‘?é transmission and the other for rece_pt|on, and are pdinte
performed in hospitals. Respiratory inductive plethysmeg directly at the chest of the _human_ _subject. However, the per-
phy (RIP) is utilized for measuring the respiratory effoft Oformance pf such systems is sengltlve to the movement of Fhe
the patient as shown in [7]. In RIP, elastic belts are worgHPiect. Since one fixed antenna is used, if the human subject
around the chest or abdomen, and respiratory movements i§r&0t facing the antenna at a sufficiently small angle, the
measured by detecting the change in inductance of the pagnal backscattering comes mostly from the side of the body

due to the respiratory effort. This is an invasive technitpre instéad of from the chest area, resulting in poor estimation
accuracy. To solve the problem of the human subject notdacin
This research was supported by a NITHM grant. The first sihastare the UWB antenna at a sufficiently small angle, we propose
wnh the S_choql of Electrlcal and Electrc_)nlc Engineeringanyang Tephno— a setup Comprising of multiple UWB transceivers. Multiple
logical University, Singapore. A.P. Chua is from the Depent of Medicine, . d . | d diff .
National University Healthcare System, SingaporeCorresponding author, transmit and receive antennas are placed at differentitosat

e-mail: nijsure@ntu.edu.sg to ensure that the backscattered signal can be detected by

Index Terms—Ultra-wideband impulse radio radar, respiration
monitoring, sleep apnea detection, hidden Markov model.



at least one receiver antenna. To fuse the information

the multiple receiver antennas, we develop a hidden Mz UWB ey

model (HMM) based method to estimate the chest move Impulse Generator = Digital Oscilloscope
from the backscattered signals from all receiver antenim Im ‘
addition, we present a change point detection algorithnad ‘

on perfect simulation techniques to automatically detbe £
statistical change points at which abnormal breathingepree
are likely to have occurred. Our main contributions are

following.

Splitter

Terminal

Tx 2

1) We develop a novel HMM for tracking chest wall ma

ments during respiration, based on data fusion — S 3

multiple UWB transceivers. This is verified both exp / \

mentally and through simulations. %—:‘\ _
2) We compare the performance of the proposed F : -’w; o Basline

based approach with the medical gold standard us NS===

RIP belt system. We show that our inferred respire Human subject

amplitude is highly correlated with that produced k

RIP belt.

3) We develop a change point detection algorithm for d%-g 1. System architecture
tecting abnormal breathing patterns to facilitate autéenat =~ = '
sleep disordered breathing detection based on respiratory
signals.

The rest of the paper is organized as follows. In Section II, Let a transmission frame be the time interval between two

we describe the system architecture and provide a detaifédnsmitted UWB pulses, and suppose that transmissioresam
analysis of the proposed HMM approach for tracking th@re indexed by =0,---,T. For each frame, a peak detection
human chest wall motion during respiration. In Section litechnique is applied to the received UWB pulse waveform to
we present the change point detection algorithm for detgctiestimate the propagation delay. We refer the reader to [19]
abnormal breathing patterns to facilitate S|eep apne&m for a detailed discussion of this detection procedure. Clens

In Section IV, we present the simulation and experimentdl transceiver paifj, wherej = 1,2, at transmission frame
results including the comparison with standard benchmaikLet 7;(t) denote the propagation delay of the peak of the
method for respiration monitoring. Finally, in Section V wedackscattered signal at the receiver. The subject may face
pro\/ide Conc|uding remarks on the app“cation of the preﬂosdiﬁerent directions during the monitoring process. Bessaaf
method and its Su|tab|||ty in non-invasive medical appj[mas the limited beam width of the receive antenna, backscattere
Throughout this work, we use)” to denote matrix transpose.signals from the subject's chest may not be detected by the

We useMN (1, %) to denote the (multivariate) Gaussian distriantenna if she is facing certain directions. lt) be a state
bution with meary, and covariance matrix. variable that corresponds to the direction the subjectamfa

Let D; be the set of directions that result in backscattered
signals that are within the beam width of receive antenivie
A System Mode consider the cases whepét) € D; andp(t) ¢ D; separately.

