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Abstract: This paper presents a novel calibration procedure as a simple, yet powerful, method to

place and align inertial sensors with body segments. The calibration can be easily replicated without

the need of any additional tools. The proposed method is validated in three different applications:

a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected

by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results

demonstrate that, after the calibration method is applied, the joint angles are correctly measured

independently of previous sensor placement on the joint, thus validating the proposed procedure.

In the cases of a simplified joint and a real gait test with human volunteers, the method also performs

correctly, although secondary plane errors appear when compared with the simulation results.

We believe that such errors are caused by limitations of the current inertial measurement unit (IMU)

technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting

option to solve the alignment problem when using IMUs for gait analysis.

Keywords: inertial sensor; joint angular kinematics; human motion analysis; anatomical calibration;

technical frames

1. Introduction

Functional mobility usually refers to the skill of ambulating safely in a free living environment by

walking, running, climbing and even when handling assistive devices, such as walkers, crutches and

canes [1,2]. About 15% of the world’s population live with some disability condition, of which 2%–4%

suffer significant functional problems [3]. In this scenario, one of the major goals of neuromuscular

rehabilitation is to regain gait function in order to promote more independent lives [4]. The assessment

of functional activities, such as walking, can help clinicians to determine patients’ autonomy level and

the optimal care they should receive [5].

Therefore, it is essential to understand and characterize systematically motion disturbances to

improve the diagnosis, enhance treatments and measure patients’ evolution. The estimation of joint

angular displacements is a fundamental part of human motion analysis and involves the detection

of joint position and spatial orientation [6]. The relevance of these parameters is observed in many

clinical scenarios such as gait training and rehabilitation in patients with stroke, Parkinson’s disease

and cerebral palsy [7–9].
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In contrast to camera-based laboratory systems for measuring joint angles, wearable sensors

present advantages of lower cost, higher flexibility, portability and adaptability [6,10]. This is the case

of inertial measurement units, commonly referred to as IMUs or inertial sensors. These sensors are

a multi-axial combination of accelerometers, gyroscopes and eventually magnetometers, which can

be attached to different body segments to estimate joint kinematics. Considering their usability in

internal and external environments and fast donning and doffing, these sensors represent a promising

technology that may become an alternative to high-cost optical systems [11–15].

This topic has evolved into a wide and solid field of research, but clinical applications involving

the use of IMUs are still largely unexplored in the literature. Perhaps this is due to the lack of standards

for placing sensors on body segments and defining joint coordinate systems (JCS), which limits the

correct calculation of joint kinematics. Also, some studies have questioned the accuracy of these

systems [16–20]. Researchers have stated that the calibration stages of the individual sensors (i.e.,

accelerometer, gyroscope, and magnetometer), biases, sensibilities and different noise types, in addition

to sensor fusion algorithm issues, influence the accuracy of the orientation estimation.

Regarding these situations, a fundamental problem of the IMU-based gait analysis is to how

define an appropriate measurement protocol and provide a sensor-to-body calibration procedure [21].

Because IMUs’ local frames are not aligned with anatomically defined frames, different approaches in

the literature have presented different methods to determine the sensor frame’s orientation with respect

to the body segment frame [13–15,22]. However, those approaches suffer from some limitations. One

main problem with algorithms based only on data from accelerometers and gyroscopes [11,13,23,24] is

the difficulty to define a common reference frame and, consequently, measure 3D angles. To accurately

measure 3D angles, a second global reference axis is necessary along with the gravity vector. This

second reference axis is commonly the magnetic field vector, measured by sensor units that include

magnetometers. Since heading drift remains a problem within systems that involve only accelerometers

and gyroscopes, the anatomical calibration techniques that use such systems rely on predefined user

movements to define the axis of joint motion [11], or use supplementary devices such as cameras [24],

anatomical landmark pointers [12] or exoskeleton harnesses [13]. The need for these additional tools

also increases the experiment duration and requires experienced personnel, which may be impractical

in daily clinical routine.

Other works are based on performing complex movements while keeping some specific

postures [13,14,22], or maintaining the same orientation or joint angle between two postures [15,24],

which may not be simple tasks if to be performed by subjects with motor disabilities. Even for subjects

without disability, performing these tasks requires the assistance of examiners. Hence, these mentioned

methods may be more prone to calibration errors.

The objective of this work is to present a novel calibration procedure as a method to align IMU

sensors to body segments, which compared to the aforementioned methods, is based on fast and simple

sensor placement procedures, with no need for movements performed by the user nor any additional

tools. Initially, we propose a validation protocol of the procedure using a simplified rigid-body joint

that comprises two semi-spheres. A universal goniometer is used as the gold standard measure in

order to ensure controlled angular movements. Additionally, we present an application of the method

on five able-bodied subjects performing a gait test. The kinematic data of the lower limb joints is

presented descriptively.

