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Abstract—We design a impulse radio ultra-wideband (IR
UWB) radar monitoring system to track the chest wall movement
of a human subject during respiration. Multiple sensors are
placed at different locations to ensure that the backscattered
signal could be detected by at least one sensor no matter which
direction the human subject faces. We design a hidden Markov
model (HMM) to infer the subject facing direction and his or her
chest movement. We compare the performance of our proposed
scheme on15 human volunteers with the medical gold standard
using respiratory inductive plethysmography (RIP) belts, and
show that on average, our estimation is over81% correlated
with the measurements of a RIP belt system. Furthermore, in
order to automatically differentiate between periods of normal
and abnormal breathing patterns, we develop a change point
detection algorithm based on perfect simulation techniques to
detect changes in the subject’s breathing. The feasibilityof
our proposed system is verified by both the simulation and
experiment results.

Index Terms—Ultra-wideband impulse radio radar, respiration
monitoring, sleep apnea detection, hidden Markov model.

I. I NTRODUCTION

Obstructive sleep apnea is the most common form of
sleep breathing disorder, and occurs when there is partial or
complete cessation of airflow due to upper airway obstruction,
while ventilatory effort by the patient persists. Sleep apnea af-
fects sleep duration and quality, leading to chronic partial sleep
deprivation with consequent well-recognized impaired neuro-
cognitive function and daytime performance, increased risk for
metabolic and cardiovascular diseases (e.g hypertension,coro-
nary heart disease, life-threatening arrhythmias and stroke) and
motor vehicular accidents [1]–[4], and a diminished quality of
life. Large prospective cohort community-based studies have
also added to the growing evidence that sleep apnea increases
risk of death [5], [6].

In order to diagnose sleep apnea and other respiratory
and sleep disorders, an overnight polysomnography (PSG) is
performed in hospitals. Respiratory inductive plethysmogra-
phy (RIP) is utilized for measuring the respiratory effort of
the patient as shown in [7]. In RIP, elastic belts are worn
around the chest or abdomen, and respiratory movements are
measured by detecting the change in inductance of the belt
due to the respiratory effort. This is an invasive techniquefor
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respiratory monitoring. Overtightening of the belts can impede
the patient’s respiratory efforts, and shifting of body position
during sleep often leads to loss of signals due to loosening
of the belts. The belts also add to physical discomfort and
may result in sleep disruption for the patient. The lack of
adequate sleep time and loss of data signal may mean that the
patient is required to repeat the PSG. Recently there have been
new developments such as fabricating capacitive sensors in
clothes, which can be worn by the patient in order to facilitate
respiratory monitoring [8], [9]. However these methods may
produce inaccurate results due to patient movements during
sleep or other factors like ambient room conditions. Physical
wear and tear of the capacitive sensors embedded in the
fabric is also a challenge. Other methods involve the use of
unobtrusive sensors and on-body wearable devices in order to
measure the respiratory effort [10], [11].

In this paper, we develop a wireless,contactlessandnon-
invasive respiratory monitoring system that can be used in
PSG studies, home respiratory monitoring applications or
other applications like physiotherapies. We use ultra-wideband
(UWB) signals because its large bandwidth facilitates high
time resolution, allowing precise ranging and location esti-
mation. After the US Federal Communication Commission
(FCC) approved the limited use of UWB technology, UWB
systems have drawn considerable attention for non-contact
medical applications [12]. One important application is in
sleep monitoring, where measuring the respiratory amplitude
and breathing rate is crucial for sleep apnea diagnosis [13],
[14]. Various UWB technologies have been studied, including
frequency modulated UWB [15], [16], and impulse radio (IR)
UWB [17]–[19].