In thi . d ib . tal UWB Suppose that the backscattered signal is within the beam
i n this ?ec |c%n, we _esc;l € ?ur (texgetnmeni d MONYidth of the receive antenna of transceiver pairLet dr;
ltoring setup. Two pairs ot co-localed transmit and rece the distance between the transmit antenna and reference

antenna are used in our experiments, as shown in Figure 1. We .\ - positiort, and dj;; be the distance between the
note that although only two transceiver pairs are used in oL ' J

. ference chest wall position and the receive antenna. The
set_up, our work can be .e_asny extended t9 cases where m Bst wall displacement about its reference position durin
bairs O.f antennas are utilized. Two UWB |mpul_ses generatgd \ s mission frame is denoted ag(t). The distance traveled
by a picosecond impulse generator are transmitted S"_m*ltaﬂ the UWB signal between the transmitter and receiver is the
ously from the two transmit antennas. For our experimen roximatelyds; + dp; + 2d(t) + 2v;(p(t)), wherev, (p(t))
purposes, the backscattered signals at the receive asten %n adjustmen% to th]e distande ; Jng' a's a resujlt of the
are detected using a digital oscilloscope and processed b¥u ject facing a particular direct]io,ﬁ(t) ]The termu, (p(t))
computer. The human chest wall movement can be estima ' /

- . i : ends on where the antennas are placed with respect to the
by determining the propagation delay and the received big %bject, and will be treated as an unknown nuisance paramete

strength .(RSS) of _the_ backscattereq UWB signal since t $be estimated from the measurements. The propagation dela
propagation delay is directly proportional to the chest ezov

ment, and the signal strength is related to the distance the

subject is from the UWB antennas, and the angle she is facing,.
) 9 glAs we are interested only in the variations in the chest wallement,

In the fOIIOWi_ng’ we describe the model equations govemi%y reasonable reference position can be used withouttiaffecur results.
the propagation delay and the RSS of the backscattered.sigsae Section 1I-B for more details.

Il. SYSTEM MODEL AND CHEST MOVEMENT INFERENCE



of the UWB signal can be expressed as facing towards the midpoint between receivérand 2, and
=3I i i [ Figure 1). We

dri 4 dps + 2d(8) + 20 (p(t p(t) .3 if she.ls facing tpwards receivér(see gur :
() = LT ®) 3 (o )), (1) quantize the distanad(t) into M states. The transition matrix

) ) ) ¢ of the states of our HMM is then given by3d/ x 3M state
wherec is the speed of light in free space. The RSS of ﬂ}?ansition matrixA..

UWB signal can be modeled &s

For each transceiver pajr= 1,2, let 7j ..y = dr; + dg;

zi(t) = —10vlog 7;(t) + 5, 2) be_the. propagation delay of a refer.ence transmission framg,
_ which is chosen to be a frame in which the receive antenna is
where v is the two way path loss exponent, atl = gple to detect a backscattered signal from the subject’stche

10log P, + K is a constant that depends on the pow@r all3 without loss of generality, we assume this to be the first
of the transmit antenna and a propagation consfanthat i ansmission frame = 0.4 Let 2, res be the RSS of the signal
depends on the indoor path loss model that we adopt [22]j the reference transmission frame. The observed vasgable

Suppose now that the backscattered signal is outside fR&ransmission frameé = 1,..., 7, are the relative delay and
beam width of the receive antenna. The backscattered sigR&ls. The relative delay is given by

detected by the receive antenna is due to ambient noise and

backscattering from objects in the room where the experimen Aj(t) = %(Tj (t) = Tjref)

is conducted. It therefore has very low RSS and a large Ayt (o())

propagation delay. We model the propagation delay and RSS ===, i p(t) € Dj, (4)
as constant unknown nuisance parameters. M, otherwise,

where v;(p(t))/c is defined to be the relative propagation

B. HMM for Chest Well Motion Tracking delay if p(t) ¢ D;. The relative RSS difference is given by
We develop a HMM to jointly estimate the direction that the Ua(t) = 2;(t) — 2

subject is facing and the chest wall movements from the RSS- ! J gref

propagation delay profile of the backscattered signals. The — { ¥ (), if p(t) € Dj, (5)

