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Mixed Boolean-arithmetic (MBA) expression, which involves both bitwise operations (e.g., NOT, AND, and OR) and arithmetic
operations (e.g., +, − , and ∗ ), is a software obfuscation scheme. On the other side, multiple methods have been proposed to
simplify MBA expressions. Among them, table-based solutions are the most powerful simplification research. However, a
fundamental limitation of the table-based solutions is that the space complexity of the transformation table drastically explodes
with the number of variables in the MBA expression. In this study, we propose a novel method to simplify MBA expressions
without any precomputed requirements. First, a bitwise expression can be transformed into a unified form, and we provide a
mathematical proof to guarantee the correctness of this transformation. 'en, the arithmetic reduction is smoothly performed to
further simplify the expression and produce a concise result. We implement the proposed scheme as an open-source tool, named
MBA-Flatten, and evaluate it on two comprehensive benchmarks. 'e evaluation results show that MBA-Flatten is a general and
effectiveMBA simplificationmethod. Furthermore, MBA-Flatten can assist malware analysis and boost SMTsolvers’ performance
on solving MBA equations.

1. Introduction

Mixed Boolean-arithmetic (MBA) expression [1, 2] is de-
fined as the expression that mixes the usage of bitwise
operations (e.g., ∼ , &, |, and ∧) and arithmetic operations
(e.g., +, − , and ∗ ). Several formal methods [1, 3] are
designed to generate a new complex MBA expression that is
equal to a simple expression. MBA expression, which can be
used to replace a simple expression with an equivalent
representation that is hard to understand, is an advanced
software obfuscation scheme [3–5]. 'e MBA obfuscation
has been adopted by many academic projects and industrial
products to protect software [5–9].

'e wide practical applications ofMBA obfuscation have
attracted research on simplifying MBA expression. Recent
studies [10, 11] demonstrate that existing computer algebra
software has a very limited effect on MBA simplification.
Consequently, multiple methods are proposed to simplify
MBA expressions, including bit blasting [12], pattern

matching [13], program synthesis [14–16], deep learning
[17, 18], and table-based solutions [5, 11]. Among them,
table-based solutions are the state-of-the-art MBA simpli-
fication method. However, one strong limitation is that the
complexity of creating and storing the precomputed table is
O(22t

), where t is the number of variables in the MBA
expression. 'us, it has an overwhelming overhead to
produce and store the tables for any t≥ 5.

In this study, we propose a novel scheme to simplify an
MBA expression without any precomputed requirements.
'e key idea is that a transformation procedure can be used
to reduce a bitwise expression to a unified form, and a
mathematical proof is provided to guarantee the correctness
of the transformation. 'en, the arithmetic reduction is
smoothly performed to further simplify the expression and
generate the final result. We implement the approach as an
open-source tool, named MBA-Flatten. To demonstrate the
capability of MBA-Flatten, we evaluate it on two compre-
hensive MBA benchmarks. 'e evaluation results show that
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MBA-Flatten outperforms existing tools in terms of more
solved MBA expressions. Due to the low-cost arithmetic
computation, MBA-Flatten is also an effective MBA sim-
plification tool. In addition, the evaluation demonstrates
that MBA-Flatten can assist malware analysis and boost
SMT solving on MBA equations.

In summary, this study makes the following key
contributions:

(1) We find that a bitwise expression can be transformed
into a unified form and provide a mathematical
proof to support it. To the best of our knowledge, we
are the first to prove the existence of the
transformation.

(2) 'e bitwise expression transformation paves the way
for our novel in-place MBA simplification method.
Our proposed scheme first replaces the bitwise ex-
pressions with the corresponding equivalent form. In
this way, arithmetic reduction rules can be seam-
lessly applied to further produce the simplification
result.

(3) We have implemented our idea as an open-source
tool, called MBA-Flatten, and evaluated it on two
comprehensive MBA benchmarks. 'e evaluation
results demonstrate that MBA-Flatten is a general
and effective MBA simplification method.

'e remainder of this study is structured as follows.
Section 2 shows the background of MBA expression. Section
3 illustrates the proposed scheme that can be used to simplify
anMBA expression.'e proof of'eorem 1 can be found in
Section 4. In Section 5, we describe the experimental
evaluation of the proposed approach. Section 6 discusses
some limitations of our proposed scheme, and Section 7
concludes this study.

2. Related Work

In this section, we first introduce the background of MBA
expression and its wide applications. 'en, we discuss the
existing research on simplifying MBA expressions, pointing
out the limitations, which also serve as a motivation in this
study.

2.1. MBA Expression. Zhou et al. [1, 2] propose the concept
of mixed Boolean-arithmetic (MBA) expression based on
Boolean-arithmetic algebra, which mixes the usage of bit-
wise operators (e.g., NOT, AND, and OR) and arithmetic
operations (e.g., +, − , and ∗ ). MBA expression is specified as
linear MBA, polynomial MBA, and non-polynomial MBA
[1, 11].'e formal definitions of linear and polynomial MBA
expression are denoted as follows, and the linear MBA
expression is a subset of polynomial MBA expression [1].
'e MBA expression, which fails to satisfy Definition 1, is
considered as a non-polynomial MBA expression [11].

Definition 1. (Zhou [1]). A polynomial MBA expression is of
the form:

Ep x1, · · · , xt(  � 
iϵI

ai ∗ 
j∈Ji

ei,j x1, · · · , xt( ⎛⎝ ⎞⎠, (1)

where aiis integer constant,ei,jis bitwise expression of
variablesx1, . . . , xtoverBn, B � 0, 1{ }, n, tare positive integers,
andI, Ji ⊂ Z, ∀i ∈ I.

Definition 2. (Zhou [1]). A linear MBA expression is a
polynomial MBA expression of the form:

El x1, · · · , xt(  � 
i∈I

ai ∗ ei x1, · · · , xt( , (2)

where aiis integer constant,eiis bitwise expression of
variablesx1, · · · , xtoverBn, B � 0, 1{ }, n, tare positive integers,
andI ⊂ Z.

Zhou et al. [1] design a generator using truth tables to
produce infinite linear MBA equations. Based on existing
linear MBA rules, Liu et al. [3] propose several formal
methods to generate an unlimited number of polynomial
and non-polynomial MBA expressions. Examples of MBA
expressions are shown below. In particular, (3) is a linear
MBA expression, (4) is a polynomial MBA expression, and
(5) is a non-polynomial MBA expression.

2∗ (x∧y) + y − 3∗ (x|y) + 5, (3)

x∗ (x∧y) − x + 2∗ ( ∼ x|y)∗ x
y

(  − 1, (4)

(x∧(x + y))∗y − 3∗ (x|(x + y)) + ∼ x + 7. (5)

Due to its solid theoretical foundation and simplicity of
implementation, MBA expression has been applied in
multiple academic tools and industrial products to protect
software [5–9]. For example, Cloakware, Irdeto, and
Quarkslab apply MBA obfuscation in their commercial
products [5, 7]. Tigress [6], an academic C source code
obfuscator, encodes simple expressions into complex MBA
forms. Blazy et al. [8] develop a C program obfuscator, in
which formally verified MBA obfuscation rules are inte-
grated. Ma et al. [9] apply MBA expressions to develop a
novel dynamic software watermarking scheme. Figure 1
shows how to use MBA expressions to make software ob-
fuscation [4]. Figure 1(a) demonstrates that the expression
x + y is substituted with a complex but equivalent expres-
sion. 'e opaque predicate [19] is shown in Figure 1(b),
and the predicate (x∗y �� (x∧y)∗ (x|y) + (x∧ ∼ y)

∗ ( ∼ x∧y)) is actually always true.