In [18]–[21], the feasibility of using IR UWB for estimating
the breathing rate is investigated. The measurement system
proposed by [18], [19] consists of two UWB antennas, one
for transmission and the other for reception, and are pointed
directly at the chest of the human subject. However, the per-
formance of such systems is sensitive to the movement of the
subject. Since one fixed antenna is used, if the human subject
is not facing the antenna at a sufficiently small angle, the
signal backscattering comes mostly from the side of the body
instead of from the chest area, resulting in poor estimation
accuracy. To solve the problem of the human subject not facing
the UWB antenna at a sufficiently small angle, we propose
a setup comprising of multiple UWB transceivers. Multiple
transmit and receive antennas are placed at different locations
to ensure that the backscattered signal can be detected by
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at least one receiver antenna. To fuse the information from
the multiple receiver antennas, we develop a hidden Markov
model (HMM) based method to estimate the chest movement
from the backscattered signals from all receiver antennas.In
addition, we present a change point detection algorithm based
on perfect simulation techniques to automatically detect the
statistical change points at which abnormal breathing patterns
are likely to have occurred. Our main contributions are the
following.

1) We develop a novel HMM for tracking chest wall move-
ments during respiration, based on data fusion from
multiple UWB transceivers. This is verified both experi-
mentally and through simulations.

2) We compare the performance of the proposed HMM
based approach with the medical gold standard using a
RIP belt system. We show that our inferred respiratory
amplitude is highly correlated with that produced by a
RIP belt.

3) We develop a change point detection algorithm for de-
tecting abnormal breathing patterns to facilitate automatic
sleep disordered breathing detection based on respiratory
signals.

The rest of the paper is organized as follows. In Section II,
we describe the system architecture and provide a detailed
analysis of the proposed HMM approach for tracking the
human chest wall motion during respiration. In Section III,
we present the change point detection algorithm for detecting
abnormal breathing patterns to facilitate sleep apnea detection.
In Section IV, we present the simulation and experimental
results including the comparison with standard benchmark
method for respiration monitoring. Finally, in Section V we
provide concluding remarks on the application of the proposed
method and its suitability in non-invasive medical applications.
Throughout this work, we use(·)T to denote matrix transpose.
We useN (µ,Σ) to denote the (multivariate) Gaussian distri-
bution with meanµ and covariance matrixΣ.

II. SYSTEM MODEL AND CHEST MOVEMENT INFERENCE

A. System Model

In this section, we describe our experimental UWB mon-
itoring setup. Two pairs of co-located transmit and receive
antenna are used in our experiments, as shown in Figure 1. We
note that although only two transceiver pairs are used in our
setup, our work can be easily extended to cases where more
pairs of antennas are utilized. Two UWB impulses generated
by a picosecond impulse generator are transmitted simultane-
ously from the two transmit antennas. For our experimental
purposes, the backscattered signals at the receive antennas
are detected using a digital oscilloscope and processed by a
computer. The human chest wall movement can be estimated
by determining the propagation delay and the received signal
strength (RSS) of the backscattered UWB signal since the
propagation delay is directly proportional to the chest move-
ment, and the signal strength is related to the distance the
subject is from the UWB antennas, and the angle she is facing.
In the following, we describe the model equations governing
the propagation delay and the RSS of the backscattered signal.

Fig. 1. System architecture.

Let a transmission frame be the time interval between two
transmitted UWB pulses, and suppose that transmission frames
are indexed byt = 0, · · · , T . For each frame, a peak detection
technique is applied to the received UWB pulse waveform to
estimate the propagation delay. We refer the reader to [19]
for a detailed discussion of this detection procedure. Consider
a transceiver pairj, where j = 1, 2, at transmission frame
t. Let τj(t) denote the propagation delay of the peak of the
backscattered signal at the receiver. The subject may face
different directions during the monitoring process. Because of
the limited beam width of the receive antenna, backscattered
signals from the subject’s chest may not be detected by the
antenna if she is facing certain directions. Letρ(t) be a state
variable that corresponds to the direction the subject is facing.
Let Dj be the set of directions that result in backscattered
signals that are within the beam width of receive antennaj. We
consider the cases whereρ(t) ∈ Dj andρ(t) /∈ Dj separately.