subject’s breathing can be modeled using different bregthi aj, otherwise,

modes. For example, one mode corresponds to the cageerey,(t) = —10ylog(1+(2(d(t)+v;(p(t)))))/Tjres), and
where the subject stops breathing. Another mode correspond is a nuisance parameter to be estimated. The equations (4)
to outward chest wall expansion during normal breathingnd (5) are derived without any measurement noise. We now
while a third mode corresponds to normal inward chest wathpose a stochastic model on the relative delay and relative
contraction. Additional modes like abnormal fast breagrand RSS difference. For = 1,...,T, let

so on can be used to model the breathing pattern depending on T

the specific application under consideration. In Sectit\I O(t) =A@, ¥®I, )
we will group these modes into segments to detect changeb@& a sequence of vector observations with(t) =
the breathing pattern. Let(¢) be the breathing mode at time[A; (¢), As(t)] + na(t), and ¥ (t) = [V (¢), Ua(t)] + ne(t),

framet, and where na(t) and ng(t) are independent Gaussian random
B T vectors when conditioned d8(t). Specifically, the conditional
S(t) =1d(t), p(t)]" () gistribution of A(t) is given by
We assume that breathing modes are independent. Further- 1(t)
more, we suppose ths{t) depends only o8 (t—1) andmi(t). p(A@)[S(@) ~N (77 2) )
(An example of such a model is whep€0), ..., p(T) forms
a Markov chain, independent of the chest wall displacemerf: .
d(t), and the distribution of(t) depends only on the previous [d(1),0]" + pua, i p(t) =1,
chest wall displacement(t — 1) and the current breathing p(t) = q [d@),dO)]" + pa, i p(t) =2, (8)
mode m(t).) Let 7, = {S(u),u < t}. Since m(t) is [0,d()]" + pz,  if p(t) =3,
independent off;_, the conditional distribution 08(¢) is  \,here poy = [1(p(t)), va(p(t)]T, and S is a covariance
p(S(t) | S(t —1), Fi_y) matrix. Similarly, the conditional distribution oF (¢) is given
b
= Ep(S() | S(t = 1), Fiorym() | St~ 1), Fiea] )
= E[p(S(t) | S(t —1),m(t)) | S(t — 1)] p (W ()[S(t) ~ N (¥(t),Q) €)
=p(S(t) | S(t—1)), where
so thatS(0),S(1),...,S(T) forms a Markov chain. We take [1(8), @2, e it p(t) =1,
S(t) to be the hidden state of our HMM at time frame b(t) = [7/’1(”’1/’2(;)] , If pt) =2, (10)
We discretizep(t) into three states to limit the complexity of [, (8] if p(t) =3,

the _estlr_natlon_ procedure. Spe(_:lflcally, we ’l}ét) =1 _If th_e 3This can be done by performing a simple threshold test on ¢beived
subject is facing towards receivér p(t) = 2 if subject is signal peak.

4To ensure reference frames can be chosen for all antenna, pair
2The symbollog denotes logarithm to the base 10. calibration phase can be enforced.



and ) is a covariance matrix. Figure 2 shows our proposdtbm transmission framesto j. Suppose thay (1 : T') can

HMM. be divided intom segments, separated by the change points
. 00,01,--.,0m With 5o = 0 and d,, = T. For each segment
() mit 1) y((6; +1) : 6;i41), i =0,...,m — 1, i.e., conditioned on the
i l subject maintaining the same breathing pattern in this segm
i) we assume a linear regression model with ongegiven by
s(t)={p()] > S(t4+1) —» ... 5 N g 4 N
¢ y(( z+1) . 6l+1) _Gi 61+6((6z+1) . 6’L+1)) (11)

A W/ s o ot where Gz(.”) is a matrix of basis vectors;; is a vector of
o) = [q,(t/)] ~N<[”¢(t)c] ., [0 QD parameters, and((d; + 1) : §;11) is a vector of independent
and identically distributed random variables with mé&aand
the variancep?.