2.2. MBA Expression Simplification. 'e wide practical ap-
plication of MBA obfuscation has encouraged research on
simplifying MBA expressions. Eyrolles’ PhD thesis [10]
shows that popular symbol software (Maple, SageMath,
Wolfram Mathematica, and Z3 [20]) fails to simplify MBA
expressions. 'e root cause is that existing reduction rules
cannot reduce expressions that mix the usage of bitwise and
arithmetic operators [11]. Researchers have developed
multiple solutions to simplify MBA expressions, including
bit blasting [12], pattern matching [13], program synthesis
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[14–16], and deep learning-based [17, 18]. While promising,
these simplification methods are still in their infancy: they
either suffer from high-performance penalties, or they
produce many false simplification cases.

To effectively reduce MBA expression, researchers in-
vestigate the MBA mechanism and propose table-based
solutions. Liu et al. [5] prove a two-way feature in the MBA
transformation and design a two-variable transformation
table to simplify MBA expression. Xu et al. [11] create
multiple semantic-preserving transformation tables, which
enumerate all bitwise expressions and the corresponding
simplified forms. Using these transformation tables, MBA-
Solver can effectively simplify an MBA expression.

So far, table-based solutions are the state-of-the-art MBA
simplification methods. However, the space complexity of the
transformation table isO(22t

) and t is the number of variables in
the MBA expression. 'erefore, table-based solutions are not
scalable to reduce an MBA expression involving five or more
variables. Here, (6) is a linearMBA expression with five variables,
and table-based solutions fail to simplify it. Note that multiple
methods are proposed to generate an unlimited number ofMBA
expressions [1, 3], and thus, an emerging challenge for MBA
simplification is the MBA expression with five or more variables.
f(x,y,z, t,a) � − ((∼ (x∨y∨t))∧( ∼ a))

− ((∼ (x|y| ∼ t))∧( ∼ a)) − (∼ (x|y|z|t)∧a)

− ((∼ x∧∼ y∧(z∨t))∧(a))

− 2∗y − 1+(x∧y).

(6)
3. The Proposed Scheme

To reduce MBA expressions, we first present an existing
finding: a bitwise expression can be transformed into a
unified form. 'is finding paves the way for our novel in-
place MBA simplification scheme, MBA-Flatten.

3.1. Bitwise Expression Transformation. A bitwise expression
is denoted as e(x1, · · · , xt) of variables xk ∈ Bn, k � 1, · · · , t.
'e transformation T is defined as follows:

∼ xi↦ − xi + 1,

xi∧xj↦xi ∗ xj,

xi|xj↦xi + xj − xi ∗xj ,

xi∧xj↦xi + xj − 2∗ xi ∗xj ,

xi ∗ · · · ∗xi↦xi,

(7)

where xi, xj ∈ Bn. Equation (7) can be recursively applied to
transform a bitwise expression e(x1, · · · , xt) into an arith-
metic expression denoted as T(e), which is shown as follows:

T(e) � 
t

i1�1
ai1

xi1
+ 

1≤ i1 < i2 ≤ t

ai1i2
xi1
∗xi2

 

+ · · · + a1···t x1 ∗ · · · ∗xt(  + ae,

(8)

where ai1 ···ik
and ae are integers determined by e. After

replacing all (xij
∗ · · · ∗xik

) in T(e) with (xij
∧ · · ·∧xik

), (8)
will be reduced as follows:

R(e) � 
t

i1�1
ai1

xi1
+ 

1≤ i1 < i2 ≤ t

ai1i2
xi1
∧xi2

 

+ · · · + a1···t x1∧ · · ·∧xt(  + ae.

(9)

An instance of the above transformation procedures is
shown in Example 1. One interesting observation is that
there is a gap between e and R(e), because ∼x1|x2 is equal to
the expression − x1 + (x1∧x2) − 1 rather than
− x1 + (x1∧x2) + 1.

Example 1. For a bitwise expression e � ∼ x1|x2, we have

T(e) � − x1 + 1(  + x2 − − x1 + 1( ∗ x2

� − x1 + x1 ∗ x2 + 1,

R(e) � − x1 + x1∧x2(  + 1.

(10)

Moreover, 'eorem 1 shows that the gap between a
bitwise expression e and the corresponding R(e) is actually a
constant value, 0 or − 2. In other words, a bitwise expression
e can be successfully reduced to a unified form, Equation
(10). 'eorem 1 can be proved by induction on the number
of bitwise operators in the bitwise expression e(x1, · · · , xt).
For detailed proof of the theorem, refer to Section 4 of this
study.

Theorem 1. Let n, t be positive integers, e(x1, · · · , xt) be a
bitwise expression of variables xk ∈ Bn, k � 1, · · · , t, and
F(e) � R(e) − 2∗ aewith the form of

F(e) � 
t

i1�1
ai1

xi1
+ 

1≤ i1 < i2 ≤ t

ai1i2
xi1
∧xi2

 

+ · · · + a1···t x1∧ · · ·∧xt(  − ae.

(11)

/en, F(e) ≡ e with ae � 0or1.
By this theorem, Example 2 shows that a bitwise ex-

pression ∼ (x| ∼ y) is reduced to (y − (x∧y)).

int fun (int x, int y) {
int c;
//c = x + y;
c = 2*(x&y) + 5*(x&~y)

+ 2*(x^y) + 6*~(x|y)
-1*~(x|~y) -6*~y;

return c;}

(a)

int fun (int x, int y) {
int c;
if (x*y == (x&y)*(x|y) + (x&~y)*(~x&y))

c = x;
else

c = y;

return c;}

(b)

Figure 1: Applications of MBA expression implemented in C programming language. (a) Data flow obfuscation. (b) Opaque predicate.
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Example 2. For a bitwise expression e � ∼ (x| ∼ y), we
have

T(e) � − (x +(− y + 1) − x∗ (− y + 1)) + 1,

� y − x∗y,

R(e) � y − (x∧y),

F(e) � y − (x∧y).

(12)

'e above procedures introduced so far are inte-
grated into Algorithm 1. 'e algorithm takes a bitwise
expression e as the input and outputs the transformation
result (e). Algorithm 1 applies arithmetic computation to
transform a bitwise expression, so it does not introduce
extra memory cost to maintain the heap or precomputed
tables.

3.2. Simplifying MBA Expression. As noted above, Algo-
rithm 1 can transform a bitwise expression e into a unified
form. Using Algorithm 1, we will discuss how to simplify
linear, polynomial, and non-polynomial MBA
expressions.