This paper is organized as follows: Section 2 describes the proposed IMU-to-body alignment

method that includes the calibration algorithm, definition of technical-anatomical frames and

calculation of joint angles. Then, in Section 3 we present the motion acquisition system and the

validation protocol using the simplified joint, along with an evaluation procedure to quantify the

accuracy and repeatability of the technique. Following, a sensor placement protocol and an estimation

of kinematic data on subjects without functional disability are introduced in Section 4. Finally, we

provide the results and discussion of the experiments that validate the proposed method (Section 5),

followed by the conclusions (Section 6).
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2. IMU-to-Body Alignment Method

To estimate the lower limb joint angles, it is necessary to measure the orientation of two adjacent

body segments forming the joint. We propose a method to estimates hip, knee and ankle joint angles

of the lower limb. To simplify the mathematical explanation, here we only present the data for the

right leg, although the same concept may be obviously applied to both legs. In this method, four

IMUs sensors are used: one is placed on the pelvis (body segment named PV), one on the right

thigh (TH), one on the right shank (SH), and another on the right foot (FT). Each body segment

also has an associated coordinate system (BF), which is called, in this work, a technical-anatomical

frame. Note that the technical-anatomical frame is an estimate and it is also different from the

anatomical bone-embedded frame as defined by the International Society of Biomechanics (ISB)

recommendations [25,26]. The reason is that the axes of body segments’ Cartesian coordinate systems,

within ISB recommendations, are defined based on bony landmarks that are palpable or identifiable

from X-rays.

2.1. Calibration Algorithm and Definition of Technical-Anatomical Frames

During five seconds of static acquisition (initial upright posture), the orientation data is used to

define the sensor-to-body alignment. The first stage consists of correcting the sensor frame placed on

the pelvis (called IMU-F-PV coordinate system). This correction procedure aims to align the IMU-F-PV

with the gravity. Let GFqIMU−F−PVO
be the quaternion of the IMU placed on the pelvis, in the initial

posture computed by averaging the orientation data (as in [27]) acquired over 5 s interval. Since

the orientation data is obtained in quaternion format, the operations to align the sensor quaternion
GFqIMU−F−PVO

with the gravity are performed as follows:

(1) Obtain x-axis (xIMU−F−PV) of the coordinate system referred to the IMU orientation measured by

the quaternion GFqIMU−F−PVO
associated with the initial posture, and using Equation (1) to convert

from unit quaternions to direction cosine matrix, xIMU−F−PV defined as shown in Equation (2):

M(q) =







q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3






, (1)

xIMU−F−PV = M(GFqIMU−F−PVO
)i, (2)

where i is the unit vector in direction of the x axis.

(2) Define the angle θ between xIMU−F−PV and the gravity vector ZG. The angle θ is calculated using

Equation (3):

θ = acos(2(q1q3 + q0q2)), (3)

where q0, q1, q2 and q3 are the components of the quaternion GFqIMU−F−PVO
.

(3) Define the vector n1 orthonormal to the mentioned vectors (xIMU−F−PV and ZG). Around this

vector a rotation θ is made according to Euler’s rotation theorem. The orthonormal and unit vector

n1 is defined as shown in Equation (4). The correction quaternion qc(θ, n1) is calculated using

Equation (5):

n1 =
[

2(q1q2 + q0q3) q2
2 + q2

3 − q2
0 − q2

1 0
]T

,

n1 =
n1

‖n1‖
,

(4)

q(θ, n) = (cos(
θ

2
), n sin(

θ

2
)). (5)
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The technical-anatomical frame of the pelvis (BF-PV) calculated with respect to the global frame

(GF), during the initial posture, is defined as shown in Equation (6):

GFqBF−PVO
= qc ⊗ GFqIMU−F−PVO

. (6)

Other initial technical-anatomical frame (BF) using quaternions are defined during the calibration

procedure as shown in Table 1.

Table 1. Definition of technical-anatomical quaternions obtained during calibration posture (straight

upright posture).

Segment Initial Quaternion Definition

Pelvis (PV)
GFqBF−PVO

Thigh (TH)
GFqBF−THO

= GFqBF−PVO
⊗ qROT(90◦, i) 1

Shank (SH)
GFqBF−SHO

= GFqBF−THO

Foot (FT) GFqBF−FTO
= GFqBF−SHO

⊗ qROT(180◦, n2)
2

1 i = [1 0 0]T, 2 n2 =
[√

2/2 0
√

2/2
]T

. Let qROT(θ, n) be the quaternion of rotation calculated using Equation

(5) for θ = 90◦ or 180◦ and n = i or n2. BF refers to body-frame, GF to global frame.

Once the initial technical-anatomical quaternions are defined, the sensor-to-body orientation
BFqIMU−F−B is determined for each sensor using Equation (7):

BF−BqIMU−F−B = GFq∗BF−BO
⊗ GFqIMU−F−B, (7)

where B denotes the body segment, namely PV, TH, SH and FT, and ∗ denotes the complex conjugate of

the quaternion. Once we have the relative orientation of the sensor to the body segment, the orientation

of each segment at any instant of time can be determined as GFqBF−PV , GFqBF−TH , GFqBF−SH and
GFqBF−FT , for the pelvis, thigh, shank and foot, respectively. Then, the hip, knee and ankle joint

rotations are defined by relating the orientation of the distal body segment with respect to the proximal

body segment. The technical-anatomical frames are presented in Figure 1 for each body segment.