Suppose that the backscattered signal is within the beam
width of the receive antenna of transceiver pairj. Let dTj

be the distance between the transmit antenna and reference
chest wall position,1 and dRj be the distance between the
reference chest wall position and the receive antenna. The
chest wall displacement about its reference position during
transmission framet is denoted asd(t). The distance traveled
by the UWB signal between the transmitter and receiver is then
approximatelydTj + dRj +2d(t)+ 2νj(ρ(t)), whereνj(ρ(t))
is an adjustment to the distancedTj + dRj as a result of the
subject facing a particular directionρ(t). The termνj(ρ(t))
depends on where the antennas are placed with respect to the
subject, and will be treated as an unknown nuisance parameter
to be estimated from the measurements. The propagation delay

1As we are interested only in the variations in the chest wall movement,
any reasonable reference position can be used without affecting our results.
See Section II-B for more details.
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of the UWB signal can be expressed as

τj(t) =
dTj + dRj + 2d(t) + 2νj(ρ(t))

c
, (1)

wherec is the speed of light in free space. The RSS of the
UWB signal can be modeled as2

zj(t) = −10γ log τj(t) + β, (2)

where γ is the two way path loss exponent, andβ =
10 logPt + K is a constant that depends on the powerPt

of the transmit antenna and a propagation constantK that
depends on the indoor path loss model that we adopt [22].

Suppose now that the backscattered signal is outside the
beam width of the receive antenna. The backscattered signal
detected by the receive antenna is due to ambient noise and
backscattering from objects in the room where the experiment
is conducted. It therefore has very low RSS and a large
propagation delay. We model the propagation delay and RSS
as constant unknown nuisance parameters.

B. HMM for Chest Wall Motion Tracking

We develop a HMM to jointly estimate the direction that the
subject is facing and the chest wall movements from the RSS-
propagation delay profile of the backscattered signals. The
subject’s breathing can be modeled using different breathing
modes. For example, one mode corresponds to the case
where the subject stops breathing. Another mode corresponds
to outward chest wall expansion during normal breathing,
while a third mode corresponds to normal inward chest wall
contraction. Additional modes like abnormal fast breathing and
so on can be used to model the breathing pattern depending on
the specific application under consideration. In Section III-A,
we will group these modes into segments to detect changes in
the breathing pattern. Letm(t) be the breathing mode at time
frame t, and

S(t) = [d(t), ρ(t)]T . (3)

We assume that breathing modes are independent. Further-
more, we suppose thatS(t) depends only onS(t−1) andm(t).
(An example of such a model is whereρ(0), . . . , ρ(T ) forms
a Markov chain, independent of the chest wall displacements
d(t), and the distribution ofd(t) depends only on the previous
chest wall displacementd(t − 1) and the current breathing
mode m(t).) Let Ft = {S(u), u < t}. Since m(t) is
independent ofFt−1, the conditional distribution ofS(t) is

p(S(t) | S(t− 1),Ft−1)

= E[p(S(t) | S(t− 1),Ft−1,m(t)) | S(t− 1),Ft−1]

= E[p(S(t) | S(t− 1),m(t)) | S(t− 1)]

= p(S(t) | S(t− 1)),

so thatS(0),S(1), . . . ,S(T ) forms a Markov chain. We take
S(t) to be the hidden state of our HMM at time framet.
We discretizeρ(t) into three states to limit the complexity of
the estimation procedure. Specifically, we letρ(t) = 1 if the
subject is facing towards receiver1, ρ(t) = 2 if subject is

2The symbollog denotes logarithm to the base 10.

facing towards the midpoint between receivers1 and 2, and
ρ(t) = 3 if she is facing towards receiver2 (see Figure 1). We
quantize the distanced(t) into M states. The transition matrix
of the states of our HMM is then given by a3M × 3M state
transition matrixA.

For each transceiver pairj = 1, 2, let τj,ref = dTj + dRj

be the propagation delay of a reference transmission frame,
which is chosen to be a frame in which the receive antenna is
able to detect a backscattered signal from the subject’s chest
wall.3 Without loss of generality, we assume this to be the first
transmission framet = 0.4 Let zj,ref be the RSS of the signal
in the reference transmission frame. The observed variables
in transmission framet = 1, . . . , T , are the relative delay and
RSS. The relative delay is given by

∆j(t) =
1

2
(τj(t)− τj,ref )

=

{

d(t)+νj(ρ(t))
c , if ρ(t) ∈ Dj ,

νj(ρ(t))
c , otherwise,

(4)

where νj(ρ(t))/c is defined to be the relative propagation
delay if ρ(t) /∈ Dj . The relative RSS difference is given by