We first introduce how to simplify a linear MBA ex-
pression. According to Equation (2), a linear MBA ex-
pression is essentially a linear combination of bitwise
expressions. Using Algorithm 1, the bitwise expressions in
(2) are first substituted with the corresponding transfor-
mation result. After combining like terms, (2) will be re-
duced to the following simple form:

El x1, · · · , xt(  � 
2t

i�1
Ai ∗ei x1, · · · , xt( 

� 
t
i1�1Ai1

xi1
+ 

1≤ i1 < i2 ≤ t

Ai1i2
xi1
∧xi2

 

+ · · · + A1···t x1∧ · · ·∧xt(  + AEl
,

(13)

where Ai is integer, ei(x 1, · · · , xt) ∈ x1, x2, · · · ,

x1∧x2, x2∧x3, · · · , x1∧ · · ·∧xt, − 1}. (13) indicates that a lin-
ear MBA expression can be simplified to the concise form
including at most 2t terms and t is the number of variables in
the MBA expression. Example 3 shows that a complex linear
MBA expression can be reduced to a simple result (x + y).

Example 3. For the MBA expression in Figure 1(a), we have

2∗(x∧y) +5∗(x∧∼ y) +2∗(x∧y) +6∗ ∼ (x|y) − 1∗

∼ (x|∼y) − 6∗ ∼ y

� 2∗(x∧y) +5∗(x − (x∧y)) +2∗(x + y − 2∗(x∧y))

+6∗(− x − y +(x∧y) − 1) − 1∗(y − (x∧y))

− 6∗(− y − 1)

� x + y.

(14)

Enlighten by the above simplification procedure, using
Algorithm 1, (1) will be transformed to an equivalent form
shown as follows:

Ep x1, · · · , xt(  � 
iϵI

Ai ∗ 
j∈Ji

ei,j x1, · · · , xt( ⎛⎝ ⎞⎠, (15)

where Ai are integers, ei,j(x1, · · · , xt) ∈ x1, x2, · · · ,

x1∧x2, x2∧x3, · · · , x1∧ · · ·∧xt, − 1}, and I, Ji ⊂ Z, ∀i ∈ I. 'e
following example shows how to simplify a polynomial MBA
expression. First, every bitwise expression is substituted with
the equivalent form; e.g., (x∧ ∼ y) is replaced with
(x − (x∧y)). 'en, arithmetic reduction rules are per-
formed to produce the simplification result (x∗y). Note
that the linear MBA expression is also polynomial, so the
polynomial MBA simplification method can reduce a linear
MBA expression.

Example 4. For the MBA expression in Figure 1(b), we have

(x∧y)∗(x|y)+(x∧∼y)∗(∼x∧y)

�(x− (x∧y))∗(y− (x∧y))+(x∧y)∗(x+y− (x∧y))

�x∗y− x∗(x∧y)− (x∧y)∗y+(x∧y)∗(x∧y)+(x∧y)∗x

+(x∧y)∗y− (x∧y)∗(x∧y)

�x∗y.

(16)

For a non-polynomial MBA expression, we notice that it
includes multiple sub-expressions obfuscated by polynomial
MBA rules. 'is finding inspires us to use the polynomial
MBA simplification procedure to reduce a non-polynomial
MBA expression. In particular, we first simplify the inner
sub-expression (polynomial MBA expression), and the
simplification result of the inner sub-expression is treated as
a temporary variable to expose further reduction opportu-
nities. An instance is shown in Example 5. During the
simplification procedure, the inner polynomial MBA ex-
pressions are reduced to the simplified form, such as
(x∧y) + 2∗ (x∧y), which is reduced to (x + y). By
replacing (x + y) with an intermediate variable t1, the ex-
pression can be further reduced to (t1 + x). At the last step,
all temporary variables ti are substituted back to produce the
final result (2∗x + y).

Example 5. For the non-polynomial MBA expression
(((x∧y) + 2∗ (x∧y))|x) + ((2∗ (x|y) − (x∧y))∧x), we
have
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(((x∧y) + 2∗ (x∧y))|x) +((2∗ (x|y) − (x∧y))∧x)

� ((x + y − 2∗ (x∧y))|x) +((2∗ (x + y − (x∧y))

− (x + y − 2∗ (x∧y)))∧x)

� ((x + y)|x) +((x + y)∧x)t1 � (x + y)

� t1|x(  + t1|x( 

� t1 + x

� 2∗x + y.

(17)

3.3.Algorithmand Implementation. 'eMBA simplification
scheme we have described above is illustrated in Algorithm
2. 'e algorithm takes an MBA expression E as input and
outputs its concise form. First, it checks whether the MBA
expression is a polynomial MBA or not. For polynomial
MBA, the algorithm applies Algorithm 1 to simplify the
bitwise expressions. 'en, an arithmetic reduction is per-
formed to return the simplification result. For non-poly-
nomial MBA, the algorithm applies the polynomial MBA
simplification procedure to recursively reduce each inner
sub-expression (polynomial MBA) and replace it with the
simplified result. At last, the algorithm performs the
arithmetic reduction to generate the final result. Note that
Algorithm 2 applies Algorithm 1 and arithmetic compu-
tation to simplify an MBA expression, so it does not in-
troduce any additional tables or manage extra heap memory.

We implement Algorithm 2 as an open-source tool, named
MBA-Flatten. It accepts a complex MBA expression as the
input and outputs the corresponding simplification result. An
overview of MBA-Flatten’s architecture is shown in Figure 2.
'ewhole framework is written in around 1,800 lines of Python
code. 'e parser and AST traversal components are coded
based on the Python AST library. Moreover, we leverage the
Python SymPy library for arithmetic reduction.

Inside MBA-Flatten, the main program consists of three
major components. First, a parser receives the MBA ex-
pression and translates it to abstract syntax tree (AST) for
the remaining process. 'en, MBA-Flatten reduces the
expression to a concise form. For polynomial MBA ex-
pression, the program uses the transformation procedure to
reduce a bitwise expression, and a math reduction module is
adopted to further simplify the expression. 'e math re-
duction module also includes the optimization function to
generate an optimal result for some expressions; e.g., x +

y − 2∗ (x∧y) can be further reduced to (x∧y). For non-
polynomial MBA expression, MBA-Flatten traverses the
AST bottom-up and simplifies every inner subtree (poly-
nomial MBA expression). After reducing each sub-expres-
sion, the simplified expression is replaced with the
temporary variable. At last, arithmetic reduction rules are
further performed to reduce the expression and return the
final simplification result. MBA-Flatten also includes utili-
ties for measuring the complexity metrics of MBA expres-
sions, such as counting the number of nodes in the directed
acyclic graph (DAG) representation of an MBA expression,

and we will discuss the complexity measurement of MBA
expressions further in Section 5.1.

4. Proof of Theorem 1

To prove'eorem 1, we first present that the transformation T

is well defined. 'e definitions of value and form equivalence
between two MBA expressions are shown as follows.