During the initial posture the joint angles are assumed to be zero, since the corresponding body

segments are aligned. The proposed algorithm is also conceived in such a way that the IMUs can be

placed in any arbitrary position on the body segments. This means that the user does not have to be

concerned about placing the IMUs in an exact position. The algorithm to extract the joint angles is

presented in detail in the next section.

		 = ⊗

= ⊗ 90°,== ⊗ 180°, 	= 1	0	0 = √2/2	0	√2/2 ,θ = 90°	or	180° = 	or	
	 	 = ∗ ⊗ ∗

	 		 	

Figure 1. Technical-anatomical frames (BF) of the pelvis, thigh, shank and foot. Axes X, Y and Z in

color red, green and blue, respectively.
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2.2. Joint Angles Calculation

The last general reporting standard for joint kinematics based on Joint Coordinate System (JCS)

was presented by the International Society of Biomechanics (ISB) [26]. The concept of JCS was first

presented by Grood and Suntay [25] only for the knee joint, but this approach has been adopted to

define the kinematics of other human joints. This concept uses the description of Cartesian coordinate

systems and vector algebra to define the knee joint. In this work, we present the equivalent algebra

using quaternions to define hip, knee and ankle joints. Following the method proposed by Grood

and Suntay, we compute the body fixed axes and the reference axes of the JCS in Table 2 according to

the frames shown in Figure 2. Table 3 summarizes the sign convention used on defining the clinical

rotations, where flexion, abduction and internal rotation movements are positives.

 
(a) 

 
(b) 

 
(c) 

= − = −
= = −

= −| − |
= = −
= = −

= | |
= = −
= = −

= | |

Figure 2. Scheme of a simplified joint comprising two semi-spheres. (a) Adjacent segments S1 and S2,

and a universal goniometer (a controlled joint J); (b) representations of the joint J and (c) rigid plastic

piece to fit the sensors in a fixed position on the semi-sphere.

Table 2. Body fixed, floating and references axes of each joint.

Joint Joint Coordinate System
Body Fixed and
Floating Axes

References Axes

HIP 1

Pelvis axis (flexion-extension) e1 = −yPV er
1 = −zPV

Femoral axis
(internal-external rotation)

e3 = xTH er
3 = −yTH

Floating axis
(abduction-adduction)

e2 =
xTH×(−yPV )
|xTH×(−yPV )|

KNEE 2

Femoral axis (flexion-extension) e1 = zTH er
1 = −yTH

Tibial axis
(internal-external rotation)

e3 = xSH er
3 = −ySH

Floating axis
(abduction-adduction)

e2 = xSH×zTH
|xSH×zTH |

ANKLE 1

Tibial axis
(dorsiflexion-plantar-flexion)

e1 = zSH er
1 = −ySH

Calcaneal
(internal-external rotation)

e3 = zFT er
3 = −xFT

Floating axis
(inversion-eversion)

e2 = zFT×zSH
|zFT×zSH |

1 JCS proposed by Wu et al. [26] and 2 JCS proposed by Grood and Suntay [25]. PV pelvis, TH thigh, SH shank,
FT foot.
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Table 3. Rotations of the hip, knee and ankle joint of the right leg.

Joint Flexion-Extension Abduction-Adduction Internal-External Rot

HIP α = asin(e2−H ·xPV) β = acos(−yPV ·xTH)− π
2 γ = asin(e2−H ·zTH)

KNEE α = −asin(e2−K ·xTH) β = acos(zTH ·xSH)− π
2 γ = asin(e2−K ·zSH)

ANKLE 1 α = asin(e2−A·xSH) β = acos(zSH ·zFT)− π
2

1 Ankle rotations are dorsiflexion-plantar flexion and inversion-eversion. α, β and γ are the joint angles on
sagittal, frontal and transverse planes, respectively. PV pelvis, TH thigh, SH shank, FT foot.

Now, let GFqBF−PV , GFqBF−TH , GFqBF−SH and GFqBF−FT be the orientation quaternions that

represent the frames fixed in each bone. Each body fixed, floating and reference axes, in Table 2, are

computed as function of quaternions. Let e2−H , e2−K and e2−A be the floating axis of the hip, knee and

ankle joint, respectively. The corresponding equations are shown in Equation (8), where |·| indicates

that the vector must be normalized, and i, j and k denote the unit vectors in direction of the x, y and z

axes, respectively. Then, the equivalent equations in quaternions for calculating the joint rotations are

presented in Table 4.

e2−H =
(M(GFqBF−TH)i)×(−M(GFqBF−PV )j)

|·| ,

e2−K =
(M(GFqBF−SH)i)×(−M(GFqBF−TH)k)

|·| ,

e2−A =
(M(GFqBF−FT)k)×(M(GFqBF−SH)k)

|·| ,

(8)

Table 4. Joint rotations as functions of quaternions.