Ψj(t) = zj(t)− zj,ref

=

{

ψj(t), if ρ(t) ∈ Dj ,
αj , otherwise,

(5)

whereψj(t) = −10γ log(1+(2(d(t)+νj(ρ(t)))))/τj,ref ), and
αj is a nuisance parameter to be estimated. The equations (4)
and (5) are derived without any measurement noise. We now
impose a stochastic model on the relative delay and relative
RSS difference. Fort = 1, . . . , T , let

O(t) = [∆(t),Ψ(t)]T , (6)

be a sequence of vector observations with∆(t) =
[∆1(t),∆2(t)] + n∆(t), andΨ(t) = [Ψ1(t),Ψ2(t)] + nΨ(t),
where n∆(t) and nΨ(t) are independent Gaussian random
vectors when conditioned onS(t). Specifically, the conditional
distribution of∆(t) is given by

p (∆(t)|S(t)) ∼ N

(

µ(t)

c
,Σ

)

(7)

with

µ(t) =







[d(t), 0]T + µ1, if ρ(t) = 1,
[d(t), d(t)]T + µ2, if ρ(t) = 2,
[0, d(t)]T + µ3, if ρ(t) = 3,

(8)

whereµρ(t) = [ν1(ρ(t)), ν2(ρ(t))]
T , and Σ is a covariance

matrix. Similarly, the conditional distribution ofΨ(t) is given
by

p (Ψ(t)|S(t)) ∼ N (ψ(t),Ω) (9)

where

ψ(t) =







[ψ1(t), α2]
T , if ρ(t) = 1,

[ψ1(t), ψ2(t)]
T , if ρ(t) = 2,

[α1, ψ2(t)]
T , if ρ(t) = 3,

(10)

3This can be done by performing a simple threshold test on the received
signal peak.

4To ensure reference frames can be chosen for all antenna pairs, a
calibration phase can be enforced.
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andΩ is a covariance matrix. Figure 2 shows our proposed
HMM.

m(t)

S(t) =

[

d(t)
ρ(t)

]

O(t) =

[

∆(t)
Ψ(t)

]

∼ N

([

µ(t)/c
ψ(t)

]

,

[

Σ 0
0 Ω

])

m(t+ 1)

S(t+ 1)

O(t+ 1)

. . .

Fig. 2. HMM for chest wall motion tracking.

Given the observations{O(t) : t = 1, · · · , T }, we apply
the Baum-Welch algorithm [23] to obtain the transition prob-
abilities of our state variable. We then use the Expectation-
Maximization (EM) algorithm to estimate the parameters for
our HMM. These two steps are repeated till the transition
probabilities converge. Finally, the Viterbi algorithm [24] is
used to obtain the most likely evolution of the stateS(t). This
procedure is summarized in the HRT algorithm.

HRT algorithm : HMM based Respiratory Tracking (HRT).

Initialize: state transition matrixA, {µk, k = 1, 2, 3},
{αj , j = 1, 2}, Σ andΩ
Data: {O(1),O(1), · · · ,O(T )}
repeat

ObtainAnew using Baum-Welsh Algorithm
UpdateA← Anew

Estimate{µk, k = 1, 2, 3}, {αj, j = 1, 2}, Σ andΩ using
EM algorithm.

until A converges
Estimate sequence of states{S(1), · · · ,S(T )} using Viterbi
algorithm.

III. B REATHING PATTERN SEGMENTATION

In this section, we present a signal segmentation algorithm
to automatically segment the time series output of the HMM
estimation procedure in Section II-B into periods of normal
and disordered breathing, if any. We model the subject’s
breathing pattern with a linear regression model, with different
parameters for normal and disordered breathing. Our goal isto
estimate the positions (change points) in the output of the HRT
algorithm at which there is a change in the regression model
parameters. Our approach is based on the perfect simulation
algorithm of [25].