We now describe how the basis vectorﬂrﬁ”) are chosen.
Given the observation§O(t) : ¢ = 1,---, T}, we apply The chest movement of a human while breathing can be

the Baum-Welch algorithm [23] to obtain the transition propPProximated by sinusoids [26]. For each human subject,
abilities of our state variable. We then use the Expectatioff® Perform a discrete time Fourier transform (DTFT) of
Maximization (EM) algorithm to estimate the parameters fgt€" normal breathing pattern to obtain a set of dominant
our HMM. These two steps are repeated till the transitidiéduenciestfi,..., fi} by keeping only those frequencies
probabilities converge. Finally, the Viterbi algorithm4[Ris whose DTFT coefficients are above a certain threshold. The

used to obtain the most likely evolution of the stétg). This thréshold is chosen so that we typically have a set of 2 to 3

Fig. 2. HMM for chest wall motion tracking.

procedure is summarized in the HRT algorithm. dor_nina.nt frequencigs in or.der to limit the complexjty of our
estimation. The basis matrix of order 1 is then defined to be
HRT algorithm : HMM based Respiratory Tracking (HRT). GEl) =[1 bi(f1) - bi(fe)l,
Initialize: state transition matrixA, {ux,k = 1,2,3}, .
{0j,j =1,2}, % andQ wherel is a vector of all 1s, and
Data: {O(1),0(1),---,0(T)} sin(2rf(0; +1)) cos(2mf(d; + 1))
repeat sin(2wf(0; +2)) cos(2mf(0; +2))

Obtain A™*% using Baum-Welsh Algorithm bi(f) = . .

Update A < AmeW . : '

Estimate{ux, k = 1,2,3}, {a;,7 = 1,2}, ¥ andQ using sin(2m fdit1) cos(27 fdi+1)

EM algorithm. Disordered breathing is characterized by deviations ineeit
until A converges amplitude or frequencies of the breathing pattern from that
Estimate sequence of statgs(1),--- , S(T") } using Viterbi produced by normal breathing [19], and the subject may
algorithm. experience shallow or nonexistent breathing (apnea) ¢erfas

breathing (hyperpnea). The amplitude of the sinusoidalehod
is given by g3; in (11), which can be estimated for each
lIl. BREATHING PATTERN SEGMENTATION segment. The frequencies are controlled by the basis matrix

(rs) . . .
In this section, we present a sighal segmentation algorit (r’;"r - To model hyperpnea (h_'g{l‘?{ frequgnmes), we include
her order frequency terms i@, "’ by letting

to automatically segment the time series output of the HM 9
estimqtion procedure iq Seqtion [I-B into periods of normayl GEp) _ [G,E”_l) bi(pfi) - bi(pfi)l,

and disordered breathing, if any. We model the subject’s

breathing pattern with a linear regression model, withedight for p > 1. The number and positions of the change points and
parameters for normal and disordered breathing. Our gaal isthe order, parameters, and variance of the regression model
estimate the positions (change points) in the output of tR& H for each segment are all assumed to be unknown. Our goal is
algorithm at which there is a change in the regression modelobtain the maximum a posteriori (MAP) estimates of the
parameters. Our approach is based on the perfect simulati@iametersn, and{d; : 7 =1,...,m — 1},

algorithm of [25].

B. Perfect Smulation

A. Model Representation The model in (11) has no analytical form for the posterior

Recall that we model the subject’s breathing using differedistributions of the parameters that we are interested in.
modes. These breathing modes can be grouped into categoiestherefore use Monte Carlo methods to perform Bayesian
or breathing patterns like normal and disordered breatlihg inference [27], [28]. The most common approach is the use
objective in this section is to detect changes in the braegthiof Markov chain Monte Carlo (MCMC) techniques. However
pattern. Lety(¢) be the estimate of the subject’s chest waMCMC methods have the disadvantage of not being able to ac-
displacement(t) obtained using the HRT algorithm. Lgti : curately determine if the procedure has converged, which ma
) = (y(@),y(i +1),---,y(j)) be a segment of the estimateproduce erroneous results [25]. In our setup, the obsenati