Joint Angles

HIP

α = asin(e2−H ·M(GFqBF−PV)i)

β = acos(−M(GFqBF−PV)j·M(GFqBF−TH)i)− π
2

γ = asin(e2−H ·M(GFqBF−TH)k)

KNEE

α = −asin(e2−K ·M(GFqBF−TH)i)

β = acos(M(GFqBF−TH)k·M(GFqBF−SH)i)

γ = asin(e2−K ·M(GFqBF−SH)k)

ANKLE
α = asin(e2−A·M(GFqBF−SH)i)

β = acos(M(GFqBF−SH)k·M(GFqBF−FT)k)

α, β and γ are the joint angles on sagittal, frontal and transverse planes, respectively. e2−H , e2−K and e2−A are
the floating axes of the hip, knee and ankle, respectively. M(GFqBF−X) is the equivalent direction-cosine matrix

of the GFqBF−X quaternion of X body-segment. Body segments: PV pelvis, TH thigh, SH shank, FT foot.

3. Validation Protocol of Calibration Procedure Using a Simplified Rigid-Body Joint

3.1. Motion Acquisition System

The motion capture system Tech MCS (Technaid, Madrid, Spain) was used in the experimental

procedure. The device was connected via Bluetooth to a laptop. In this study four Tech-IMU V 3.0

sensors were used to obtain orientation data in real-time. Each IMU integrates three different types of

three-axial sensors: accelerometers, gyroscopes and magnetometers. Data were acquired using Tech

MCS Studio software, which provides orientation (based on Kalman filtering) in quaternion format

at 50 Hz. MATLAB software (The MathWorks Inc., Natick, MA, USA) was used to analyze and process

the orientation data.
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3.2. Experimental Procedure

A set-up (Figure 2a) was built with two semi-spheres and the joint angles were measured by

an expert physiotherapist using a universal goniometer (360◦, 20 cm clear plastic goniometer). Each

semi-sphere is used to represent body segments, and the universal goniometer is used to represent an

articulation with one degree of freedom.

Using the universal goniometer as reference for measurements, angular movements can be

performed in a controlled approach. The rigid semi-spheres are named as S1 and S2 (upper and bottom

respectively, see Figure 2a). The joint represented by the goniometer is denoted as J. Rotations from 0◦

to ±80◦ with steps of ±20◦ about z-axis of J were performed. These angles correspond to rotations of

S2 with respect to S1, which was kept static. The rotation range reaches (or even exceeds) a complete

range of motion in lower limbs during walking.

One sensor (IMU 1) was placed on the goniometer, and the three others (IMUs 2, 3 and 4) were

placed on two semi-spheres. The IMU 1 is used as the reference, in the same way as the sensor placed

on the pelvis for the experiments with human subjects. This sensor also remained static. For each

semi-sphere, technical frames were defined as described in Section 2.1 and the equations applied

are analogous to those for calculating knee joint angles as described in Section 2.2. Observe that the

segment S2 has two sensors (IMUs 3 and 4), that means the technical frame of S2 can be determined

using both sensors. Also, these sensors were fixed to the semi-sphere using a rigid plastic pieces made

by a 3D printer (Figure 2c), which were glued fitting on the semi-sphere surface. These pieces ensure

that the sensors have the same posture when they are exchanged.

The proposed procedure is conceived in such way that there is no concern about placing the

sensors in an exact position. Moreover, considering that significant differences may be presented

between any pair of IMU sensors, this setup allows the analysis of two different approaches when

estimating the joint angles: (a) using the same sensor (IMU 3 or IMU 4) in different postures; and (b)

using different sensors in the same posture.

The orientation of each semi-sphere frame at any instant of time can be determined as GqS1,
GqS2IMU3

and GqS2IMU4
. The joint J (Figure 2b) can be represented in a total of four different ways, as

shown in Table 5. A simulation run in MATLAB under ideal conditions (IMU misalignment error,

bias and noise equal to zero) is also presented to demonstrate that, theoretically, different orientations

of IMUs do not affect the angle measures using the proposed method (assuming that IMUs 3 and 4

are ideally equal devices). In simulation, the initial orientation of the sensors was set to the initial

values obtained during experimental validation. A demonstration can be seen on an online video

(Supplementary Material)

Table 5. Representations of the J joint formed by S1 and S2 segments.

Joint S1 S2 Posture

J1

IMU 2

IMU 3 POS-1
J2 IMU 3 POS-2
J3 IMU 4 POS-1
J4 IMU 4 POS-2

3.3. Data Reduction and Statistical Analysis

A 20 min warm-up of the IMU sensors was carried out before the experiments, in an attempt to

stabilize the gyroscope measurements [16]. After each rotation, the semi-sphere S2 was kept stationary

approximately for 15 s. Only the last 10 s of collected data, for each orientation, were used. Quaternion

for each rotation is resulted from averaging quaternion data over the 10 s intervals. Once data were

reduced for each sensor and orientation, the IMU-to-body alignment method was applied to estimate

the joint angles. Data were collected on two occasions, one day apart, and a total of twenty trials were



Sensors 2016, 16, 2090 8 of 17

acquired for each session. From trial to trial, IMUs 3 and 4 were exchanged of posture. These following

approaches were statistically analyzed:

(1) In order to evaluate repeatability, understood as the consistency of measures of the IMU system

under stated conditions on two days apart, a test-retest (intra-rater) study was performed.