A. Model Representation

Recall that we model the subject’s breathing using different
modes. These breathing modes can be grouped into categories
or breathing patterns like normal and disordered breathing. Our
objective in this section is to detect changes in the breathing
pattern. Lety(t) be the estimate of the subject’s chest wall
displacementd(t) obtained using the HRT algorithm. Lety(i :
j) = (y(i), y(i+ 1), · · · , y(j)) be a segment of the estimates

from transmission framesi to j. Suppose thaty(1 : T ) can
be divided intom segments, separated by the change points
δ0, δ1, . . . , δm with δ0 = 0 and δm = T . For each segment
y((δi + 1) : δi+1), i = 0, . . . ,m− 1, i.e., conditioned on the
subject maintaining the same breathing pattern in this segment,
we assume a linear regression model with orderri given by

y((δi + 1) : δi+1) = G
(ri)
i βi + ǫ((δi + 1) : δi+1), (11)

whereG
(ri)
i is a matrix of basis vectors,βi is a vector of

parameters, andǫ((δi + 1) : δi+1) is a vector of independent
and identically distributed random variables with mean0 and
the variance̺ 2

i .
We now describe how the basis vectors inG

(ri)
i are chosen.

The chest movement of a human while breathing can be
approximated by sinusoids [26]. For each human subject,
we perform a discrete time Fourier transform (DTFT) of
her normal breathing pattern to obtain a set of dominant
frequencies{f1, . . . , fk} by keeping only those frequencies
whose DTFT coefficients are above a certain threshold. The
threshold is chosen so that we typically have a set of 2 to 3
dominant frequencies in order to limit the complexity of our
estimation. The basis matrix of order 1 is then defined to be

G
(1)
i = [1 bi(f1) · · · bi(fk)],

where1 is a vector of all 1s, and

bi(f) =











sin(2πf(δi + 1)) cos(2πf(δi + 1))
sin(2πf(δi + 2)) cos(2πf(δi + 2))

...
...

sin(2πfδi+1) cos(2πfδi+1)











.

Disordered breathing is characterized by deviations in either
amplitude or frequencies of the breathing pattern from that
produced by normal breathing [19], and the subject may
experience shallow or nonexistent breathing (apnea) or faster
breathing (hyperpnea). The amplitude of the sinusoidal model
is given by βi in (11), which can be estimated for each
segment. The frequencies are controlled by the basis matrix
G

(ri)
i . To model hyperpnea (higher frequencies), we include

higher order frequency terms inG(ri)
i by letting

G
(p)
i = [G

(p−1)
i bi(pf1) · · · bi(pfk)],

for p > 1. The number and positions of the change points and
the order, parameters, and variance of the regression model
for each segment are all assumed to be unknown. Our goal is
to obtain the maximum a posteriori (MAP) estimates of the
parametersm, and{δi : i = 1, . . . ,m− 1}.

B. Perfect Simulation

The model in (11) has no analytical form for the posterior
distributions of the parameters that we are interested in.
We therefore use Monte Carlo methods to perform Bayesian
inference [27], [28]. The most common approach is the use
of Markov chain Monte Carlo (MCMC) techniques. However
MCMC methods have the disadvantage of not being able to ac-
curately determine if the procedure has converged, which may
produce erroneous results [25]. In our setup, the observations
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in disjoint segments are independent of each other, therefore
we can adopt the so called perfect simulation approach of
[25], [29], which involves drawing independent samples from
the true posterior distribution, and hence avoiding issuesof
convergence. In the following, we describe briefly the perfect
simulation algorithm, and refer the reader to [25] for details.

We impose an Inverse-Gamma prior distribution with shape
parameterς/2 and scale parameterϑ/2 on ̺2i , the variance
of the noise variables in (11). For thejth component in
the regression parameter vectorβi, we use an independent
normal distributionN (0, ̺2i ξ

2
j ) as the prior, whereξj is a fixed

parameter. Furthermore, we assume that the model ordersri
are bounded by a maximum orderr, and we use a uniform
prior for the model order of each segment. Since we have
assumed that the breathing modes of every time frame are
independent, the prior on the change points is a geometric
distribution, with density function given by

f(m, δ1, · · · , δm−1) = λm−1(1− λ)n−m,

where λ is a fixed parameter. The parameters
(ς, ϑ, (ξj)