Definition 3. Suppose two MBA expressions E1(x1, · · · , xt),

E2(x1, · · · , xt) of variables xk ∈ Bn, k � 1, · · · , t.E1
(x1, · · · , xt)�

VE2(x1, · · · , xt) if E1(a1, · · · , at) ≡ E2
(a1, · · · , at) for all ak ∈ BnE1(x1, · · · , xt)�

FE2(x1, · · · , xt) if
E1(x1, · · · , xt) and E2(x1, · · · , xt) are of the same form

'e maps in Equation (7) are identical in one-bit space.
In other words, the bitwise expression e is equivalent to T(e)

with xk ∈ B, which is shown as follows:

T e
1

x1, · · · , xt(  �
V

e
1

x1, · · · , xt( , xk ∈ B, k � 1, · · · , t.

(18)

Proposition 1 shows that the transformation T is well
defined, and one instance is shown in Example 6.

Proposition 1. Let en be the bitwise expression of variables
xk ∈ Bn, k � 1, · · · , t. Given two bitwise expressionsen

1 and en
2,

ifen
1�Ven

2, thenT(en
1)�

FT(en
2).

Proof. en
1�Ven

2 induces e11�
Ve12. According to Equation (18),

there is T(e11)�
VT(e12). Note the uniqueness of T(e), and

then, T(e11)�
FT(e12). Since T(e1)�FT(en), we have

T(en
1)�

FT(en
2). □

Example 6. For the bitwise expressions e1 � ∼ (x1∧x2),
e2 � (x1∧x2)|( ∼ x1∧ ∼ x2), and e1 � e2. We have

T e1(  � − x1 + x2 − 2∗ x1 ∗ x2( (  + 1

� − x1 − x2 + 2∗ x1 ∗x2(  + 1,

T e2(  � x1 ∗ x2 + − x1 + 1( ∗ − x2 + 1( 

− x1 ∗ x2( ∗ − x1 + 1( ∗ − x2 + 1( ( 

� − x1 − x2 + 2∗ x1 ∗x2(  + 1.

(19)

'us, T(e1) � T(e2).
Next, we present the concept of the signature vector

shown as follows. 'e signature vector of a linear MBA
expression is a vector with 2t dimensions, where t is the
number of variables in the expression.

Definition 4. (Xu [11]). LetE � 
s
i�1 aieibe a linear MBA

expression, whereaiis integers andeiis bitwise expressions. Let
M be the2t ∗ sBoolean matrix representing the truth table
ofe1, · · · es, v

→
� [a1, · · · , as]

T./e signature vectors(E)is the
product of the MBA truth table matrixMand the coefficient
vector v

→.

s(E) � M v
→

. (20)
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Table 1 shows the truth table of multiple 2-variable
bitwise expressions, and the column with all “1” is encoded
as “− 1” [1, 11]. Using Table 1, Example 7 presents the
procedure of calculating the signature vector for expression
− x1 − x2 + 2∗ (x1∧x2) − 1. 'e signature vector of a bitwise
expression is actually to treat its corresponding truth table as
a column vector, such as s(x1∧x2) � [0, 0, 0, 1]T.

Example 7. For a linear MBA expression
E � − x1 − x2 + 2∗ (x1∧x2) − 1, using Table 1, we have

M �

0 0 0 1

1 0 0 1

0 1 0 1

1 1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v
→

�

− 1

− 1

2

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, s(E) � M v
→

�

1

0

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(21)

'en, we introduce the following lemma.

Lemma 1 (Xu [11]). Given two linear MBA
expressionsE1andE2,E1 � E2, if and only ifs(E1) � s(E2).

Using Proposition 1 and Lemma 1, /eorem 1 can be
proved as below.

Proof. Let s(e)j be the jth element of s(e), j � 1, · · · , 2t.
Note that Equation (11) is a linear MBA expression,
s(− 1)j � 1, and s(e)j � 0 or 1.

We prove F(e) ≡ e using mathematical induction on the
number of bitwise operators in the expression e(x1, · · · , xt)

of variables xk ∈ Bn.
Base step: the basis is the bitwise expression e(x1, · · · , xt)

with a single bitwise operator, which is one of the following
four cases:

∼ x, x∧y, x|y, andx∧y, (22)

where x, y ∈ x1, · · · , xt . □

Case 1. Suppose e � ∼ x, we have T(e) � − x + 1, and then,
ae � 1; thus F(e) � − x − 1.

If s(x)j � 0, then s(e)j � 1 and s(F(e))j �

− s(x)j + s(− 1)j � 1
If s(x)j � 1, then s(e)j � 0 and s(F(e))j �

− s(x)j + s(− 1)j � 0

'erefore, s(e)j ≡ s(F(e))j.

Case 2. Suppose e � x∧y, we have T(e) � x∗y, and then,
ae � 0; thus, F(e) � x∧y. It is plainly correct that
s(e)j ≡ s(F(e))j.

Case 3. Suppose e � x|y, we have T(e) � x + y − x∗y, and
then, ae � 0; thus F(e) � x + y − (x∧y).

If s(x)j � 0 and s(y)j � 0, then s(e)j � 0 and
s(F(e))j � s(x)j + s(y)j − s(x∧y)j � 0
If s(x)j � 0 and s(y)j � 0, then s(e)j � 1 and
s(F(e))j � s(x)j + s(y)j − s(x∧y)j � 1
If s(x)j � 1 and s(y)j � 0, then s(e)j � 1 and
s(F(e))j � s(x)j + s(y)j − s(x∧y)j � 1
If s(x)j � 1 and s(y)j � 1, then s(e)j � 1 and
s(F(e))j � s(x)j + s(y)j − s(x∧y)j � 1

'erefore, s(e)j ≡ s(F(e))j.

Case 4. Suppose e � x∧y, proven as above.

MBA-Flatten

1-(x|~y)+2*y
+(~(x&y))+1*(~(x|y))

-1*(~(x|~y))+2*(x&~y) Polynomial
BitTrans

1-(-y+(x&y)-1)
+2*y+(-(x&y)-1)

+ ...

Arithmetic
Reduction (x^y)

Non-
Polynomial

Inner-Sub
Sim

Inner-Sub
Sim

…

Inner-Sub
Sim

t1 +x

Arithmetic
Reduction (x^y)

Output (x^y)

Simplified
resultASTMBA

Expression

Parser

Figure 2: An overview of MBA-Flatten’s architecture.

(i) Input: a bitwise expression e.
(ii) Output: the simplification result of e.
(1) Function BitTrans (e)

(2) Recursively apply the transformation T to transform e into T(e).
(3) Replace all (xij

∗ · · · ∗xik
) in T(e) with (xij

& · · ·&xik
) to get R(e).

(4) F(e) � R(e) − 2∗ ae.
(5) Return F(e).
(6) End function

ALGORITHM 1: Transformation procedure of a bitwise expression.
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'e above four cases led to ae � 0 or 1 and
s(e)j ≡ s(F(e))j that implies s(e) ≡ s(F(e)). By Lemma 1,
e ≡ F(e) holds where variables xk ∈ Bn.