The angles, β, γ and δ were calculated for each representation of the joint and Intra-Class

Correlation (ICC) was calculated. ICC (ICC(2,1),absolute agreement) was calculated using the

software IBM SPSS Statistics 20 (α = 0.05).

(2) In order to evaluate validity, root mean square error (RMSE) and concordance correlation

coefficient (CCC, 95% IC) [28] between first-day measured joint angles (using IMU system)

and reference values (using the gold-standard universal goniometer) were computed. Two

scenarios are analyzed: (a) the differences of joint angles measures changing the postures (POS-1

and POS-2) of the sensors and (b) the differences of joint angles measures using different groups

of sensors, i.e., IMU 3 relative to IMU 2 or IMU 4 relative to IMU 2, where IMUs 3 and 4 having

the same posture in different occasions.

4. Application of the Calibration Procedure on Able-Bodied Subjects

4.1. Sensor Placement on Human Lower Limb

Four sensors were positioned from the pelvis through the right lower limb (thigh, shank and foot

segments, see Figure 3). The pelvis sensor was placed on the sacrum at the S2 spinous process in the

middle point between two posterior superior iliac spines. The IMU describes a coordinate system

defined as x-axis pointing cranially and z-axis pointing posteriorly. The thigh sensor was placed on the

iliotibial tract approximately 5 cm above the patella. The shank sensor was positioned on the lower

one-third of lateral shank 5 cm above of the lateral malleolus of the fibula.

The sensors on thigh and shank were positioned with x-axis pointing cranially and z-axis pointing

laterally. The foot sensor was fixed with double sided tape on the dorsal region of the foot over the 3rd

and 4th metatarsal bones, 3 cm above to the corresponding metatarsophalangeal joints, with z-axis

pointing cranially and x-axis pointing posteriorly. These sensors were attached with double-sided

tape on an acrylic plate, which was glued to elastic band with Velcro®. Similar positions have been

suggested by different authors [10,14,29].

= 0.05

 

Figure 3. Sensor placement on the human lower limb.

4.2. Discrete Parameters of the Joint Angles

Discrete angular kinematic parameters shown in Table 6 were estimated. Discrete parameters

allow making a parametric analysis, which is demonstrated to be a reliable and practical method
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analyzing gait data, and it is a useful tool to assess data reliability [30]. These kinematic parameters

were computed for each gait cycle. To determine them, there is a need to identify the two main phases

of gait, stance and swing. This procedure of segmentation consists of determining the two events that

indicate the start of each phase, which are heel strike (HS) and toe off (TO). Sabatini et al. [31] propose

to determine HS and TO using the angular velocity sensed by a gyroscope on the foot. In our work,

the orientation data of the foot were collected using quaternions. Each trial is divided in gait cycles to

extract the kinematics parameters posteriorly. To determine the HS and TO, the angular velocity, as a

function on quaternion, is computed as shown in Equation (9):

Ωt = 2GSq∗BF−FT ⊗ GS .
qBF−FT , (9)

where GS .
qBF−FT is the vector of quaternion rates (or the time derivate of the unit quaternion) of the

foot, and Ωt = (0, ωx, ωy, ωz)
T is the quaternion representation of the angular velocity ωt. Using

the component of the angular velocity on the sagittal plane (ωy, for IMU placed on the foot), the HS

and TO events are determined using a minimum detection algorithm. In addition, with these two

estimated events, the gait cycle is divided in the two main phases. Thus, it is possible to estimate the

mentioned discrete kinematic parameters using maximum and minimum detection algorithm.

Table 6. Joint angles parameters for gait analysis.

Hip Knee Ankle

Name Variable Name Variable Name Variable

HFE1
Maximum hip flexion

angle stance
KFE1

Maximum knee flexion
angle stance

AFE1
Maximum ankle

plantarflexion angle stance

HFE2
Maximum hip

extension angle stance
KFE2

Maximum knee
extension angle stance

AFE2
Maximum ankle

dorsiflexion angle stance

HFE3
Maximum hip flexion

angle swing
KFE3

Maximum knee flexion
angle swing

AFE3
Maximum ankle

plantarflexion angle swing

4.3. Experimental Protocol for Gait Analysis

Five volunteers without gait disabilities (two male and three female, 25 ± 4 years old) were

enrolled in the validation procedure of this study. The IMU sensors were placed on pelvis and on right

lower limb (thigh, shank and foot segments) by a trained physiotherapist as previously described in

Section 4.1. The sensor placed on the pelvis was aligned with the walking direction. The subjects were

asked to keep a straight upright posture during 5 s, and then walk 10 m in a straight line. Each subject

performed three trials and the five middle gait cycles were extracted for analysis. This methodology

was applied to ensure that only complete gait cycles were selected, excluding motion at the beginning

and at the end of the walking process. Therefore, fifteen gait cycles were acquired for each subject.