2r+1
j=1 , λ) can be chosen using a recursive procedure

described in [25].
In the following, we present some formulas that allow us to

compute the posterior probability of a change point. We refer
the reader to [25] for the derivations. LetPr(t, s, q) be the
conditional probability of the observationsy(t : s), given that
the model order isq. It can be shown that

Pr(t, s, q) = P(y(t : s) | t : s is a segment with orderq)

= Υ1/2
(

ς + ||y||2Q
)(ϑ+s−t+1

2
)

×
Γ(ϑ+s−t+1

2 )

Γ(ϑ2 )

2q+1
∏

j=1

ξ−1
j , (12)

whereΥ = (GTG + D−1)−1, Q = I −GΥGT , ||y||2Q =

yTQy.
Let Q(t) be the conditional distribution of observingy(t :

T ) given that there is a change point att − 1. This can be
calculated recursively using

Q(t) =
1

r

T−1
∑

k=t

r
∑

q=1

Pr(t, k, q)Q(t+ 1)λ(1− λ)k−t

+
1

r

r
∑

q=1

Pr(t, T, q)(1 − λ)T−t. (13)

The conditional probability of the next change point given that
the previous one occurred att− 1 is then given by

P(δj = s | δj−1 = t− 1,y(1 : T ))

∝
1

r

r
∑

q=1

Pr(t, s, q)Q(t+ 1)λ(1− λ)s−t. (14)

and

P(δj = T | δj−1 = t− 1,y(1 : T ))

∝
1

r

r
∑

q=1

Pr(t, T, q)(1− λ)T−t. (15)

Making use of Equations (14) and (15), we can simulate
the next change point given the previous one until the last
data point. This constitutes one run of the simulation process.
We repeat this process several times and accumulate the count
of the number of times a particular point is determined to be
a change point. We divide this count by the total number of
runs and to obtain the posterior probability that this pointis a
change point. To find the MAP estimate of the change points,
we use a Viterbi algorithm, with the additional constraint that
no two change points are within a window of2 seconds to
reflect the fact that typical breathing segments are at least
2 seconds long. This procedure is formally presented in the
BPS algorithm. We note that although this algorithm does not
explicitly classify the segments into normal and disordered
breathing segments, it allows us to estimate the number of
apnea or hyponea episodes by taking into consideration other
features like average amplitude and frequency in the segment.

BPS algorithm : Breathing Pattern Segmentation (BPS).

1: Simulation

2: CalculateQ(t) for t = 1, · · · , T using (13).
3: Initialize δ0 = 0 and count vectorc(1 : T ) = (0, . . . , 0).
4: for Iter = 1, · · · , N do
5: i = 0
6: while δi < T do
7: Simulateδi+1 from (14) and (15).
8: Incrementc(δi+1) by 1.
9: i = i+ 1.

10: end while
11: end for
12: c(1 : T ) = c(1 : T )/N .

13: Viterbi Algorithm

14: Initialize Q∗(T + 1) = 1.
15: for t = T, T − 1, . . . , 1 do

16: Q∗(t) =
1

r
max
t≤s≤T
1≤q≤r

Pr(t, s, q)Q∗(s+1)λ1(s6=T )(1−λ)s−t

17: Sets∗(t) andq∗(t) to be the maximizers forQ∗(t).
18: end for
19: Initialize δ∗0 = 0 andj = 0.
20: while δ∗j < T do
21: Setδ∗j+1 = s∗(δ∗j + 1) andq∗j+1 = q∗(δ∗j + 1).
22: j = j + 1.
23: end while
24: Number of change pointsm = j.
25: For eachδ in (δ∗1 , . . . , δ

∗
m), if there are other change points

within 1 second ofδ, keep only the change point with the
highestc(δ). Updatem accordingly.

IV. SIMULATION AND EXPERIMENTAL RESULTS

We verify the accuracy of the proposed HMM and the
change point detection algorithm through both experimental
and simulation studies. We implement the system model
shown in Figure 1 with the experimental setup shown in Figure
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Fig. 3. IR UWB experimental setup.
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Fig. 4. Extracted chest wall displacement by RIP belt measurement.