Induction step: assume F(e) ≡ e holds with r bitwise
operators (r≥ 1) in e. Performing one more bitwise operator
to e, the new expression e(x1, · · · , xt) is one of the following
forms:

∼ e,

e∧x, x∧e,

e|x, x|e,

e∧x, x∧e,

(23)

where x ∈ x1, · · · , xt . Due to the commutative law of
bitwise operators ∧, |,∧ and the following equations:

e∧( ∼ x) � ∼ ( ∼ e|x),

e|( ∼ x) � ∼ ( ∼ e∧x),

e∧( ∼ x) � ∼ ( ∼ e∧x),

(24)

we only need to show that F(e) ≡ e holds on the following
four cases with r + 1 bitwise operators:

∼ e, e∧x, e|x, e∧x. (25)

Assume F(e) ≡ e with ae � 0, and we get s(e) ≡ s(F(e))

and the following inductive hypothesis:

T(e) � 
t

i1�1
ai1

xi1
+ 

1≤ i1 < i2 ≤ t

ai1i2
xi1
∗ xi2

 

+ · · · + a1···t x1 ∗ · · · ∗ xt( ,

(26)

F(e) � 
t

i1�1
ai1

xi1
+ 

1≤ i1 < i2 ≤ t

ai1i2
xi1
∧xi2

  + · · ·

+ a1···t x1∧ · · ·∧xt( .

(27)

Case 5. Suppose e � ∼ e; from the inductive hypothesis
(Equation (26)), we have

T(e) � 
t

i1�1
ai1

xi1
+ 

1≤ i1 < i2 ≤ t

ai1i2
xi1
∗ xi2

 

− · · · − a1···t x1 ∗ · · · ∗xt(  + 1.

(28)

'en, ae � 1; thus,

F(e) � 
t

i1�1
ai1

xi1
− 

1≤ i1 < i2 ≤ t

ai1i2
xi1
∧xi2

 

− · · · − a1···t x1∧ · · ·∧xt(  − 1.

(29)

According to (27), we get F(e) � − F(e) − 1.

If s(e)j � 0, then s(e)j � 1 and s(F(e))j

� − s(F(e))j + s(− 1)j � 1

If s(e)j � 1, then s(e)j � 0 and s(F(e))j

� − s(F(e))j + s(− 1)j � 0

'erefore, s(e)j ≡ s(F(e))j.

Case 6. Suppose e � e∧x; from the inductive hypothesis
(Equation (26)), we have

T(e) � 
t

i1�1
ai1

xi1
∗x  + 

1≤ i1 < i2 ≤ t

ai1i2
xi1
∗ xi2
∗ x 

+ · · · + a1···t x1 ∗ · · · ∗xt ∗x( .

(30)

'en, ae � 0; thus,

F(e) � 
t

i1�1
ai1

xi1
∧x  + 

1≤ i1 < i2 ≤ t

ai1i2
xi1
∧xi2
∧x 

+ · · · + a1···t x1∧ · · ·∧xt∧x( .

(31)

If s(x)j � 0, then s(e)j � 0 and

s(F(e))j � 
t

i1�1
ai1
∗ s xi1
∧x 

j
+ 

1≤ i1 < i2 ≤ t

ai1i2
∗ s xi1
∧xi2
∧x 

j

+ · · ·

+a1···t ∗ s x1∧ · · ·∧xt∧x( j.

� 
t

i1�1
ai1
∗ 0 + 

1≤ i1 < i2 ≤ t

ai1i2
∗ 0 + · · · + a1···t ∗ 0 � 0.

(32)

If s(x)j � 1, then s(e)j � s(e)j and

s(F(e))j � 
t

i1�1
ai1
∗ s xi1

 
j

+ 
1≤ i1 < i2 ≤ t

ai1i2
∗ s xi1
∧xi2

 
j
c

+ · · · + a1···t ∗ s x1∧ · · ·∧xt( j

� s(F(e))j.

(33)

'erefore, s(e)j ≡ s(F(e))j.

Case 7. Suppose e � e|x; from the inductive hypothesis
(Equation (26)), we have

T(e) � 
t

i1�1
ai1

xi1
+ 

1≤ i1 < i2 ≤ t

ai1i2
xi1
∗xi2

 

+ · · · + a1···t x1 ∗ · · · ∗ xt(  + x

− 
t

i1�1
ai1

xi1
∗x  + 

1≤ i1 < i2 ≤ t

ai1i2
xi1
∗ xi2
∗ x 

− · · · − a1···t x1 ∗ · · · ∗ xt ∗x( .

(34)

'en, ae � 0; thus,
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F(e) � 
t

i1�1
ai1

xi1
+ 

1≤ i1 < i2 ≤ t

ai1i2
xi1
∧xi2

 

+ · · · + a1···t x1∧ · · ·∧xt(  + x

− 
t

i1�1
ai1

xi1
∧x  + 

1≤ i1 < i2 ≤ t

ai1i2
xi1
∧xi2
∧x 

− · · · − a1···t x1∧ · · ·∧xt∧x( .

(35)

According to (27) and (31), we get
F(e) � F(e) + x − F(e∧x).

If s(x)j � 0, then s(e)j � s(e)j and s(F(e))j

� s(F(e))j + s(x)j − s(F(e∧x))j � s(F(e))j

If s(x)j � 1, then s(e)j � 1 and s(F(e))j � s(F(e))j +

s(x)j − s(F(e∧x))j � s(F(e))j + 1 − s(e)j � 1

'erefore, s(e)j ≡ s(F(e))j.

Case 8. Suppose e � e∧x, proven as above.
'e above four cases led to ae � 0 or 1 and

s(e)j ≡ s(F(e))j that implies s(e) ≡ s(F(e)). By Lemma 1,
e ≡ F(e) holds where variables xk ∈ Bn.

Assume F(e) ≡ e with ae � 1; from the similar discus-
sion as above, we have

ae �
0, ife � ∼ eore∧x,

1, ife � e|xore∧x,
 (36)

and e ≡ F(e) with variables xk ∈ Bn.
As discussed above, the induction is completed.'us, we

have F(e) ≡ e with variables xk ∈ Bn and ae � 0 or 1 de-
termined by e.

5. Experimental Results

In this section, a set of experiments are conducted to
evaluate the MBA simplification scheme, MBA-Flatten. We
first run MBA-Flatten and existing peer tools on two
comprehensive MBA benchmarks. Z3 SMT solver [19] is
used to check whether the simplified result is equivalent to
the original MBA expression. 'e corresponding simplifi-
cation results are discussed in Section 5.2–5.4. As reported in
Section 5.5 and 5.6, MBA-Flatten can assist humans in
analyzing software. At last, Section 5.7 studies MBA-Flat-
ten’s performance data, such as running time and memory
footprint.