This research was approved by the Ethical Committee of UFES (Research Project 214/10).

5. Results and Discussion

This section presents the results of three approaches applying the proposed method: (1) A simulation

that evidences the method performance regardless of drift errors and other perturbations associated

with the IMU sensors (considering the limitations of the systems and applications that involve IMU

sensors [12–16,22,32]); (2) a practical validation using an experimental simplified rigid-body joint and

four IMU sensors; and (3) an application in human gait analysis.

5.1. Simulation of the Proposed Method Applied to a Simplified Rigid-Body Joint

The IMUs’ initial orientations were set to the initial values obtained during practical validation,

in order to run the simulation as close as possible to the real experiment. The models of the joint and

the IMUs are shown in Figure 4. Movements from 0◦ to ±80◦ with steps of ±20◦ (called Postures 1
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to 9) about z-axis of J were performed. Note that the simplified joint is analogous to a two-dimensional

knee joint with one degree of freedom.
− − −
− −

 

Figure 4. Simulation of the simplified joint. Scale models of the rigid-body joint and IMUs in MATLAB.

Figure 5a–c show the angular components (α, β and γ) of the representations J1 and J4 (refer

to Table 5) without applying the proposed method. Other representations of joint J present the

same results. Because the proposed method was not yet applied, the angular components α, β and

γ presented differences with the expected values. The maximum errors can be observed for J1:

α (Posture 5) −67.26◦, β (Posture 1) −48.96◦, γ (Posture 1) 38.77◦, and for J4: α (Posture 2) −11.69◦,

β (Posture 5) −57.09◦, γ (Posture 9) −42.15.

− − −
− −

(a)

(b)

Figure 5. Cont.
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(c)

(d)

α β γ
α

β γ

γ

α J1	 J4	

γ

Figure 5. Comparison between the joint angles without applying the proposed procedure (a–c) and

applying the procedure (d). Angular components α, β and γ are significant in the first case (a–c), which

are different of the expected values. In the last case, only α is significant and equal to the expected

values. β and γ are both equal to zero throughout the entire simulation, as expected. J1 and J4 are two

representations of the simulated joint J represented by the goniometer.

After applying the proposed method, only α is significant under ideal conditions understanding

that the rotations were applied exclusively around z-axis. Then, angular components β and γ are

equal to zero. The angles α obtained by applying the IMU-to-body method are shown in Figure 5d.

Notice that, as the angles β and γ are equal to zero, they are not graphically presented. Also, please

observe that the values of α for J1 and J4 are equal to the expected values imposed by the simulation.

In summary, through this simulation, we aim to demonstrate that applying the proposed method the

estimated angles are equal to the expected values and consistent with the rotations applied. In addition,

we also show that the proposed method produces the correct and consistent values when the IMU

sensors are placed in different positions on the body segments.

5.2. Practical Validation of the Proposed Method Applied to a Simplified Rigid-Body Joint

Table 7 shows the data from ICC coefficients and its respective confidence intervals (95%

IC) to evaluate the consistency of repeated measures of the IMU system under stated condition

on two different days. ICC values were greater than 0.90 for all angular components and the

different representations of the joint J. Movements associated with angles α, which correspond to

flexion-extension angles on sagittal plane, produced the highest ICC values of the joint (ICC = 1.00).

Observe that the angular component γ presented the lowest ICC values and the confidence intervals

were wider (e.g., 0.60–0.97). We believe that such values are caused by limitations of the current

IMU technology and fusion algorithms. The movements associated with γ angles correspond to

external-internal rotation angles, which are performed on transversal plane, perpendicular to the

gravity vector. In accordance with the literature, these movements around to the gravity vector present

heading drift, which cannot be corrected using the accelerometer data. Therefore, this drift error may



Sensors 2016, 16, 2090 12 of 17

be associated with the performance of the magnetometer, gyroscope, and data fusion algorithm. Also,

it has been mentioned that the heading drift is mainly due to the accuracy of the IMU sensors and, on

a lesser extent, to the complexity of the task [33].

Table 7. Test-Retest study on two days apart: Consistency of measures of the IMU system.

Joint

Single Rater ICC Value

α β γ

Value 95% IC Value 95% IC Value 95% IC

J1 1.00 1.00–1.00 0.99 0.98–0.99 0.95 0.83–0.99
J2 1.00 1.00–1.00 0.99 0.99–0.99 0.96 0.88–0.95
J3 1.00 1.00–1.00 0.98 0.96–0.99 0.90 0.60–0.97
J4 1.00 1.00–1.00 0.99 0.99–0.99 0.99 0.98–0.99

Tables 8 and 9 report the Root Mean Square Error (RMSE) and Concordance Correlation Coefficient

(CCC) obtained between first-day measured joint angles (using IMU system) and reference values

(using the gold-standard universal goniometer) to evaluate validity, respectively.