in disjoint segments are independent of each other, therefo Making use of Equations (14) and (15), we can simulate
we can adopt the so called perfect simulation approach tbe next change point given the previous one until the last
[25], [29], which involves drawing independent samplesriro data point. This constitutes one run of the simulation pssce
the true posterior distribution, and hence avoiding issofes We repeat this process several times and accumulate thé coun
convergence. In the following, we describe briefly the parfeof the number of times a particular point is determined to be
simulation algorithm, and refer the reader to [25] for dstai a change point. We divide this count by the total number of
We impose an Inverse-Gamma prior distribution with shapans and to obtain the posterior probability that this pésna
parameter; /2 and scale parametel/2 on o?, the variance change point. To find the MAP estimate of the change points,
of the noise variables in (11). For thgh component in we use a Viterbi algorithm, with the additional constraimait
the regression parameter vect;@; we use an independentno two change points are within a window ®fseconds to
normal distribution\/ (0, o? )as the prior, wherg; is a fixed reflect the fact that typical breathing segments are at least
parameter. Furthermore, we assume that the model order® seconds long. This procedure is formally presented in the
are bounded by a maximum order and we use a uniform BPS algorithm. We note that although this algorithm does not
prior for the model order of each segment. Since we haegplicitly classify the segments into normal and disordere
assumed that the breathing modes of every time frame #reathing segments, it allows us to estimate the number of
independent, the prior on the change points is a geometaignea or hyponea episodes by taking into considerationm othe
distribution, with density function given by features like average amplitude and frequency in the segmen

m—1 n—n
fm, 61, e 0mor) = AT (1= A" BPS algorithm : Breathing Pattern Segmentation (BPS).

where X\ is a fixed parameter. The parameters : :
(5,9, (&)35", A) can be chosen using a recursive procedurd: Simulation

o,
: CalculateQ(¢t) for t = 1,--- ,T using (13).

descrlbed in [25].
In the following, we present some formulas that allow us to - Initialize &, — 0 and count vector(1 : T) = (0,.. . ,0).
: for lter=1,--- ,N do

2
compute the posterior probability of a change point. Werrefei

5 +=0

6

7

8

9

the reader to [25] for the derivations. L&%(¢,s,q) be the
while §; < T do

conditional probability of the observatiogst : s), given that
the model order ig. It can be shown that Simulates; , from (14) and (15).
Incrementc(d;41) by 1.

Pr(t,s,q) =P(y(t:s)|t:sis asegment with ordey)

(Dts—ttly : =1+ 1.
=T (c+lyllg)" 10:  end while
F(ﬂ-ﬁ-s;t—&-l) 2q+1 » 11: end for
x—=2—T[&" (12) 12: ¢(1:T) = ¢(1: T)/N.
where T = (GTG + D_l)_l, Q=1- GTGT, ||y||%Q _ 13: Viterbi AlgOI’Ithm
y'Qy. N S _ 14: Initialize Q*(T+ 1) = 1.
Let Q(¢) be the conditional distribution of observingi : 5. for t = 7,7 — .1 do
T) given that there is a change point#at- 1. This can be e L . 1(s£T) ot
calculated recursively using 16 Q(t) = ;tI<naX Pr(t 5:)Q"(s+1)A (1=4)
1<qg<r
It - 17:  Sets*(t) andg*(t) to be the maximizers fof*(t).
ZZPrt k,q)Q(t + 1AL — N~ 18: end for
k=t ¢=1 19: Initialize §5 = 0 andj = 0.

1 Tt 20: while 67 < T' do
T ZPr(t,T, g)(1 =27 13) ;. Seté;‘+1 =s(6; +1) andq},, = ¢* (6] +1).

=1 222 j=j+1.
The conditional probability of the next change point giveatt 23: end while
the previous one occurred at- 1 is then given by 24: Number of change points: = j.
25: For eachy in (67,...,4;%,), if there are other change points

P0j=s]0j-1=1t-1y(1:1)) within 1 second o, keep only the change point with the

o X ZP” 5, )t + DAL = A)*. (14) highestc(d). Updatem accordingly.
and IV. SIMULATION AND EXPERIMENTAL RESULTS
P =T]0j-1=t—-1,y(1:7)) We verify the accuracy of the proposed HMM and the
1< - change point detection algorithm through both experimenta
o ;ZPf(t,ﬂ g)(1—=A)""" (15) and simulation studies. We implement the system model

q=1 shown in Figure 1 with the experimental setup shown in Figure



patterns by adding Gaussian noise to the pattern, and eugjust
the amplitude and frequencies to simulate fast and nornist
breathing modes. In addition, we simulate random changes in
the facing direction of the subject using the path loss model
(2). The HMM algorithm is used to track the chest wall motion
and the change point detection algorithm is used to detect th
changes in the simulated breathing pattern as shown in &igur
6.