5.1. Experimental Setup

5.1.1. Peer Tools for Comparison. We collect and check
existing state-of-the-art MBA simplification tools: MBA-
Blast [5] and MBA-Solver [11]. MBA-Blast is a Python tool
for simplifying MBA expressions via a two-variable trans-
formation table. MBA-Solver produces multiple pre-
computed transformation tables, which enumerate all
bitwise expressions and corresponding concise forms. 'en,
MBA-Solver uses these tables to simplify an MBA expres-
sion. For a more thorough evaluation, we also check other

MBA simplification tools: GraphMR [18], SSPAM [13], and
Syntia [14]. GraphMR is a neural network-based solution to
reduce anMBA expression. SSPAM (symbolic simplification
with pattern matching) is a pattern matching method that
detects and reduces MBA expressions by multiple known
MBA rules. Syntia is a program synthesis framework for
approximating the semantics of expressions. It uses a set of
input-output samples from the expression, learns the se-
mantics of the samples, and synthesizes a simpler expression
that is equal to the original expression.

5.1.2. Benchmarks. To fully expose the capability of diverse
methods on simplifying MBA expressions, a large scale of
MBA expressions is required for evaluation. 'erefore, we
consider two comprehensive MBA benchmarks: Dataset 1
[14] and Dataset 2 [11]. Dataset 1 comprises 500 MBA
samples generated by Tigress [6] with up to three variables.
Dataset 2 collects 3,000 MBA equations with up to four
variables, which contains 2,000 polynomial MBA (1,000
linear MBA) and 1,000 non-polynomial MBA expressions.
Every sample in datasets is a 2-tuple: (Ec, Eg). Ec is the
complex MBA expression, and Eg is the related equivalent
simple form. Multiple samples in benchmarks are shown in
Table 2.

5.1.3. MBA Complexity Metrics. We use the following
metrics to measureMBA complexity: number of DAG nodes
and MBA alternation. For example, the expression
∼ (x∧y) + 3∗ (x|y), whose DAG representation is shown
in Figure 3, has 8 nodes and anMBA alternation (a red arrow
means one MBA alternation) of 2. 'e larger a metric’s
value, the more complex an MBA expression. We expect the
metrics’ values will be reduced after simplification.

(1) Number of DAG Nodes. An MBA expression is
transformed into a directed acyclic graph (DAG)
representation in which the nodes are operators,
variables, and constants. 'e number of nodes in the
DAG is defined as a complexity metric for an MBA
expression.

(2) MBA Alternation. 'e MBA complexity mainly
comes from mixing bitwise operations and arith-
metic operations. We adopt “MBA alternation” to
measure the number of edges linking different types
of operations in the DAG representation of an MBA
expression.

5.1.4. Machine Configuration. All of our experiments are
performed on a server with Intel Core i9 3.00GHz CPU,
64GB DDR4 RAM, 2 TB SSD Hard Drive, and running
Ubuntu 20.04 OS.

5.2. Simplification on Dataset 1. In the first experiment, we
run MBA-Flatten and other peer tools on Dataset 1. 'e
evaluation result in Table 3 shows that only MBA-Flatten
successfully produces verifiable simplification outputs for all
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MBA expressions with negligible overhead (within 0.1
seconds).

We first study the correctness that means an expression
before and after simplification is semantically equivalent. Z3
solver [19] is adopted to check whether the output of a
simplification tool is equivalent to the input. 'e solver may
not return the solving result due to theMBA’s complexity, so
we set 1 hour as a practical threshold for this and the fol-
lowing experiments.

Table 3 presents the number of MBA expressions that
can be reduced by simplification tools. GraphMR is trained
on the linear MBA dataset, so it can only simplify 137 of 500
MBA expressions. SSPAM outputs 168 wrong simplification
results because of the limited number of MBA rules in the
pattern library. Syntia uses stochastic program synthesis to
generate a simple expression, which successfully synthesizes
369 simplification results. MBA-Blast performs well on
simplifying 2-variable MBA expressions rather than three or
more variables, and therefore, it generates 416 simplification
results. MBA-Solver can successfully simplify the majority of
theMBA expressions (454 of 500), but it cannot process several
special cases, e.g., the non-polynomial MBA expression in-
cluding sub-expression ∼ (x − 1). In contrast to MBA-Solver,
MBA-Flatten can successfully simplify all 500 MBA samples,
and it reduces ∼ (x − 1) to the expression − x.

Next, we investigate the effectiveness that reflects how
much complexity is reduced by the simplification methods.
Table 4 reports the expression complexity before and after
simplification. Two quantitative metrics are used to measure
expression complexity: the number of DAG nodes and MBA
alternation. Table 4 shows that all simplification tools

(i) Input: an MBA expression E.
(ii) Output: the simplification result of E.
(1) Function MBA-Flatten (E)

(2) If E is a polynomial MBA expression then
(3) Return PolySim (E).
(4) Else
(5) For inner sub-expression Ei is a polynomial MBA expression do
(6) Ei
′← PolySim (Ei).

(7) Replace Ei with Ei
′.

(8) Replace Ei
′ with temp variable ti.

(9) End for
(10) Replace all ti with Ei

′.
(11) Arithmetic reduction on E.
(12) Return E.
(13) End if
(14) End function
(15) Function PolySim (E)

(16) For every bitwise expression e ∈ E do
(17) e′← BitTrans (e).
(18) Replace e with e′ in E.
(19) End for
(20) Arithmetic reduction on E.

(21) Return E.
(22) End function

ALGORITHM 2: Simplification procedure of an MBA expression.

+

~ *

& | 3

x y

Figure 3: DAG representation of an MBA expression
∼ (x&y) + 3∗ (x|y).

Table 1: Truth table of multiple bitwise expressions with 2
variables.

x2 x1 ∼ x1 ∼ x2 x1&x2 x1|x2 − 1

0 0 1 1 0 0 1
0 1 0 1 0 1 1
1 0 1 0 0 1 1
1 1 0 0 1 1 1

Security and Communication Networks 9



(except SSPAM) can considerably reduce the complexity
measurement of the solved MBA expressions. SSPAM
cannot effectively reduce a complex MBA expression to a
simpler form due to the limited known MBA rules used in
the software.

5.3. Simplification on Dataset 2. As the second experiment,
we run MBA-Flatten and other baseline tools on Dataset 2.
As shown in Table 5, MBA-Flatten can successfully simplify
2,943 of 3,000 MBA expressions, and its average processing
time is less than 0.2 seconds.

Considering the MBA expression in Dataset 2 is more
complex and diverse than the one in Dataset 1, this ex-
periment exposes more detailed findings. GraphMR and
Syntia have limited effect on simplifying complex MBA
expression, which can only correctly simplify less than 450
MBA samples. SSPAM cannot generate a simpler expres-
sion, so nearly 2/3 (1,975 of 3,000) of the simplified results
cannot be checked by the Z3 solver within the time
threshold. Compared with MBA-Blast (1,763 simplified

samples), MBA-Solver can reduce more MBA expressions
with three or four variables, and it successfully simplifies
2,899 MBA samples. MBA-Flatten can reduce 2,943 MBA
samples, but it fails to simplify several special cases. One
exception is the non-polynomial MBA expression ( ∼ (x −

1)∧y)∗ ( ∼ (x − 1)|y) + ( ∼ (x − 1)∧ ∼ y)∗ ( ∼ ( ∼
(x − 1))∧y). Table 6 reports that all solutions (except
SSPAM) can generate a simpler equivalent expression.
Overall, MBA-Flatten presents its advanced capability by
successfully simplifying 98.1% of MBA samples.