Table 8. RMSE between the measurements from IMU system and the reference universal goniometer.

Maximum RMSE values of each angular component are highlighted on orange color, and the acceptable

values for angular components β and γ are highlighted on green color.

Joint Angle
RMSE (◦) Max

RMSE (◦)80 60 40 20 0 −20 −40 −60 −80

J1

α 0.67 0.64 0.49 0.30 0.07 0.48 0.74 0.90 0.93 0.93
β 4.51 4.12 2.72 0.83 0.77 1.77 2.10 0.67 2.36 4.51
γ 0.25 0.79 1.58 1.39 0.04 2.22 5.14 8.02 9.73 9.73

J2

α 0.60 0.47 0.16 0.22 0.04 0.49 1.03 1.31 1.21 1.31
β 1.96 0.09 0.96 0.84 0.04 0.57 1.00 1.50 2.38 2.38
γ 8.36 6.21 3.81 1.60 0.01 1.02 1.78 2.81 4.44 8.36

J3

α 1.41 1.13 0.68 0.43 0.02 0.24 0.38 0.39 0.23 1.41
β 3.11 0.16 1.08 0.20 1.77 4.21 7.68 8.78 6.75 8.78
γ 8.11 7.44 4.62 1.70 0.01 0.17 2.23 6.26 10.07 10.07

J4

α 1.42 1.70 0.94 0.55 0.08 0.27 0.63 0.90 0.60 1.70
β 0.36 3.83 5.00 3.34 0.12 3.63 5.82 6.12 5.00 6.12
γ 15.61 13.04 7.53 2.69 0.04 0.09 1.74 3.96 5.50 15.61

The agreement between measures from IMU system and the universal goniometer applying the

calibration procedure was excellent (CCC ≥ 0.98) for the angular component α. Note that for this

angular component the maximum RMSE was 1.70◦ for the J4 representation on posture 2 (60◦). Also,

observe that the maximum RMSE (15.61◦) is in correspondence with the angles γ. Again, these error

drifts may be associated with the quality of the IMU data. In a previous validation study [34], the IMU

sensors used here presented errors approximately up to 7◦ across 12 explored orientations, following

the self-IMU consistency (SC) test. Errors were found up to 15◦, following the Inter-IMU consistency

(IC) test. These mentioned tests, with similar results, were proposed by Picerno et al. [16].



Sensors 2016, 16, 2090 13 of 17

Table 9. CCC between the measurements from IMU system and the reference universal goniometer.

Minimum CCC values of each angular component are highlighted on orange color, and the acceptable

values for angular components β and γ are highlighted on green color.

Joint Angle
CCC (ρc)

Min. CCC
80 60 40 20 0 −20 −40 −60 −80

J1

α 0.99 0.99

β 0.25 * 0.28 * 0.49 † 0.94 0.90 0.67 0.67 0.99 0.49 † 0.25 *
γ 0.87 0.72 0.58 0.69 0.99 0.48 † 0.16 * 0.07 * 0.05 * 0.05 *

J2

α 0.99 0.99

β 0.53 0.88 0.66 0.77 0.99 0.87 0.67 0.51 † 0.40 † 0.30 *
γ 0.05 * 0.09 * 0.20 * 0.60 0.99 0.81 0.61 0.40 † 0.24 * 0.05 *

J3

α 0.99 0.99

β 0.31 * 0.99 0.97 0.99 0.97 0.28 * 0.12 * 0.10 * 0.16 * 0.10 *
γ 0.06 * 0.08 * 0.24 * 0.99 0.99 0.99 0.48 † 0.17 * 0.04 * 0.04 *

J4

α 0.98 0.99

β 0.97 0.30 * 0.19 * 0.35 * 0.99 0.32 * 0.16 * 0.14 * 0.18 * 0.14 *
γ 0.02 * 0.04 * 0.11 * 0.49 † 0.99 0.99 0.68 0.29 * 0.17 * 0.02 *

* Less than 0.40: agreement between measure poor. † Between 0.40 and 0.59: agreement fair.

Note that the representations of J associated with IMU 3 (J1 and J2) presented lowest RMSE

and highest CCC values broadly. It is possible to observe that for the angular component α, the

measurements are not significantly different when using IMU 3 or IMU 4. However, for the angular

components β and γ, the measurements using IMU 3 are lower than those using IMU 4. Additionally,

using IMU 3 (the best case), RMSE values of β and γ apparently have similar magnitudes. Nevertheless,

note that the magnitudes are not correlated with the same sense of rotation, it means that, for

J1 representation (IMU 3: POS-1), errors are higher from 0 to −80◦. On the other hand, for J2

representation (IMU 3: POS-2), errors are higher from 0 to 80◦. Contrary to that demonstrated

in simulation, the RMSE data suggest that the position of real IMU sensors is an important factor to

consider in analyzes that involve the secondary planes of motion (coronal and transverse planes).

Besides, it is worth noting that the RMSE and CCC values mostly decrease as the angle increases.