3. The transmission frequency is approximately4.2 GHz. In
order to mitigate the effect of scattering from the surrounding
clutter sources, we use a template subtraction method. In this
method, we capture the received signal containing the human
subject and subtract from it a reference or template signal
which is recorded before the presence of the human subject.
We perform peak detection on the received backscattered
signal by fixing a threshold on the received signal strength.
We quantized(t), the observed RSS and propagation delays
levels intoM = 10, N = 4 andK = 4 levels respectively.

A. Simulation results

In this section, we perform simulations to verify the perfor-
mance of our proposed algorithms. We assume a path loss
exponentγ = 4.8 and K = −25 dB in (2) to take into
account possible multipath effects. In each simulation run, we
simulate6 minutes long measurements, with a change in the
facing direction of the subject every2 minutes. Three types
of breathing modes normal, fast and nonexistent breathing are
randomly chosen throughout the 6-minute period, with each
mode lasting for a random duration. In order to make the
simulation more realistic we use10 sets of chest displacements
extracted from measurements by a RIP belt as the normal
breathing pattern (see Figure 4 for an example). We use
the Philips Respironics ALICE PDX diagnostic system for
conducting the RIP belt measurements. For each of these
patterns and for a fixed SNR, we generate100 simulated

patterns by adding Gaussian noise to the pattern, and adjusting
the amplitude and frequencies to simulate fast and nonexistent
breathing modes. In addition, we simulate random changes in
the facing direction of the subject using the path loss modelin
(2). The HMM algorithm is used to track the chest wall motion
and the change point detection algorithm is used to detect the
changes in the simulated breathing pattern as shown in Figure
6.

We calculate the root mean squared error (RMSE) between
the actual chest wall displacement and the chest wall displace-
ment estimated by the HRT algorithm. This RMSE is averaged
over all the breathing patterns and all the corresponding chest
wall displacements and is plotted against varying noise floors
as shown in Figure 7. From Figure 7 at a moderate SNR
value of15 dB, we observe that the RMSE is approximately
0.7 mm, which suggests that the predicted chest wall motion
by the HMM is fairly accurate.

We estimate the change point of the time series using the
BPS algorithm. Figure 6 shows an example output with the
predicted change points in the time series. The average time
lag to detect a change point for each data set has also been
plotted against varying noise floors as shown in Figure 8. It can
be seen that the average time lag is approximately0.4 seconds
at 15 dB. Figure 9 shows the receiver operating characteristic
(ROC) plot. In this simulation, we simulated180 instances of
the chest wall motion with randomly placed apnea episodes.
The change point algorithm was then tested to identify the
time instant of change in the respiratory effort. This process
was repeated for varying levels of SNR. For a particular
SNR, the probability of detection is calculated by countingthe
number of times the algorithm accurately predicted a change
point to within 1 sec. A change point appearing outside the
window was considered to be a missed detection. Similarly
the probability of false alarm was calculated by counting the
number of times a false positive was registered within the
time window. As seen from Figure 9, at a typical SNR value
of 15 dB the BPS algorithm detects a change point about 85%
of the time correctly, with false alarms happening about 5%
of the time.

Fig. 5. Simulated RSS-delay profile of a subject changing facing direction.
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Fig. 6. Predicted chest wall motion and underlying states bythe proposed
HMM. Different colors for the HRT curve correspond to different state
estimates for the subject facing directionρ(t).
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Fig. 8. Average time lag for change point detection on simulated data sets
for varying noise floors.

B. Comparison with RIP Belt

In order to evaluate our proposed algorithms empirically,
we recruit15 human volunteers to test our UWB respiratory
monitoring system. We compare the performance of our UWB
respiratory system with the medical gold standard using a RIP
belt measurement system. Each volunteer is asked to breathe
normally for a duration of30 seconds, and then hold her breath
for a duration of10 seconds. At the end of these40 seconds,
the volunteer changes her facing direction randomly, and
repeats the process. While performing these measurements,we

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Probability of false alarm

Pr
ob

ab
ilit

y o
f d

ete
cti

on

SNR = 10 dB

SNR = 15 dB

SNR = 20 dB

SNR = 25 dB

Fig. 9. ROC curve for the change point detection algorithm.
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Fig. 10. Estimated chest wall motion based upon signal at receiver 1 alone.
Human subject changes facing direction every30 seconds.

simultaneously measure the chest wall motion of the volunteer
using the RIP belt.