Furthermore, we compare the average solving time
of simplification tools on the two benchmarks. From
Tables 3 and 5, the simplification time of GraphMR
and Syntia is almost not increased, but SSPAM takes
much more time when it simplifies a more complex
MBA expression. MBA-Blast takes less than 0.1 seconds
to simplify a two-variable MBA expression. Compared
with MBA-Solver, MBA-Flatten takes slightly more
time to simplify an MBA expression. 'e main reason is
that MBA-Solver directly gets the bitwise expression
simplification results from the transformation tables,
rather than reduces it by multiple simplification
procedures.

Table 2: MBA samples in the benchmarks.

Ec Eg

(a∧ ∼ a) + 2∗ (a|a) + 1 a + a

2∗ ( ∼ (x∧y)) + 3∗ ( ∼ x&y) + 3∗ (x& ∼ y) − 2∗ ( ∼ (x&y)) x + y

∼ (((x&y)∗ (x|y) + (x& ∼ y)∗ ( ∼ x&y)) − 1) − (x∗y)

Table 3: Simplification results using Dataset 1.

Tools ✓ 7 Timeout Ratio (%) Average time (s)
GraphMR 137 363 0 27.4 0.01
SSPAM 332 168 0 66.4 1.45
Syntia 369 131 0 73.8 38.5
MBA-Blast 416 0 84 83.2 0.02
MBA-Solver 454 0 46 90.8 0.02
MBA-Flatten 500 0 0 100.0 0.02

Table 4: Complexity metrics of the results on correctly simplified
samples in Dataset 1 before and after simplification.

Tools
Average # of nodes Average MBA

alternation
Before After A/B (%) Before After A/B (%)

GraphMR 9.7 3.6 37.1 3.6 0.2 5.6
SSPAM 6.2 4.0 64.5 2.4 1.5 62.5
Syntia 9.4 3.4 36.2 3.7 0.2 5.4
MBA-Blast 9.0 3.5 38.9 3.3 0.2 6.1
MBA-Solver 9.6 3.6 37.5 3.6 0.2 5.6
MBA-Flatten 9.8 3.7 37.8 3.7 0.2 5.4

Table 5: Simplification results using Dataset 2.

Tools ✓ 7 Timeout Ratio (%) Average time (s)
GraphMR 379 2621 0 12.6 0.01
SSPAM 705 320 1975 23.5 143.1
Syntia 437 2563 0 14.6 38.9
MBA-Blast 1763 0 1237 58.8 0.05
MBA-Solver 2899 0 101 96.7 0.10
MBA-
Flatten 2943 0 57 98.1 0.16

10 Security and Communication Networks



5.4. Case Study. 'e evaluation results in Tables 3 and 5
show that MBA-Solver and MBA-Flatten are the most
powerful MBA simplification tools. 'roughout this case
study, we demonstrate the strengths and weaknesses be-
tween MBA-Solver and MBA-Flatten.

We manually check the MBA expressions solved by
MBA-Solver or MBA-Flatten, and one interesting ob-
servation is that MBA-Flatten can reduce all polynomial
MBA expressions in the datasets, as MBA-Solver does.
Does this scenario mean that MBA-Solver and MBA-
Flatten can be substituted for each other? 'e answer is
relevant to the number of variables in an MBA expression:

as described in Section 2.2, MBA-Solver can successfully
simplify a polynomial MBA expression with up to four
variables; compared with MBA-Flatten, MBA-Solver is
more efficient when it reduces an MBA expression.
However, MBA-Flatten can simplify a polynomial MBA
expression with an arbitrary number of variables, and the
form of simplification result is shown in Equation (15).
'e following example shows how to apply MBA-Flatten
to simplify Equation (6), which is an MBA expression with
five variables.

Example 8. For Equation (6), we have

A � − ( ∼ (x|y|t))∧( ∼ a)

� −
(a∧t∧x∧y) − (a∧t∧x) − (a∧t∧y) +(a∧t) − (a∧x∧y) +(a∧x)

+(a∧y) − a − (t∧x∧y) +(t∧x) +(t∧y) − t +(x∧y) − x − y − 1
⎛⎝ ⎞⎠,

B � − (( ∼ (x|y| ∼ t))∧( ∼ a))

� − (− (a∧t∧x∧y) +(a∧t∧x) +(a∧t∧y) − (a∧t) +(t∧x∧y) − (t∧x) − (t∧y) + t),

C � − ( ∼ (x|y|z|t)∧a)

� −

(a∧t∧x∧y∧z) − (a∧t∧x∧y) − (a∧t∧x∧z)

+(a∧t∧x) + a − (a∧t∧y∧z) +(a∧t∧y) +(a∧t∧z)

− (a∧t) − (a∧x∧y∧z) +(a∧x∧y) +(a∧x∧z) − (a∧x)

+(a∧y∧z) − (a∧y) − (a∧z),

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D � − (( ∼ x∧ ∼ y∧(z|t))∧(a))

� −

− (a∧t∧x∧y∧z) +(a∧t∧x∧y) +(a∧t∧x∧z)

− (a∧t∧x) +(a∧t∧y∧z) − (a∧t∧y) − (a∧t∧z) +(a∧t)

+(a∧x∧y∧z) − (a∧x∧z) − (a∧y∧z) +(a∧z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(37)

and thus,

f(x,y,z, t,a) � A + B + C + D − 2∗y − 1+(x∧y) � x − y.

(38)

'e other observation is that MBA-Flatten can simplify
all non-polynomial MBA expressions solved by MBA-
Solver, but not vice versa. It is because that MBA-Solver
treats the common sub-expression as an intermediate
variable, rather than a sub-expression itself. 'erefore,

Table 6: Complexity metrics of the results on correctly simplified samples in Dataset 2 before and after simplification.

Tools
Average # of nodes Average MBA alternation

Before After A/B (%) Before After A/B (%)
GraphMR 32.1 6.9 21.5 6.8 0.9 13.2
SSPAM 35.3 30.4 86.1 7.5 6.5 86.7
Syntia 30.9 5.4 17.5 6.2 0.7 11.3
MBA-Blast 37.4 10.4 27.9 11.6 1.5 12.9
MBA-Solver 45.4 13.2 29.1 12.2 2.1 17.2
MBA-Flatten 45.3 11.2 24.7 12.3 1.5 12.2
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MBA-Flatten can simplify more special cases that cannot be
simplified by MBA-Solver. Moreover, MBA-Flatten can
reduce a non-polynomial MBA expression with five or
more variables.

From the description above, MBA-Flatten is a general
MBA simplification method.

5.5. MBA-Powered Malware Deobfuscation. MBA expres-
sion is always used to obfuscate code, so malware de-
veloper also adopts the MBA expression to complicate the
program. Liu et al. [5] report that MBA expressions are
used in a ransomware sample to protect the encryption
key, and they also observe that MBA rules are integrated
into the software obfuscator VMProtect, which is widely
used by malware developers.