This can be observed for the angular components β and γ of the J2 representation. The angular

component γ presented the lowest CCC values (0.02 ≤ CCC ≤ 0.05), however, note that for punctual

cases, the CCC values were presented into acceptable to excellent interval. For example, for J1

representation between 80◦ to −20◦ (as highlighted in green color), the CCC values were from 0.48

to 0.99, corresponding with RMSE values smaller than 2.5◦. This behavior may indicate that pairs of

IMU sensors can be used on specific joints, according to their range of motion in gait analysis and,

even in other applications that define limits of motion within the range of acceptable performance

of the sensors. According to the results obtained using the simplified joint, we present in the next

section the hip, knee and ankle joint angles in the sagittal plane through motion analysis using the

proposed method.

5.3. Experimental Validation for Gait Analysis

Figure 6 reports the discrete angular parameters (see Table 6) proposed for gait analysis of

Subject 2, as an example, over one cycle of gait, to show graphically the kinematic parameters selected

in the angular series. Figure 7 reports the mean and standard deviation of the joint angles in sagittal

plane of the five volunteers. Table 10 shows the discrete angular parameters calculated using the mean

of fifteen gait cycles for the five volunteers.
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Figure 6. Discrete angular parameters on joint angles of Subject 2.

 

Figure 7. Joint angular kinematics in stride percentage (from HS to HS) of five able-body subjects.

Fifteen gait cycles were summarized by black curve (MEAN) and orange stripe (±SD).

Mean and standard deviation of the joint angles of the five volunteers are within the normal

range during a gait cycle for free walking. Interestingly, the results obtained with the developed

algorithm presented low standard deviations, which means that estimated measures were consistent

across trials. The maximum values of standard deviation were presented for the ankle joint angles of

the five volunteers (Maximum SD = 3.99, AFE3, Subject 5). According to the results of each subject,

it is possible to identify characteristics of each individual. By comparing the results obtained using

the proposed method with the literature [12,15,29,30], it is clear that the angular patterns are coherent

and within the intervals established by mean and standard deviations. It is important to highlight
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that these experiments were performed with the intention of proving a practical application of the

proposed method.

Table 10. Mean (SD) of the discrete parameters reported for five volunteers.

Parameter
MEAN (SD) (◦)

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

HFE1 25.44 (2.62) 25.14 (2.78) 26.19 (2.18) 23.18 (2.54) 20.75 (2.73)
HFE2 −13.52 (3.97) −9.62 (2.81) −13.39 (2.00) −9.39 (2.67) −9.66 (2.86)
HFE3 28.87 (2.51) 27.96 (2.57) 29.38 (1.83) 24.63 (2.44) 20.28 (2.73)
KFE1 16.24 (3.10) 16.29 (2.75) 14.08 (3.12) 10.79 (2.65) 9.99 (0.63)
KFE2 4.63 (2.98) 9.62 (2.92) 7.58 (2.98) 2.98 (3.20) 5.23 (0.23)
KFE3 59.35 (1.70) 66.24 (2.82) 65.59 (2.88) 55.01 (2.80) 55.93 (1.55)
AFE1 −1.42 (3.93) −4.16 (1.56) −6.08 (2.51) −6.76 (3.42) −2.93 (3.98)
AFE2 16.95 (2.51) 19.43 (1.21) 10.55 (3.74) 9.53 (2.63) 8.48 (1.64)
AFE3 −10.32 (3.52) −17.80 (3.46) −21.52 (2.02) −30.51 (2.49) −25.15 (3.99)

Notice that technical-anatomical frames, used to calculate the joint angles, are an estimate and

may present a misalignment with the anatomical frame defined using bony landmarks. This means

that joint angle curves may present an offset from values estimated using stereophotogrammetry,

preserving the same angular patterns and range of motion.

6. Conclusions

In this work we have presented a novel calibration method to place and align inertial sensors

with human body segments, with the goal of measuring joint angles. The advantages of the proposed

method, in comparison with other methods described in the literature, include the fast and easy sensor

placement, with no need of special movements performed by the user nor any additional tools, which

may decrease setup time. The characteristics of this new method may make it more attractive for daily

clinical routine.

The results from the computational simulation demonstrate that, when applying the proposed

method, the estimated angles are equal to the expected values and consistent with the joint’s rotations.

Also, two real experiments have been carried out to evaluate the simulated procedure. Results indicate

that the method is suitable to measure tridimensional angles of the hip, knee and ankle of the humans’

joints during free walking. However, some limitations mainly associated with the accuracy of the

sensors used in the real experiments for practical validation gave rise to some estimation errors, mainly

in movements around the gravity vector.

In conclusion, the proposed method is an interesting option to solve the alignment problem of

human gait analysis based on inertial sensors. The discussed method is especially attractive for its

simplicity and easy donning and doffing of the sensors. In applications such as gait rehabilitation, that

requires motion analysis of impaired persons, the method can be of great help for its simplicity and

accurate results.

Supplementary Materials: A demonstration of the simulation can be seen on an online video: https://www.
dropbox.com/s/gu8w5wbz7ofcztp/SimulationIMU.mp4?dl=0.
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