The antennas dimensions are3 cm width, and4 cm height.
The gain is11 dB with azimuth beamwidth of60◦ and an
elevation beamwidth of40◦. The UWB pulses are generated
using the Picosecond Pulse Labs’ 3500D impulse generator,
which produces Gaussian pulses with a pulse width of80 ps.
An Agilent DSO81204B real-time wideband digital oscillo-
scope with a sampling rate of40 GHz is used for recording
the back-scattered signal from the human chest. The bandwidth
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Fig. 11. Estimated chest wall motion based upon signal at receiver 2 alone.
Human subject changes facing direction every30 seconds.
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Fig. 12. Estimated chest wall motion when the human subject changes facing
direction based on received signal at both the receivers.

of the signal is approximately4 GHz. The antenna return loss
measured with an Agilent N5230A vector analyzer is higher
than10 dB. The transmission power in the experiments is well
below the FCC regulation for UWB medical applications.The
distance between transceiver units is approximately10 cm,
and the distance between the subject and transceiver units is
varied from1 to 3 m.

Table I shows the cross-correlation between our estimated
chest wall motion with the RIP belt measurements. The aver-
age degree of correlation between these two estimated chest
wall displacements is81.4%, which indicates that the HMM
algorithm is fairly accurate and comparable in its performance
with the RIP belt.

Figures 10 and 11 show the estimated chest wall motion
and detected change points using the HRT algorithm and
BPS algorithm algorithms respectively. The human subject is
asked to change her facing direction after every30 seconds
with normal breathing during the entire duration. The change
points in Figure 10 and 11 are due to the change in the
facing direction of the human subject and do not correspond to
cessations or variations in the subject’s breathing. No change
points are detected in Figure 12, which is produced using the
HRT algorithm on data from both receivers. This shows the
advantage of the proposed multiple transceiver set-up and the
HRT algorithm in avoiding any false alarms in change point
detection due to the change in facing direction of the human
subject.

We ask the volunteers to move laterally along the baseline
over distances of 20, 40, and 50 cm to simulate lateral shifts
in subjects’ position during respiratory monitoring. Table II
shows a graceful degradation of cross-correlation between
the HRT output and the RIP belt output as the lateral range
increases. Figure 13 shows the simulated RMSE for various
lateral ranges. We see that our method should only be used if
the lateral motion is limited, e.g. when the patient is lyingon
a single bed, in which case lateral motions are expected to be
less than 20 cm.

V. CONCLUSION

We have designed a contactless and non-invasive UWB
respiratory monitoring system using multiple transceivers in

TABLE I
RESULTS FOR CHANGE POINT DETECTION ALGORITHM FOR15 HUMAN

SUBJECTS

Human subjectsRMSE (mm) Change point Cross-correlation
detection delay (sec) coefficient

1 0.59 0.54 0.76
2 0.9 0.82 0.74
3 1.3 0.76 0.84
4 0.95 0.63 0.82
5 0.65 0.34 0.81
6 0.97 0.47 0.75
7 0.6 0.52 0.79
8 0.57 0.26 0.88
9 0.96 0.67 0.79
10 0.66 0.37 0.85
11 0.83 0.45 0.89
12 1.05 0.78 0.83
13 0.85 0.32 0.77
14 0.98 0.46 0.86
15 0.51 0.98 0.83

Average 0.825 0.558 0.814

TABLE II
RESULTS FOR LATERAL MOTION EFFECT.

Lateral motion along baseline (cm)Cross-correlation coefficient
20 0.73
40 0.71
50 0.65
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Fig. 13. Simulated RMSE at various lateral ranges, with SNR =15 dB.

order to allow accurate respiratory monitoring regardlessof
the direction a subject is facing. We have developed algorithms
to estimate and track a subject’s respiratory motions from the
backscattered signals at the UWB receivers, and an algorithm
to segment the breathing patterns so that the number of apnea
or hyponea episodes can be estimated. Our simulations and
empirical experiments show that our system produces mea-
surements highly correlated with the medical gold standard
using RIP belts.
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