In this experiment, we demonstrate that MBA-Flatten
can assist in reverse-engineering the malware obfuscated
by MBA expressions. We collect all MBA expressions used
in malware from existing work [5]. 'en, MBA-Flatten is
applied to simplify the expressions, and the Z3 solver is
used to check the correctness of the simplified result. 'e
evaluation result shows that MBA-Flatten can successfully
simplify all MBA expressions collected from existing
malware samples. One simplification procedure is shown
as follows, and MBA-Flatten produces the final result
(x − y).

∼ ( ∼ x + y)∧ ∼ ( ∼ x + y)

� ∼ (− x − 1 + y)∧ ∼ (− x − 1 + y)t1 � (− x − 1 + y)

� ∼ t1∧ ∼ t1

� − t1–1

� x − y.

(39)

Furthermore, we replace the MBA expressions used in
malware with new MBA expressions involving five or more
variables and produce 130 variants, such as the above ex-
pression ∼ ( ∼ x + y)∧ ∼ ( ∼ x + y), which is replaced with
Equation (6). We apply MBA-Blast and MBA-Flatten to
simplify the new MBA expressions. Unfortunately, MBA-

Blast fails to simplify them. In contrast, MBA-Flatten can
successfully simplify all new MBA expressions. 'erefore,
this experiment shows that MBA-Flatten can simplify the
MBA expressions used in existing malware and the complex
MBA expression with five or more variables.

5.6. Boosting SMT Solving MBA Equations. Satisfiability
modulo theory (SMT) solvers have been widely applied in
diverse software engineering areas, such as software analysis
[21, 22], symbolic execution [23, 24], and test generation
[25]. Existing work [10, 11] has presented that SMT solvers
are hard to solve MBA equations. However, the MBA
simplificationmethod, MBA-Solver, can be used to boost the
SMT solver’s performance on solving MBA equations (11).

In this experiment, we report thatMBA-Flatten (denoted
as MF) can assist SMTsolvers in solvingMBA equations. We
consider the benchmark from work [11] and test three
popular SMT solvers: Boolector [26], STP [27], and Z3 [20].
'e benchmark is actually considered as Dataset 2 in this
study, and MBA-Solver (denoted as MS) is considered as the
baseline. MBA-Flatten and MBA-Solver are used to simplify
all MBA equations in the benchmark, and then, the sim-
plification results are output to the three SMT solvers.

'e evaluation result is shown in Table 7, and the solving
time threshold is set as 1 hour. Before simplification, all three
SMT solvers can only solve a small portion (Boolector 496
(16.5%), STP 98 (3.3%), Z3 84 (2.8%)) of the MBA equations
within the time threshold, but after simplification, all
three solvers can solve over 96% of MBA equations.
Compared with MBA-Solver, all SMT solvers can solve
more MBA equations after MBA-Flatten’s simplification.
'is is because MBA-Flatten can successfully simplify
more MBA expressions than MBA-solver, as shown in
Table 5. After MBA-Flatten’s simplification, all SMT
solvers can solve 2,943 of 3,000 MBA equations, which
means that the distinction between solvers’ performance
on solving MBA expressions becomes insignificant. 'ese
results indicate that MBA-Flatten is a generic method to
boost SMT solver’s performance on solving MBA
expressions.

5.7. Performance. 'is section reports MBA-Flatten’s per-
formance data. Table 8 shows the time and memory cost
when MBA-Flatten processes an MBA expression with
different complexity measured by the number of nodes. For
every complexity measurement, 100 different MBA ex-
pressions are generated to do the test. As some of the timings
are small, we repeat every test 100 times. MBA-Flatten is
effective because it only performs low-cost arithmetic

Table 7: Experiment result of SMT solving on Dataset 2.

Boolector STP Z3
Before MS MF Before MS MF Before MS MF

Polynomial 468 2000 2000 70 2000 2000 56 2000 2000
Non-polynomial 28 899 943 28 899 943 28 899 943
Total 496 2899 2943 98 2899 2943 84 2899 2943

Table 8: MBA-Flatten’s performance on MBA expressions with
different complexity.

# of nodes Time (s) Memory (MB)
10 0.02 0.2
50 0.18 1.1
100 0.53 4.3
150 0.91 7.6
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computation. Our implementation adopts the Python
SymPy library to efficiently perform the arithmetic reduc-
tion. Overall, MBA-Flatten is an effective tool for simplifying
MBA expressions.

6. Discussion

MBA-Flatten has demonstrated the feasibility of automat-
ically reducing MBA expressions. However, we also note
some potential enhancements for future improvement.

As introduced in Section 5.3, MBA-Flatten cannot
simplify the non-polynomial MBA expression (∼(x − 1)

∧y)∗ (∼(x − 1)|y) + (∼(x − 1)∧∼y)∗ (∼(∼(x − 1))∧y).
We further investigate how to reduce it, and the simplifi-
cation procedure is shown below. During the simplification
procedure, the sub-expression ∼ (x − 1) is treated as an
intermediate variable rather than the expression (x − 1).
However, it is hard for an automatic tool to precisely detect
and identify the sub-expression, such as the sub-expression
∼ (x − 1). To mitigate this problem, one possible solution is
to integrate multiple heuristic rules into MBA-Flatten.
'erefore, MBA-Flatten can explore diverse reduction di-
rections to generate a simpler result.

(∼(x − 1)∧y)∗ (∼(x − 1)|y) +(∼(x − 1)∧∼y)

∗ (∼(∼(x − 1))∧y)

� t1∧y( ∗ t1|y(  + t1∧∼y( ∗ ∼ t1( ∧y( t1 � ∼(x − 1)

� t1 ∗y

� ∼(x − 1)∗y

� ∼ t2 ∗yt2 � x − 1

� − t2 − 1( ∗y

� (− x)∗y.

(40)

It is possible that an adversary attacks MBA-Flatten by
combining MBA obfuscation with other obfuscation tech-
niques to generate an expression that does not satisfy the
MBA definition in this study. Note that MBA-Flatten is
designed for simplifying MBA expressions, so it may cor-
rectly handle the certain MBA sub-expression, but cannot
solve the remaining non-MBA part. It is interesting to
further investigate whether MBA-Flatten can interact with
other analysis techniques (e.g., symbolic execution) to
produce a better result.

7. Conclusion

Existing work performs well on simplifying MBA expression
with very few variables. However, the state-of-the-art
methods are hard to simplify a multivariable MBA ex-
pression. We investigate it and address this challenge using
an in-place simplification method. A transformation
procedure is proposed to transform a bitwise expression
into a unified form, and we provide a mathematical proof
to guarantee the correctness of this transformation. 'en,
the arithmetic reduction is used to further simplify the
expression and produce a simplified result. Our large-scale

experiments show that MBA-Flatten is a general and ef-
fective MBA simplification method. Furthermore, devel-
oping MBA-Flatten not only advances automated malware
analysis but also boosts SMT solving on the MBA
equations.
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