We calculate the root mean squared error (RMSE) between
the actual chest wall displacement and the chest wall displa
ment estimated by the HRT algorithm. This RMSE is averaged
over all the breathing patterns and all the correspondirgtch
Fig. 3. IR UWB experimental setup. wall displacements and is plotted against varying noisergloo
as shown in Figure 7. From Figure 7 at a moderate SNR
value of 15 dB, we observe that the RMSE is approximately
0.7 mm, which suggests that the predicted chest wall motion
by the HMM is fairly accurate.

w

2

We estimate the change point of the time series using the
BPS algorithm. Figure 6 shows an example output with the
predicted change points in the time series. The average time
lag to detect a change point for each data set has also been
plotted against varying noise floors as shown in Figure 8arit ¢
be seen that the average time lag is approximatelseconds
‘ ‘ ‘ at 15 dB. Figure 9 shows the receiver operating characteristic
50 100 150 20 20 (ROC) plot. In this simulation, we simulatd&0 instances of

Samples the chest wall motion with randomly placed isod

y placed apnea episodes.

The change point algorithm was then tested to identify the
time instant of change in the respiratory effort. This psxe
was repeated for varying levels of SNR. For a particular
3. The transmission frequency is approximatély GHz. In  SNR, the probability of detection is calculated by counting
order to mitigate the effect of scattering from the surrdogd number of times the algorithm accurately predicted a change
clutter sources, we use a template subtraction methodign tRoint to within 1 sec. A change point appearing outside the
method, we capture the received signal containing the huméaidow was considered to be a missed detection. Similarly
subject and subtract from it a reference or template sigriBe probability of false alarm was calculated by counting th
which is recorded before the presence of the human subjéstmber of times a false positive was registered within the
We perform peak detection on the received backscattef@@e window. As seen from Figure 9, at a typical SNR value
signal by fixing a threshold on the received signal strengt@f 15 dB the BPS algorithm detects a change point about 85%
We quantized(t), the observed RSS and propagation delag the time correctly, with false alarms happening about 5%
levels intoM = 10, N = 4 and K = 4 levels respectively. ~ of the time.

=

[
==

1
52

Chest wall displacement (mm
C,Ca.) o

Fig. 4. Extracted chest wall displacement by RIP belt measent.

A. Smulation results

In this section, we perform simulations to verify the perfor
mance of our proposed algorithms. We assume a path loss f"'d
exponenty = 4.8 and K = —25 dB in (2) to take into
account possible multipath effects. In each simulation v
simulate6 minutes long measurements, with a change in the
facing direction of the subject evey minutes. Three types
of breathing modes normal, fast and nonexistent breathiag a
randomly chosen throughout the 6-minute period, with each o )
mode lasting for a random duration. In order to make the n.::'};;)‘m T s 1
simulation more realistic we udé) sets of chest displacements mo Rodid tip time delay (seck 16
extracted from measurements by a RIP belt as the normal e
breathing pattern (see Figure 4 for an example). We use
the Philips Respironics ALICE PDX diagnostic system foFig. 5. Simulated RSS-delay profile of a subject changiningadirection.
conducting the RIP belt measurements. For each of these
patterns and for a fixed SNR, we generdt® simulated
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Fig. 6. Predicted chest wall motion and underlying stateshieyproposed Fi
HMM. Different colors for the HRT curve correspond to diffet state
estimates for the subject facing directip(it).

g. 9. ROC curve for the change point detection algorithm.
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simultaneously measure the chest wall motion of the vokmte
using the RIP belt.

The antennas dimensions &em width, and4 cm height.
The gain is11 dB with azimuth beamwidth o60° and an
elevation beamwidth of0°. The UWB pulses are generated
using the Picosecond Pulse Labs’ 3500D impulse generator,
which produces Gaussian pulses with a pulse widtB0ops.
An Agilent DS081204B real-time wideband digital oscillo-
scope with a sampling rate @b GHz is used for recording
the back-scattered signal from the human chest. The batidwid

Average time lag (seconds)
~ w 'S P ES

-

25 30

15
SNR (dB)

Fig. 8. Average time lag for change point detection on sitedalata sets 19 T p——=—
for varying noise floors. — Belt output

Actual change point
- - -Estimated change point

B. Comparison with RIP Belt

In order to evaluate our proposed algorithms empiricall
we recruit15 human volunteers to test our UWB respirator
monitoring system. We compare the performance of our UW
respiratory system with the medical gold standard usingRa R
belt measurement system. Each volunteer is asked to bre: ;
normally for a duration 080 seconds, and then hold her breat| 0 2 0 4 oo 70 B0 9
for a duration ofl0 seconds. At the end of thed® seconds,
the volunteer changes her facing direction randomly, amgh. 11. Estimated chest wall motion based upon signal aivec2 alone.
repeats the process. While performing these measurermnentsHuman subject changes facing direction evayseconds.

Chest wall displacement (mm)




TABLE |

—r RESULTS FOR CHANGE POINT DETECTION ALGORITHM FOR5 HUMAN
- - -HRT SUBJECTS
€
§ Human subjectfRMSE (mm Change point |Cross-correlation
é detection delay (sef) coefficient
§ 1 0.59 0.54 0.76
2 2 0.9 0.82 0.74
s 3 1.3 0.76 0.84
E 2 0.95 0.63 0.82
8 5 0.65 0.34 0.81
© 6 0.97 0.47 0.75
-3 7 0.6 0.52 0.79
I I 8 0.57 0.26 0.88
Time (seconds) 9 0.96 0.67 0.79
10 0.66 0.37 0.85
. ) ) ) 11 0.83 0.45 0.89
Fig. 12. Estimated chest wall motion when the human subjeages facing 15 1.05 0.78 0.83
direction based on received signal at both the receivers. 13 0.85 032 0.77
14 0.98 0.46 0.86
15 0.51 0.98 0.83
of the signal is approximately GHz. The antenna return loss|__Average 0.825 0.558 0.814
measured with an Agilent N5230A vector analyzer is higher TABLE I

than10 dB. The transmission power in the experiments is well

below the FCC regulation for UWB medical applicatioiibe

distance between transceiver units is approximat@lyem, |Lateral motion along baseline (cffiyoss-correlation coefficien

and the distance between the subject and transceiver snits-i 4218 8'3?

varied from1 to 3 m. 50 065
Table | shows the cross-correlation between our estimated

chest wall motion with the RIP belt measurements. The aver-

RESULTS FOR LATERAL MOTION EFFECT

=3

age degree of correlation between these two estimated chest
wall displacements i81.4%, which indicates that the HMM 1.8
algorithm is fairly accurate and comparable in its perfonoe 1a
with the RIP belt. _
Figures 10 and 11 show the estimated chest wall motion E 14
and detected change points using the HRT algorithm and “g 12
BPS algorithm algorithms respectively. The human subgct i =
asked to change her facing direction after evafyseconds al
with normal breathing during the entire duration. The cleng 0.8
points in Figure 10 and 11 are due to the change in the
facing direction of the human subject and do not correspond t 0 0 Berarmoge @my 0 ®°

cessations or variations in the subject’'s breathing. Nangha

points are detected in Figure 12, which is produced using thig. 13. Simulated RMSE at various lateral ranges, with SNF5=IB.

HRT algorithm on data from both receivers. This shows the

advantage of the proposed multiple transceiver set-up laad t

HRT algorithm in avoiding any false alarms in change poirtrder to allow accurate respiratory monitoring regardless

detection due to the change in facing direction of the huméme direction a subject is facing. We have developed algmst

subject. to estimate and track a subject’s respiratory motions frioen t
We ask the volunteers to move laterally along the baselih@ckscattered signals at the UWB receivers, and an algorith

over distances of 20, 40, and 50 cm to simulate lateral shifgssegment the breathing patterns so that the number of apnea

in subjects’ position during respiratory monitoring. Tadl or hyponea episodes can be estimated. Our simulations and

shows a graceful degradation of cross-correlation betweempirical experiments show that our system produces mea-

the HRT output and the RIP belt output as the lateral rangerements highly correlated with the medical gold standard

increases. Figure 13 shows the simulated RMSE for variousing RIP belts.

lateral ranges. We see that our method should only be used if
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